
Constant Factor Approximation of Vertex-Cuts in Planar
Graphs

Eyal Amir
Computer Science Division

University of California
Berkeley, CA 94720.

eyal@cs.berkeley.edu

Robert Krauthgamer
∗

Computer Science Division
University of California
Berkeley, CA 94720.

robi@cs.berkeley.edu

Satish Rao
Computer Science Division

University of California
Berkeley, CA 94720.

satishr@cs.berkeley.edu

ABSTRACT
We devise the first constant factor approximation algorithm
for minimum quotient vertex-cuts in planar graphs. Our
algorithm achieves approximation ratio 3.5 · (1 + ε)2 with

running time O(W · n3+2/ε). The approximation ratio im-
proves to 4/3·(1+ε) if there is an optimal quotient vertex-cut
(A∗, B∗, C∗) where C∗ has relatively small weight compared
to A∗ and B∗; this holds, for example, when the input graph
has uniform (or close to uniform) weight and cost. The ap-
proximation ratio further improves to 1 + ε if, in addition,
min{w(A∗), w(B∗)} ≤ 1

3
W .

We use our quotient cut algorithm to find the first constant-
factor pseudo-approximation for vertex separators in planar
graphs.

Our technical contribution is two-fold. First, we prove a
structural theorem for vertex-cuts in planar graphs, showing
the existence of a near-optimal vertex-cut whose high-level
structure is that of a bounded-depth tree. Second, we de-
velop an algorithm for optimizing over such complex struc-
tures, whose running time depends (exponentially) not on
the size of the structure, but rather only on its depth. These
techniques may be applicable in other problems.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Delphi theory

∗Supported in part by NSF grants CCR-9820951 and CCR-
0121555 and DARPA cooperative agreement F30602-00-2-
0601.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords
ACM proceedings, LATEX, text tagging

1. INTRODUCTION
Graph partitioning is extensively used in many areas, in-

cluding scientific computing, VLSI design, task scheduling,
machine vision, and automated reasoning, see e.g. [27, 17,
28, 3, 1]. One important graph partitioning problem that
emerges naturally in a variety of applications is the follow-
ing vertex-separator problem. Let G(V,E) be a graph with
vertex costs c : V → N and vertex weights w : V → N.
Throughout, let w(S) =

∑

v∈S w(v) and similarly c(S) =
∑

v∈S c(v) for S ⊆ V , let n = |V | denote the number of
vertices, and let W = w(V) denote the total weight of the
vertices. A vertex-cut of G is a partition of V into three dis-
joint sets A,B,C such that no edge in E has one endpoint
in A and one in B. The cost of the vertex-cut is c(C).

A vertex-cut is called a vertex-separator (aka 2/3-balanced)
if max{w(A), w(B)} ≤ 2

3
w(V). The vertex-separator prob-

lem is to find a minimum-cost vertex separator in an input
graph G. This problem was shown to be NP-hard by Bui
and Jones [5]. Leighton and Rao [18, 19] give an O(log |V |)
pseudo-approximation algorithm for this problem in general
graphs.1 A closely related problem is the quotient vertex-cut
problem. The quotient of the vertex-cut is defined as2

q(A,B,C) =
c(C)

min{w(A), w(B)} + w(C)
.

The minimum quotient vertex-cut problem is to find a vertex-
cut with minimum quotient in an input graph. Also this

1A polynomial-time algorithm is called a ρ-approximation
algorithm for a minimization problem if for any instance of
the problem A outputs a solution whose cost is at most
ρ times that of a minimum-cost solution for the instance.
A pseudo-approximation algorithm for 2/3-balanced cuts is
allowed to output, say, a 3/4-balanced cut (and its cost is
still compared to that of a 2/3-balanced cut).
2One difficulty for vertex separators is the question of how
one counts the weight of the vertices on the separator C. In
general, we can expect the weight of C to be small compared
to w(A), w(B) in cuts with small quotient. This is a natu-
ral assumption and is provably true for unweighted planar
graphs. This suggests including w(C) in the denominator.
Indeed, it turns out that for many applications (including
finding a separator) this is useful. We discuss this further
in Section 2.2, where we define a more general notion of
separator and quotient cost of a vertex-cut.

problem is NP-hard (see below), and the best approxima-
tion ratio known for this problem is O(log n), due to [16,
19].

For planar graphs, the celebrated Planar Separator The-
orem, due to Lipton and Tarjan [21] (see also [2, 22, 29]),
shows that every planar graph has a vertex-separator (A,B,C)
with |C| = O(

√
n). (This corresponds to the case c(v) = 1

for all v ∈ V). Furthermore, they give algorithms for finding
such a vertex-separator. However, these methods are only
guaranteed to find separators of size O(

√
n). Many planar

graphs have much smaller separators, so for any particular
graph these algorithms may find separators that are far from
optimal. We address this issue by devising a constant factor
pseudo-approximation for the vertex-separator problem in
planar graphs. No approximation better than that for gen-
eral graphs was previously known for the vertex-separators
problem in planar graphs; Interestingly, this problem is not
known to be NP-hard.

1.1 Related work
Vertex-cut variants of graph partitioning problems are

usually closely related to that of the edge-cut variants of
these problems. For instance, an edge-cut variant (either
directed or undirected) of a problem frequently reduces to
a vertex-cut variant of the same problem by replacing ev-
ery edge by a path of length two, letting the new vertex
have zero weight and the same cost as the edge it replaces.
Notice that this reduction preserve planarity of the input
graph. There is also a well-known reduction from the (say
undirected) vertex-variant to the directed edge-cut variant,
see [19]. However, this reduction does not preserve planarity.

There is a significant amount of research on approximat-
ing various graph partitioning problems, and many of these
results extend from one variant of the problem to another by
using the aforementioned general reductions. An O(log n)–
approximation for the minimum quotient edge-cut problem
(aka sparse cut) in undirected graphs was first devised in
[18, 19]. Their results and techniques were extended and
expanded (e.g., to other graph partitioning problems) in [16,
12, 11, 15, 20, 4, 7, 9].

For planar graphs, significantly better approximation ra-
tios are usually known. Park and Phillips [24] devise a
pseudo-polynomial time algorithm for solving (exactly) the
minimum quotient edge-cut problem (improving over a con-
stant factor approximation in [25, 26]). Klein, Plotkin and
Rao [14] give a constant factor approximation For the di-
rected version of this problem. These results yield a constant
factor pseudo-approximation for edge-separators. Garg, Saran
and Vazirani [10] give factor 2 (true) approximation for edge-
separators (namely, 2/3-balanced cuts). Feige and Krauthgamer [9]
give anO(log n) (true) approximation for minimum-bisection.
As mentioned before, these results do not translate to similar
approximation ratios for quotient vertex-cuts, since the well-
known reduction of vertex-cut problems to edge-cut prob-
lems in directed graphs might create nonplanar graphs even
if the original graph is planar.

1.2 Results
We devise the first constant factor approximation algo-

rithm for minimum quotient vertex-cuts in planar graphs.
Our algorithm achieves approximation ratio 3.5·(1+ε)2 with

running time O(W · n3+ 2
ε). The approximation ratio im-

proves to 4/3·(1+ε) if in a vertex-cut (A∗, B∗, C∗) of optimal

quotient cost, C∗ has relatively small weight compared to
A∗ and B∗ (namely, w(C∗) ≤ ε

2
min{w(A∗), w(B∗)}); this

holds, for example, when the input graph has uniform (or
close to uniform) weight and cost. The approximation ratio
further improves to 1+ε if, in addition, min{w(A∗), w(B∗)} ≤
1
3
W .
We also achieve the first constant factor pseudo-approximation

for vertex-separators in planar graphs. This follows from the
approximation for quotient vertex-cuts by extending a well-
known technique (see [25, 19]) from edge-cuts to vertex-cuts.

Techniques.. No constant-factor approximation was known
for minimum-quotient vertex-cuts previously. This is, per-
haps, due to subtle but fundamental differences between
minimum quotient edge-cuts and vertex-cuts. The results
for finding optimal quotient edge-cuts rely on a well-known
lemma (see [23, 26]) that the optimal quotient edge-cut di-
vides a graph into two connected graphs. For planar graphs,
this implies that there is a simple Jordan curve in the plane
that corresponds to an optimal quotient edge-cut. The algo-
rithms proceed by searching for simple cycles in the dual of
the planar graph. In particular, Park and Phillips [24] define
a cost and weight for each edge in the dual graph such that
the cost of any cycle in the dual graph corresponds to the
cost of a cut in the input graph, and the weight of the cy-
cle corresponds to the weight that the cut separates. Then,
they can modify methods for finding minimum mean cycle,
due to [13], to find the best such cycle.

A

B

B
BB

BB

B

B

B

B

B

B
B

B

B

B

B

B

A

A

AA

A
A

A

B

B

Figure 1: Jordan curve in the plane corresponding
to an optimal quotient vertex-cut

In contrast, an optimal quotient vertex-cut in a graph
might divide the graph into an arbitrary number of con-
nected components. In fact, both sides of the cut can be an
arbitrary set of components (consider, e.g., a star). For pla-
nar graphs, the “Jordan” curve in the plane corresponding
to an optimal or near-optimal quotient vertex-cut might be
quite complex. See, for example, Figure 1.

We partially address this difference by showing that for
plane graphs there exists a vertex-cut whose quotient cost
is within 4/3 of optimal, and in which one side is connected
in the plane. It can be seen that such a separator must
correspond to a “Jordan” type curve that is essentially a
tree of cycles, see e.g. Figure 2.

Still, this structure is more complex than a simple cycle;
any walk along the structure visits many vertices numerous
times where any “revisits” are “free” in terms of the cost of

the walk. Thus, standard reductions to the minimum mean
cycle problem do not work. To address this, we show that
there is a near-optimal quotient vertex-cut with an associ-
ated tree of cycles that has constant depth.

A

B

B

B

B

B

B

B B

PSfrag replacements
v1

v2

v3
v4 v5

v6
· · ·

Figure 2: A tree of cycles corresponding to a near-
optimal quotient vertex-cut. Midway through a
walk around it, v1 is completely visited, v2, v3 are
partially visited, and v5, v6 have not been visited yet.

Of course, one can easily extend the mean cycle methods
to “guess” a constant number of vertices that are allowed
to be revisited. Thus, if a near-optimal walk has a simple
structure and only revisits a constant number of vertices,
we could find it. Unfortunately, this is not true even for
a bounded-depth tree of cycles. For example, any near-
optimal walk separating the graph in Figure 2 revisits many
vertices.

Hence, we need to work a bit more. We consider a walk
around a tree of cycles, and notice that at any point in the
walk each vertex is either completely visited, has yet to be
visited at all, or has been visited and will be visited again.
However, the number of vertices in this partially visited state
is bounded by the depth of the tree of cycles (see Figure 2).
Thus, we devise an algorithm that optimizes over walks of
this form. The algorithm needs only “remember” a constant
number of vertices at a time (the partially visited ones).
Hence, it has a polynomial running time.

This outline is a simplification of our methods. We need
to also enforce some topological conditions due to the rela-
tionship between the edge weight of our walk and the vertex
weight separated. Also, in the technical sections, we dis-
cuss the case where the separator vertices themselves have
a significant amount of weight. We also discuss some gen-
eralizations of our structure theorems which will hopefully
lead to the removal 4/3 factor in our approximation.

Organization. Section 2 presents background notions and
concept; Section ?? shows that restricting the search for
minimum quotient vertex-cuts to trees of cycles in an ap-
propriately defined dual of the graph guarantees constant
factor approximation; Section 4 presents a dynamic pro-
gramming algorithm for computing a near-optimal tree of
cycles; finally, Section 5 uses the quotient vertex-cut to find
a approximate vertex separator.

2. PRELIMINARIES
Throughout this paper we allow parallel edges. A (di-

rected) cycle in a graphG is a sequence of edges (u0, v0), . . . , (uk−1, vk−1)
such that vi = u(i+1)mod k for all i < k. A cycle is simple

if it contains k distinct vertices and k distinct edges. Note
that two parallel edges define a simple cycle of length 2.

2.1 Planar Graphs
A graph G is planar if it can be drawn in the plane R

2

such that no two edges intersect, except possibly, at their
endpoints. A plane graph is a planar graph together with a
particular drawing of it. A plane graph G partitions R

2 \G
into faces; a face is a region that can be linked by an arc in
R

2 \G. The boundary of a face is the subgraph whose point
set in the drawing is the frontier of the face. The boundary
of a face is not necessarily a simple cycle. For example, if G
is a tree then the boundary of the outer face (the only face
of G) is a cycle that contains every edge of G twice (once in
each direction).

Adjacency and connectivity of faces.. Two faces of a
plane graph G are adjacent if their boundaries have a com-
mon edge. Note that non-adjacent faces may contain a com-
mon vertex in their boundaries.

Definition 2.1. Let R be a set of faces of a plane graph
G. A faces-path in R between two faces f, f ′ ∈ R is a se-
quence of faces f = f1, . . . , fk = f ′ all from R such that for
all i < k the faces fi and fi+1 are adjacent. We say that
the set of faces R is connected if there is a faces-path in R
between every two faces f, f ′ ∈ R. A connected set of faces
is also called a connected region.

Notice that every two faces in a connected region R are
linked by a path in the plane R

2 that goes only through
faces of R and edges of G (that are on the boundary of
two distinct faces of R), without going through any vertex
of G. A maximal connected subset of a set of faces F is
called a connected component of F . Clearly, any set of faces
F can be partitioned (uniquely) into its connected compo-
nents F1, . . . , Ft; we let CC(F) := {F1, . . . , Ft} be the set of
connected components of F .

Edge-Dual Graphs.. Let G(V,E) be a plane graph. The
edge-dual3 of G is the planar graph GDe(F,Ee), where F is
the set of faces of G on the plane, and Ee is the set of edges
that connects two vertices in F iff the two corresponding
faces in G have a common edge in their boundaries. G is an
edge-dual of GDe (see example in Figure 2.1(A),(B)).

An important property of edge-duals is that a simple cycle
in GDe disconnects the faces of GDe and corresponds to a
minimal set of edges disconnecting the vertices in G. The
converse is also true, namely, every cutset defines a simple
cycle in the edge-dual, see e.g. [8, 6]. This property may
suggest that some cutsets (such as minimum quotient-cuts)
can be found by looking for certain cycles in the dual graph.
Indeed, the algorithms of [25, 26, 24] use this approach to
find approximate (or even optimal) minimum quotient edge-
cuts and edge-separators in planar graphs. As suggested in
[26], a different notion of a dual graph is a (partial) analogue
for vertex cuts.

Face-Vertex-Dual Graphs.. LetG0(V0, E0) be a plane graph.
The face-vertex dual (in short fv-dual) of G0 is a graph
3The property called edge-dual here is traditionally called
the dual of a planar graph [8]. We call it edge-dual here to
distinguish it from a different notion of a dual graph that
we shall focus on later.

(A) (B) (C)

Figure 3: (A) A planar graph, (B) its edge-dual, and
(C) its face-vertex-dual.

GD(VD, ED) where VD = V0 ∪ Vf , each vertex of Vf cor-
responds to a distinct face of G0, and ED includes all the
edges of E0 and additional edges that connect every new
vertex v ∈ Vf to all the vertices (of V0) in the boundary of
the face corresponding to v. More precisely, every face f of
G0 has a vertex vf ∈ Vf positioned in f with edges to the
boundary vertices of f such that for every edge eu,v on the
boundary of f , there are edges between u, v, vf that are the
boundary of a face of GD (thus, there may be parallel edges
in GD). Note that GD is also a planar graph. An example of
a plane graph and its fv-dual is shown in Figure 2.1(A),(C).

The fv-dual graph is not a dual graph in the classic sense
[8, 6]. In particular, it has more vertices and edges than
G0, its dual is not G, and there is no exact correspondence
between simple cycles in GD and cutsets in G.

In the rest of this paper we use the following conventions.
Let G0 = (V0, E0) be the input planar graph. Let GD =
(VD, ED) be the face-vertex-dual of G0. �Does not look like
the right place for this? –Robi�

By the definition of the fv-dual graph, we have the follow-
ing properties.

Proposition 2.2. If G0 is a plane graph without self-
loops then GD is a plane graph with the following properties.
(1) The boundary of each face (is a cycle that) has length 3
and contains one edge from E0 and two edges from ED \E0.
(2) One endpoint that belongs to V0. (In particular, this edge
is not a self-loop.)

2.2 Vertex-Cuts
In the rest of this paper we allow a vertex-cut to be trivial,

i.e., to have either A or B empty. This is convenient for our
purposes, and does not affect applications, as will be seen
later in the paper.

Quotient vertex-cuts.. Let G(V,E) be a graph with a ver-
tex weight function w : V → N and a vertex cost function
c : V → N. We define the quotient cost of a vertex-cut with
respect to some parameter α ≥ 0. That is, the α-quotient
cost of a vertex-cut (A,B,C) is

qα(A,B,C) =
c(C)

min{w(A), w(B)} + α · w(C)

Note that the case α = 0 matches the traditional definition
of a vertex separator. We define the special case of c(C) = 0
and min{w(A), w(B)} + α · w(C) = 0 to have quotient 0.
The b-limited α-quotient cost of a vertex-cut (A,B,C) is

qα
b (A,B,C) =

c(C)

min{w(A) + αw(C), w(B) + αw(C), bW}
where W = w(V) is the total weight of the vertices. Notice
that ∀α ≤ 1, qα

1 (A,B,C) = qα(A,B,C). We will use the

following relationships between the different quotient costs
later in the paper. In particular, these allow us to translate
results achieved for one quotient into another.

Lemma 2.3. Let 1 ≥ α′ > 0. Let (A∗, B∗, C∗) be an

optimal qα′

vertex-cut, and λ > 0 such that w(A∗), w(B∗) ≥
λ · w(C∗). If (A,B,C) is a vertex-cut with q0(A,B,C) ≤
ρ·(1+ α′

λ
)·OPTα′

, then w(A), w(B) ≥ Ω(min(λ, 1
ρ−1

))·w(C)

(precisely, w(A), w(B) ≥ w(C) · α′

(ρ−1)+ ρ
λ

).

Lemma 2.4. Let α′ > α ≥ 0, b ≤ 1, (A∗, B∗, C∗) an

optimal qα′

b vertex-cut, and λ > 0 such that w(A∗), w(B∗) ≥
λ · w(C∗). If (A,B,C) is a vertex-cut with qα

b (A,B,C) ≤
ρ ·OPTα

b , then

qα′

b (A,B,C) ≤ ρ · (1 +
α′ − α

λ+ α
) ·OPTα′

b .

If α = 0, then also, w(A), w(B) ≥ w(C) · α′

(ρ−1)+ ρ
λ

.

One consequence of the last lemma is that for α = 0,
α′ = 1 we get q1b (A,B,C) ≤ ρ · (1 + 1

λ
) · OPT 1

b . An in-
teresting special case is when the cost and weight are uni-
form in planar graphs. We get that λ ≥ Ω(

√

|V |) from
the Lipton-Tarjan theorem (there is always a separator of

size O(
√

|V |)). In that case, there is negligible difference
between the quotients q0b and q1b .

Lemma 2.5. Let α′ > α ≥ 0. Given a vertex-cut (A,B,C)
whose b-limited α-quotient cost is within factor ρ of the min-
imum, one can find a vertex-cut (A′, B′, C′) whose b-limited
α′-quotient cost is within factor ρ+ 1 of the minimum. (In
fact, (A′, B′, C′) is either the given cut (A,B,C) or some
trivial cut with |C ′| = 1.)

�What about the converse, i.e. going from α′ to α? –
Robi�

Balanced Vertex-Cuts.. We define a balanced vertex-cut
with respect to two parameters b, α ≥ 0. That is, a vertex-
cut (A,B,C) is (b, α)-balanced if

min{w(A), w(B)} + αw(C) ≥ bW.

2.3 Where is the problem
�We now justify why our approach/problem is more com-

plicated than Parks-Phillips. Shouldn’t this be in the introduc-
tion? –Robi� �Motivation by figure with a cycle of cycles;
explain why it is difficult to define in terms of the original graph
using a star as an example. –Robi�

First, notice that limiting ourselves to vertex-cuts that
correspond to simple cycles leads to vertex-cuts that are
arbitrarily far from the optimal. Figure 4 presents an ex-
ample of a graph in which a simple cycle will not identify
the minimum quotient cut. Divide the vertices in this graph
into four types, t1, t2, t3, t4. If our graph has d cycles touch-
ing the center vertex, then we set w(t1) = bW

d
, w(t2) = 0,

w(t3) = (1 − b)W , w(t4) = 0, c(t1) = ∞, c(t2) = 10,
c(t3) = ∞, and c(t4) = 0. This graph is triangular, so
taking the face-vertex graph of this graph does not add any
new cycle-induced vertex-cuts. Clearly, the optimal weight
is given when vertices of type t1 are in one side of the cut
and that of type t3 is in the other side. Vertices of types
t1, t3 cannot be in the separator because of their large cost.

PSfrag replacements

t1t1

t1

t1 t1

t1

t2 t3

t4

t4

...

...

Figure 4: An example where any vertex-cut defined
by a simple cycle has quotient cost that is arbitrarily
far from the optimum.

The optimal quotient is achieved by selecting the vertices on
the the cycles touching the center vertex. Any simple cycle
in this graph separates at most one of the vertices of type t1
from the rest, thus separating a factor d less weight at the
same cost as the optimal quotient vertex-cut.

The main text below outlines the full proof of our argu-
ments, breaking it into several relatively simple propositions,
whose formal proof is given in Appendix ??. Unless stated
otherwise, all vertices, edges, faces and cycles are with re-
spect to GD (and not, say, G0).

3. STRUCTURAL THEOREM
The main result of this section is that in every plane graph

G0 there is a vertex-cut that is nearly optimal in terms of
quotient cost and also has a certain “nice” structure. Infor-
mally, this structure means that the vertex-cut corresponds
to a collection of directed cycles in GD that are arranged in
a tree-like structure of constant depth; in short, we shall call
it CAST (Cycles Arranged in a Shallow Tree). The intuition
behind this structure is given in Section 2.3.

The precise statement of our basic structural theorem and
the relevant definitions (including CAST) are given in Sec-
tion 3.1. Its proof is then given in Section 3.2. Finally, we
devise various extensions in Section 3.3.

3.1 Definitions and basic structural theorem
A face f (vertex v) of GD is said to be enclosed by a

directed simple cycle D (in GD) if f (respectively, v) is con-
tained in the region of R

2 \D that is to the left of one (and
thus all) of the edges in D. A set D of directed cycles (in
GD) is proper if every face of GD is enclosed by at most
one cycle in D. Such a proper set D = {D1, . . . , Dk} de-
fines a vertex-cut (A,B,C) of G0, as follows. Let Ci be
the vertices of V0 that appear in the cycle Di, and let Bi

be the vertices of V0 that are enclosed by Di. Then let
C := ∪k

i=1Ci, B := (∪k
i=1Bi) \ C and A := V0 \ (C ∪ B).

To see that (A,B,C) is a vertex-cut, observe that an edge
in G0 between a vertex of A and a vertex of B must have
its two endpoints in different regions of R

2 \Di for some i.
Also, B ∩ C = ∅ because D is proper.

The auxiliary graph of a proper set D (of directed simple

cycles) is the bipartite graph G̃(Ṽ1, Ṽ2, Ẽ) where Ṽ1 := S,

Ṽ2 := VD, and Ẽ := {(d, v) : v ∈ VD belongs to the cycle d ∈ S}.

Such a proper set D is called a d-CAST if its auxiliary graph
G̃ is a forest (i.e. contains no cycles) and each of its con-
nected components is a tree that can be rooted at some
vertex v ∈ Ṽ2 = VD so that its depth is at most 2d. For
example, the cycles drawn in Figure 4 form a 1-CAST. An
O(1)-CAST is called in short a CAST.

Theorem 3.1 (basic structural theorem). Let b ≥
0 and α ≥ 0. Then every planar graph G0 has a vertex-cut
that is defined by a d-CAST in GD, such that its b-limited α-
quotient cost is within a factor of 4

3
d

d−1
+1 for α ≥ 0 from the

correspoding minimum quotient cost (over all vertex-cuts) in
G0. For α = 0 the factor improves to 4

3
d

d−1
.

�I think it is not necessary to have simultaneous guarantee?
–Robi� �Is a trivial cut alwyas a 1-CAST? –Robi�

We prove this theorem in Section 3.2. We note that the
constant 4/3 is tight, as shown by Figure ??. �Add a fig-
ure of 3 nested cycles all touching same vertex with weights
1/4, 3/8, 1/4, 1/8. –Robi� However, we can improve over
this constant by allowing a more complicated structure than
CAST. We can also show that the constant loss in the α-
quotient cost for α > 0 can be improved by relying on cer-
tain assumptions that include the unit-weight case. In fact,
in the unit-cost case the CAST structure can be replaced
with just one simple cycle (in GD) at the expense of a larger
constant than 4/3. These extensions are described in Sec-
tion 3.3.

3.2 Proof of basic structural theorem
The proof of Theorem 3.1 consists of three steps, as fol-

lows. Let (Â, B̂, Ĉ) be any vertex-cut in a plane graph
G0 (e.g., a minimum quotient cut). We first show in Sec-

tion 3.2.1 that there exists in G0 a vertex-cut (Â′, B̂′, Ĉ′)

that has nearly the same quotient cost and for which Â′ cor-
responds to some “connected region” in the plane. We then
prove in Section 3.2.2 that B̂′ must correspond to a union of
“connected regions” in the plane, each described by a sim-
ple directed cycle (in GD), with the important property that
these simple cycles form a forest (in a sense to be defined).
By averaging arguments, we show in Section 3.2.3 that every
such forest must contain a shallow subtree (namely, subtree

of constant depth) that defines a vertex-cut (Â′′, B̂′′, Ĉ′′)
whose quotient cost is nearly the same.

Letting (Â, B̂, Ĉ) be a minimum quotient cut in G0, the

three steps above yield a cut (Â′′, B̂′′, Ĉ′′) that has a nearly
optimal quotient cost and also has a CAST structure, thus
proving the main result of this section. The three steps
above apply for 0-quotient cost (i.e. α = 0), but the results
easily extend to 1-quotient cost (i.e., α = 1) by applying
Lemma 2.5.

3.2.1 A connected region in the plane
The first step in the proof of the basic structural theorem

is to exhibit in G0 a vertex-cut (Â′, B̂′, Ĉ′) that has nearly

the same quotient cost as (Â, B̂, Ĉ) and for which Â′ corre-
sponds to some “connected region” in the plane. Intuitively,
the vertex-cut (Â, B̂, Ĉ) partitions the plane into connected

regions, each associated with one of Â, B̂, Ĉ; a careful rear-
rangement of the connected regions associated with Â and
B̂ shall yield the desired vertex-cut (Â′, B̂′, Ĉ′). Below we
give the formal argument.

We start by labeling each face of GD by Â if its boundary
contains a vertex of Â, by B̂ if its boundary contains a vertex
of B̂, and by Ĉ if neither event happens. It is easy to verify
(see Appendix B) that every face of GD has exactly one
label.

Let CC(Â) denote the set of connected components of the

faces labeled Â (recall Definition 2.1), and similarly for B̂

and Ĉ. Let CC(GD) := CC(Â) ∪ CC(B̂) ∪ CC(Ĉ) be the
set of all these connected regions. Each connected region
R ∈ CC(GD) corresponds to a set of vertices in G0, namely,

V (R) := {v ∈ V0 : v is in the boundary of a face in R}.
(1)

Define the weight of a connected region R as w̃(R) :=
∑

v∈V (R)\C w(v).

Notice that ignoring the weight of vertices from C corre-
sponds to 0-quotient cost (i.e., α = 0). For a set S of
connected regions, define V (S) := ∪R∈SV (R) and w̃(S) :=
∑

R∈S w̃(R). We say that a face f is in S if f ∈ R for some
connected region R ∈ S. It is easy to verify (see Appendix B
that

w̃(CC(Â)) = w(Â), w̃(CC(B̂)) = w(B̂), w̃(CC(Ĉ)) = 0,

and it then immediately follows that w̃(CC(GD)) = w̃(CC(Â))+

w̃(CC(B̂)) + w̃(CC(Ĉ)) = w(Â ∪ B̂).

Proposition 3.2. There exists a partition CC(GD) =
S ∪ S̄ such that the faces of S form a connected region and
min{w̃(S), w̃(S̄)} ≥ 3

4
min{w(Â), w(B̂)}.

Proof. Without loss of generality assume that w(Â) ≥
w(B̂) and let b := w(B̂)/w(Â ∪ B̂) ≤ 1

2
. �b is confusing

- why not use β? –Robi� We say that two connected re-
gions R1, R2 are adjacent if they contain two faces f1 ∈ R1,
f2 ∈ R2 that are adjacent in GD. Apply the following
procedure on CC(GD). Start with S1 = {Rmax} where

Rmax := argmaxR∈CC(GD) w̃(R)}. If b > 3
8
w(Â ∪ B̂) then

let S2 = {R′
max} whereR′

max := argmaxR∈CC(GD)\S1
w̃(R)};

otherwise, set S2 = ∅, thus ignoring it throughout this pro-
cedure. Now repeatedly add to either S1 or S2 a connected
region R ∈ CC(GD) \ (S1 ∪ S2) that is adjacent to at least
one connected region in S1 or S2, respectively. Stop this
iterative process when w̃(Si) ≥ max{ 1−b

2
, 1

8
+ b

2
}w(Â ∪ B̂)

for some i ∈ {1, 2}, letting S := Si and S̄ := CC(GD) \ S.
By construction, the faces in S forms a connected region.

We first claim that at every iteration there exists a con-
nected region R ∈ CC \(S1 ∪ S2) that is adjacent to some
connected region in either S1 or S2. To this end, observe
that 0 ≤ b ≤ 1

2
, so whenever w̃(S1), w̃(S2) < max{ 1−b

2
, 1

8
+

b
2
}w(Â ∪ B̂), we also have that w̃(S1) + w̃(S2) < max{1 −

b, 1
4
+b}w(Â∪B̂) ≤ w̃(CC(GD)), and thus CC(GD)\(S1∪S2)

is not empty, i.e., contains at least one connected region. Let
f be a face in such a connected region of CC \S, and let f ′

be a face in a connected region of S1. Since the set of all
faces in GD is connected (in the sense of Definition 2.1),
there is a sequence of faces f = f1, . . . , fk = f ′ such that
fi and fi+1 are adjacent for all i < k. It follows that there
must exist two successive faces fi in CC \(S1 ∪S2) and fi+1

in either S1 or S2. The claim follows.
The above procedure always terminates since the number

of iterations is bounded by the number of connected regions
in CC(GD), and in turn, by the (finite) number of faces in
GD.

Finally, some calculations show (see Appendix B) that

min{w̃(S), w̃(S̄)} ≥ 3
4

min{w(Â), w(B̂)}. In fact, if b ≤ 1
3

then min{w̃(S), w̃(S̄)} ≥ min{w(Â), w(B̂)}.

Finally, let S, S̄ be as in Proposition 3.2. We use (1) to
define the following subsets of V0:

Â′ := V (S)\V (S̄), B̂′ := V (S̄)\V (S), Ĉ′ := V (S)∩V (S̄).
(2)

The next easy to verify proposition (see Appendix B) sum-
marizes the first step in the proof of the basic structural
theorem.

Proposition 3.3. (Â′, B̂′, Ĉ′) is a vertex-cut of G0 with

Ĉ′ ⊆ Ĉ and min{w(Â′), w(B̂′)} ≥ 3
4

min{w(Â), w(B̂)}, where

Â′ corresponds to the connected region S.

3.2.2 A forest of simple cycles
The second step in the proof of the basic structural theo-

rem is to show that B̂′ corresponds to a union of connected
regions in the plane, each described by a simple cycle (in
GD), with the important property that these simple cycles

form a “forest”. Recall that Â′ and B̂′ are defined in (2)
so that they essentially correspond to S and S̄, respectively.
The point is that since S a connected region (by construc-
tion), the connected regions of S̄ are arranged in a “forest”.
Below we give the formal argument. (Recall the definitions
in Section 3.1.)

Slightly abusing notation, we denote the set of connected
components of all the faces in the connected regions in S̄
by CC(S̄) := CC(∪R∈S̄ CC(R)). It can be shown (see Ap-
pendix B that for every connected region R ∈ CC(S̄) there
is a directed simple cycle DR such that R is exactly the
set of faces (of GD) that are enclosed by DR. (We remark
that the fact that each cycle is simple relies on S being a
connected region.) Let D(S̄) be the set of directed simple
cycles DR that enclose the connected regions R ∈ CC(S̄).
It is easy to verify (see Appendix B) that D(S̄) is a proper
set of cycles that defines (in the sense of Section 3.1) the

vertex-cut (Â′, B̂′, Ĉ′) described in (2).

Once we describe the cut (Â′, B̂′, Ĉ′) using the directed
cycles D(S̄) we can investigate the arrangement of these
cycles in the plane, and prove the following proposition (see
Appendix B). The main idea is that any “cycle of cycles”
implies that S contains at least two connected regions, see
Figure ??.

Proposition 3.4. Let G̃(Ṽ1, Ṽ2, Ẽ) be the auxiliary graph

of D(S̄). Then G̃ is a forest (i.e., contains no cycles).

�Add here the cycle-of-cycles figure. –Robi�

3.2.3 A shallow tree of simple cycles
The third step in the proof of the basic structural the-

orem is to show that the forest G̃ must contain a subtree
that is shallow (i.e., has small depth) and its cycles define a
vertex-cut whose quotient cost is nearly the same (as that of

(Â′, B̂′, Ĉ′)). The main idea here is to remove every 2d-th

level in the forest G̃ (so that we lose at most 1/d of the cut’s
weight and do not increase its cost) and then apply averag-
ing arguments on the resulting connected components. We
can thus prove the following proposition (see Appendix B).

Proposition 3.5. Let d ≥ 2 be an integer and let b ≥ 0.
Then there is a d-CAST in D(S̄) that defines a vertex-cut

(Â′′, B̂′′, Ĉ′′) with quotient q0b (Â′′, B̂′′, Ĉ′′) ≤ d
d−1

·q0b (Â′, B̂′, Ĉ′).

Finally, we can prove Theorem 3.1. By applying Lemma 2.5
we can then extend the result to α-quotient cost for arbi-
trary α, with a slightly larger constant factor.

Proof of Theorem 3.1. Let (Â, B̂, Ĉ) be a vertex-cut
of minimum b-limited 0-quotient cost (i.e., α = 0). For
α = 0, the claimed result then follows from Propositions 3.3
and 3.5. For any α > 0 we have by Lemma 2.5 that either
(Â′′, B̂′′, Ĉ′′) or some trivial cut (A′, B′, C′) with |C ′| =
1 (which is clearly a CAST) has b-limited α-quotient cost
within a factor of 4

3
d

d−1
+ 1 from optimal.

3.3 Extensions
We can extend Theorem 3.1 in various directions. First,

we show that the loss in the quotient cost is actually smaller
if there exists an optimal quotient cut (A∗, B∗, C∗) with
w(C∗) � w(A∗), w(B∗); in particular, in the unit-weight
case there is always an optimal quotient cut (A∗, B∗, C∗)
with w(C∗) ≤ O(1/

√
n) ≤ min{w(A∗), w(B∗)}, and thus

the loss in the 1-quotient cost (i.e., for α = 1) becomes
arbitrarily close to 4/3. This result follows by combining
Theorem 3.1 and Lemma 2.4 (see Appendix B).

Second, we reduce the loss in the quotient cost (for gen-
eral weights) to 1 + ε, for arbitrary fixed ε > 0, by some-
what relaxing the structural requirement (i.e., allowing a
more complicated structure than CAST). Technically, we

generalize Proposition 3.3 by allowing Â′ to correspond to
O(1/ε) connected regions. The proof is a modification of
that of Proposition 3.2 that distinguishes between “big” and
“small” connected regions (see Appendix B).

Third, we show for the unit-cost case that the CAST
structure can be replaced with just one simple cycle (in GD)
at the expense of a larger constant factor loss in the quotient
cost. Technically, we replace a 1-CAST structure with one
of its simple cycles (see Appendix B.

Proposition 3.6. If G0 has an optimal b-limited α-quotient
cut (A∗, B∗, C∗) with λw(C∗) ≤ w(A∗), w(B∗) for some
λ > 0, then the factor in Theorem 3.1 can be improved to
4
3

d
d−1

(1 + α
λ
).

Proposition 3.7. There exists a vertex-cut (Â′, B̂′, Ĉ′)

of G0 where Â′ corresponds to O(1/ε) connected regions,

Ĉ′ ⊆ Ĉ and min{w(Â′), w(B̂′)} ≥ (1− ε)min{w(Â), w(B̂)}.

Proposition 3.8. Let b ≥ 0 and α ≥ 0. Then every unit-
cost planar graph G0 has a vertex-cut that is either defined by
a directed cycle or is trivial such that its b-limited α-quotient
cost is within a factor of 6 1

3
for α ≥ 0 from the minimum.

4. ALGORITHM FOR QUOTIENT-CUT
In this section we use the structural theorems of Section 3

to devise an algorithm for finding in planar graphs a cut
with near-optimal 1-quotient cost (i.e., α = 1). Given a
planar input graph G, we fix an embedding G0 of it in the
plane, compute its face-vertex graph GD, and then apply
the algorithm described described below to search, roughly
speaking, for a d-CAST structure in GD (namely, cycles
arranged in a shallow tree) with minimum α-quotient. The

structural theorems guarantee that a search restricted to d-
CASTs will find a vertex-cut whose 1-quotient is within a
small constant factor of the minimum.

The search algorithm for d-CASTs is described in Sec-
tion 4.1 and its correctness proofs are given in Section 4.2.
Our algorithm is inspired by those of [25, 26, 24] for finding
(or approximating) the minimum quotient edge-cut, and we
point out some of the similarities and differences throughout
the description. Proofs omitted from this section appear in
Appendix C.

4.1 Algorithm and related structures
Our algorithm goes roughly as follows. We start by trans-

lating vertex weights of GD to face weights in GD, so that
for any simple directed cycle, the total weight of the en-
closed faces approximates the total weight of the enclosed
vertices. Now, similarly to [24], we construct a search graph
Gs, which is just a directed version of GD with edge weights;
these edge weights are carefully defined so that for every
simple directed cycle, the total weight of the edges on the
cycle is equal to the total weight of the faces it encloses.
Finally, our main routine finds among a certain family of
closed walks (i.e., cycles, but not necessarily simple ones)
in Gs, a walk that has minimum cost to weight quotient;
here, the weight of a walk is the sum of the weights of its
edges and the cost of a walk is (in principle) the sum of the
costs of the vertices it visits. This family of walks has three
important properties. First, for any d-CAST there is in
this family a corresponding walk whose weight and cost are
equal to that of the d-CAST. However, this family contains
also walks that do not correspond to a CAST, so the sec-
ond important property is that from any walk in this family
we can extract (efficiently) a vertex-cut (that need not be a
d-CAST) whose quotient cost is no larger than that of the
whole walk. Third, we have the algorithmic property that
one can efficiently optimize the cost to weight quotient over
this family (using dynamic programmming).

Section 4.1.1 describes the way we assign weight to faces,
Section 4.1.2 presents the search graph Gs, Section 4.1.3
defines a certain kind of walks in Gs, and Section 4.1.4
presents our dynamic programming algorithm for optimizing
over these walks.

4.1.1 Assigning Weight to Faces
We define the cost of vertices v ∈ VD to be the same as

their cost in V0 (if v ∈ V0) or 0 (if v /∈ V0). We define
weights for faces in GD by distributing the weight of every
vertex from V0 equally among the faces of GD incident to it.
Formally, the weight of face f of GD is

∑

v∈f w(v)/ deg(v),

where deg(v) is the degree of v in GD. (Note that in con-
trast, the edge-quotient case [25, 26, 24] is simpler, with each
face in the dual associated with a vertex whose weight that
face receives.) The next proposition shows that the weight
of faces enclosed in a cycle (not necessarily simple) is close
to the weight of vertices enclosed by that cycle.

Proposition 4.1. Let D be a cycle in GD and let C de-
note the set of vertices on it. Let l denote the number of
regions in R

2 \D, and let Vi and Fi denote the sets of ver-
tices and faces, respectively, in the ith region. Then, for
every I ⊆ {1, . . . , l}, we have w(∪i∈IVi) ≤ w(∪i∈IFi) ≤
w(∪i∈IVi) + w(C).

4.1.2 The Search Graph

Similar to [24], we define the search graph Gs to be the
digraph obtained from GD by replacing every undirected
edge (u, v) by a pair of directed edges (u, v) and (v, u). Let
the vertices of Gs have the same cost they have in GD.
In the rest of this subsection we associate weight with the
(directed) edges of Gs.

Let T be any spanning tree of the graph GD. Choosing
any vertex r on the outer face as a root, orient the tree
according to this embedding. That is, order the children
of any vertex in a counter-clockwise direction; for the root
vertex r start with the outer face, and for any other vertex
start with the edge leading to its parent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

(u1,v1)

(u2,v2)

(u3,v3)
u3

v3

PSfrag replacements

r

Figure 5: Labeling the regions of the tree T .

The tree edges incident to a vertex v divide the plane
immediately surrounding v into deg(v) regions. We give
each such region a unique labeling as follows: Starting at
the root, traverse the tree in a Depth First Search manner,
using the order on children defined above. Each step in
this traversal corresponds to visiting a vertex from either
its parent or from a child. Thus step 1 is visiting the root,
step 2 is visiting the root’s first child and so on. Each time
a vertex is visited in this traversal, one immediate region
around v, namely, the one between the edges used to enter
and to exit v, is labeled with the traversal’s step number.
Formally, for a vertex v let e1 be the edge to its parent and
let e2, . . . , edegT (v) be edges to its children, where degT (v)
is the degree of v in the tree T . We then label the region
between ei and e(i+1) mod degT (v) by the step of traversal
at which vertex v is visited for the ith time, denoted t(v, i).
See for example Figure 5.

We give weight to every directed edge (u, v) in Gs as fol-
lows. If the underlying undirected edge belongs to the tree
T , we define w(u, v) = 0; otherwise, (u, v) is embedded in
some region relative to each of its endpoints. Let t(u, i) and
t(v, j) be the labels of these regions. Assume without loss
that t(u, i) < t(v, j) and let w(u, v) be the total weight of
the faces enclosed by the simple cycle that (u, v) closes in
the tree T (i.e., take the unique path in T between u and v
and add to it the edge (u, v)); let w(v, u) = −w(u, v). Thus,
edges going left-to-right have positive weight and their re-
verse edges have negative weight.

4.1.3 Walks With Pebbles
In this subsection we define the walk in the basis for the

dynamic program. A walk of length k in Gs is a sequence of
(directed) edges (u1, v1), . . . , (uk, vk) such that vi = ui+1 for
all 1 ≤ i < k. The walk is closed if vk = u1. (Notice that a
closed walk is just a directed cycle.) A closed walk is simple

if it contains k distinct edges and k distinct vertices; A non-
closed walk is simple if it contains k distinct edges and k+1
distinct vertices. For a walk π, let πei (for i = 1, . . . , k)
denote the ith edge in the walk (namely, (ui, vi)), and let
πi (for i = 1, . . . , k + 1) denote the ith vertex in the walk π
(namely, ui = vi−1). The total weight of a walk π of length

k is w(π) =
∑k

i=1 w(πei), and its total cost is
∑k

i=1 c(πi).
Notice that in these definitions, if the walk is not simple
then some costs and weights may be counted more than
once. We define the actual cost of a walk π of length k as
the sum of costs of all the distinct vertices in {π1, . . . , πk}.
For edge quotient cuts [24] it suffices to count the total cost
of a walk because there it suffices to seek a simple walk in
Gs. However, in our case the walk is a tree-of-cycles, and
may visit some vertices more than once. Thus, our total
cost might be a poor upper bound on the actual cost of the
walk. We need a walk that allows, for a limited number of
vertices, additional visits to these vertices at no additional
cost; however, we can limit these “free” visits to be in a
counter-clockwise order, without completing a full cycle. We
define this walk in what follows.

A d-pebble walk is a walk that uses at most d pebbles
as follows. In the beginning of the walk all d pebbles are
unassigned, and during the walk pebbles change their as-
signment only according to these rules: (i) when the walk
enters a vertex v that has no pebble, it must assign to v
one of the unassigned pebbles; (ii) when the walk leaves a
vertex v that has a pebble, it may (but does not have to)
unassign the pebble from v. Note that a “simple visit” to
v can be achieved by assigning a pebble to v upon entrance
and then unassigning it upon leaving v, (in the next edge of
the walk). The pebbles allow for a tighter upper bound of
the actual cost of the walk, as follows. Let us call a visit to
a vertex that already has a pebble a free visit, and let the
counted cost of a walk π be

∑

c(πi), where the summation
is over all the non-free visits 1 ≤ i ≤ k. Clearly, the counted
cost of a walk upper bounds its actual cost.

In d-pebble walks we restrict the free visits to have a cer-
tain order in the plane. Specifically, between the moment
that a pebble is assigned to v and the moment in which it is
unassigned from v, the walk uses edges that are incident to
v only in a counter-clockwise order around v without com-
pleting a full cycle. Formally, every pebble is represented
by a tuple 〈v, efirst, elast〉, where v is the vertex to which the
pebble is assigned, efirst is the incoming edge to v that was
used when the pebble was assigned to v, and elast is the last
edge that was used by the walk among all edges incident to
v.

4.1.4 A Dynamic Programming Algorithm
Dynamic programming allows us to find a walk of mini-

mum counted cost among all d-pebble walks of length 3n and
total weight w ∈ {−W, . . . ,W}. Formally, let T be the fol-
lowing dynamic programming table. Let T (l, s, t, {p1, . . . , pd}, w)
be the minimum cost of d-pebbled walk of length 0 ≤ l ≤ 3n
that starts at s, ends at t, its pebbles are assigned (at the
end of the walk) to p1, . . . , pd, and has weight exactly w.
Each pi is either empty (in which case the ith pebble is not
assigned) or a tuple 〈vi, ei,1, ei,last〉 where vi is a vertex (to
which the ith pebble is assigned), ei,1 is the incoming edge
to vi that was used when the pebble was assigned to vi,
and ei,last is the last edge, among all edges incident to v,
that was used by the walk. We remark that a slightly faster

algorithm can be devised using Dijkstra’s shortest path al-
gorithm. However, the dependency of the running time on
d remains the same.

Proposition 4.2. Every value of T for l+1 can be com-
puted from (some of the) values of T for l in time O(n).
Thus, The values T (l, v, v, ∅, w) for all l = O(n) and w ∈
{−W, . . . ,W} can be computed in time W · n2d+3.

When the table T is complete, we choose the entry that
minimizes T (l, v, v, ∅, w)/w for v ∈ VD, w ≤W/2.
�Need to put the rest of the algorithm here. –Eyal�

4.2 Proof of Algorithm Correctness
The cycle found by the dynamic program may or may

not correspond to a CAST. In this section we prove that
every CAST corresponds to some pebble walk of the same
T (l, v, v, ∅, w)/w ratio (thus, the minimum found by the dy-
namic program is at most that ratio), and also that every
pebble walk that has a minimal T (l, v, v, ∅, w)/w has a sub-
walk that is a pebble walk and that corresponds to a CAST
whose quotient is at most T (l, v, v, ∅, w)/w (thus, an mini-
mal solution found by the dynamic program can be used to
extract an optimal CAST).

4.2.1 A CAST Yields a Pebble Walk
The following proposition shows that every d-CAST D of

face weight w0 and cost c0 yields a d-pebble walk of total
weight w0 and counted cost c0. This implies that there is
a vertex v on D such that T (l, v, v, ∅, w0) ≤ c0 for some
l ≤ 3n.

Proposition 4.3. Let D be a d-CAST with weight w0

(i.e., w0 is the weight of the faces surrounded by the cycles
in D) and cost c0. Then, there exists a d-pebble walk of
total weight w0 and counted cost c0.

4.2.2 A Pebble Walk Yields a Vertex-Cut
We now prove that for every v, l and w0 there exists a

walk that defines a vertex-cut whose quotient cost is at most
T (l, v, v, ∅, w0)/w0. The main hurdle here is that a d-pebble
walk may not correspond to any vertex cut (e.g., when the
interior and exterior coincide), and that even if it does, the
total weight of the walk need not correspond to the weight
separated by the vertex-cut it defines (because the weight of
any face can contribute to it an arbitrary number of times).
We now show that the walk can be decomposed so that
the cost and weight decomposes appropriately. The main
difficulty is in showing that the accumulated cost can be
decomposed properly (Park and Phillips [24] showed that
this can be done for walks in Gs when the total cost equals
the actual cost for π).

The net-count of a face f by a walk π, denoted ncπ(f),
is the (net) number of times that the weight of the face
f contributes to w(π). (See Section 4.1.3 for definition of
w(π).) The number of visits of a walk π in a directed edge
e (of Gs), denoted nvπ(e) is the number of times that e
appears in the walk π.

For a set A of integers, let ∆(A) := maxA−minA. For a
closed walk π, let ∆π(Gs) := ∆({ncπ(f) : f a face in Gs}).
For a vertex v, let Fv be the set of faces of Gs incident on
v, and let ∆π(v) = ∆({ncπ(f) : f ∈ Fv}). Thus, ∆π(v) is
the difference between the least-counted face and the most-
counted face among those incident on v. The following

proposition shows that every vertex’s cost is counted in π
at least ∆π(v) times. Thus, ∆π(v) is a lower bound on the
cost accumulated for v in π.

Proposition 4.4. Let π be a closed pebble walk, and let v
be a vertex in Gs. Then, v contributes its cost to the counted
cost of π at least ∆π(v) times.

Now, we can decompose a d-pebble closed walk π into
closed subwalks, each associated with its own cost and weight,
in a way that is consistent with that of π. In particular, for
every vertex that appears in more than one subwalk we can
decompose the cost accumulated by the pebble-walk π such
that this cost is contributed to every subwalk at least once.
One of those subwalks is going to define our chosen vertex
cut.

Proposition 4.5. Every walk π with ∆π(Gs) ≤ 1 defines
a vertex-cut (A,B,C) with bal1(A,B,C) ≥ min{w(π),W −
w(π)} ≥ bal0(A,B,C) and c(C) is at most the actual cost
of π.

Corollary 4.6. Let A,B,C be a d-CAST cut. If λ ·
w(C) ≤ min{w(A), w(B)}, then one can find a vertex-cut
whose q1 quotient is at most (1 + 1

λ
)q1(A,B,C).

Proof. By Proposition 4.3, there exists a d-pebble walk
π for (A,B,C) with cost c0 = c(C) and faces-weight w0 such
that w(B) ≤ w0 ≤ w(B) + w(C) and w(A) ≤ W − w0 ≤
w(A)+w(C). Thus, min{w0,W−w0} ≥ min{w(B), w(A)} ≥

1

1+ 1
λ

min{w(B) + w(C), w(A) + w(C)}.
By the definition of the dynamic programming table T ,

there is v ∈ VD and l ≤ 3n such that T (l, v, v, ∅, w0) ≤ c(C).
Let T (w0) be a shorthand for this T (l, v, v, ∅, w0). The
algorithm finds a walk π for this table entry and breaks
it into walks {πi}i≤l as promised by Proposition 4.6. By
the averaging arguments of Park and Phillips [24, Theo-
rem 2.2], there is one such walk πi such that πi defines a
cut (Ai, Bi, Ci) with c(Ci) is at most the actual cost of πi,
w(Ai) +w(Ci) ≥ wi and w(Bi) +w(Ci) ≥W −wi. For this
walk πi,

c(Ci)

min(wi,W − wi)
≤ c(π)

min(w(π),W − w(π))
=

T (w0)

min(w0,W − w0)
≤ (1+λ)· c(C)

min(w(A) + w(C), w(B) + w(C))
.

Thus, bal1(Ai, Bi, Ci) ≥ min(wi,W−wi). Finally, q1(Ai, Bi, Ci) =
c(Ci)

bal1(Ai,Bi,Ci)
≤ (1 + λ) · c(C)

bal1(A,B,C)
= (1 + λ) · q1(A,B,C).

This is the vertex-cut that the algorithm returns.

Combining Theorem ??, Lemma 2.4 and Corollary 4.8 we
obtain the following result.

Theorem 4.7. Let (A∗, B∗, C∗) be an optimal q1-quotient
vertex-cut. Using d pebbles, our algorithm runs in time
O(W ·n3+2d) and finds a vertex-cut (A,B,C) with q1(A,B,C) ≤
3.5 · (d

d−1
)2 · q1(A∗, B∗, C∗), or there is a trivial vertex-cut

with the same quotient bound. Furthermore, if w(A∗), w(B∗) ≥
λ · w(C∗) and also w(A), w(B) ≥ λ · w(C), for some λ > 1,
then q1(A,B,C) ≤ 4

3
· d

d−1
· (1 + 1

λ
)2 · q1(A∗, B∗, C∗).

�State the result that we have for b-limited, and also for
α < 1. –Eyal�

5. FROM QUOTIENT TO SEPARATOR
The following theorem shows that we can find a pseudo-

approximation to a vertex separator using an approximation
algorithm for a minimum-quotient vertex-cut.

Theorem 5.1. Let 1 ≥ b ≥ b′ > 0 and 0 < α ≤ 1 such
that b′/α ≤ min{ 1

3
, b}. Given a ρ-approximation algorithm

for minimum b-limited α-quotient cost vertex-cuts one can
find a (b′, α)-balanced cut that is within a factor of ρ

b−b′/α

from the minimum (b, α)-balanced cut.

If G0 is a graph with uniform cost and uniform weight,
then w(A′) + αw(C ′) ≤ (1 + 1√

n
)w(A′) ≤ (1 + 1√

n
)(1

2
+

1
2

b′

α
)W , and the last part of the proof shows that we get an

approximation factor of (1+ 1√
n
) ρ(1+b′/α)
2(b−b′/α)

. For α = 1 we get

an approximation factor of (1 + 1√
n
) ρ(1+b′)
2(b−b′)

. Finally, if also

b = 1
2

and b′ = 1
β
, for some β > 3 we get an approximation

factor of (1 + 1√
n
) ρ(β+1)

β−2
.

6. REFERENCES
[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and

G. Karypis. Multi-objective circuit partitioning for
cutsize and path-based delay minimization. In
International Conference on Computer-Aided Design,
pages 181–186, 2002.

[2] N. Alon, P. Seymour, and R. Thomas. Planar
separators. SIAM J. Discrete Math., 7(2):184–193,
1994.

[3] E. Amir and S. McIlraith. Paritition-based logical
reasoning. In Proc. 7th Int’l Conference on Principles
of Knowledge Representation and Reasoning, pages
389–400. Morgan Kaufmann, 2000.

[4] Y. Aumann and Y. Rabani. An O(log k) approximate
min-cut max-flow theorem and approximation
algorithm. SIAM J. Comput., 27(1):291–301, 1998.

[5] T. N. Bui and C. Jones. Finding good approximate
vertex and edge partitions is NP-hard. Inform.
Process. Lett., 42(3):153–159, 1992.

[6] R. Diestel. Graph theory. Springer-Verlag, New York,
second edition, 2000.

[7] G. Even, J. Naor, S. Rao, and B. Schieber. Fast
approximate graph partitioning algorithms. SIAM J.
Comput., 28(6):2187–2214, 1999.

[8] S. Even. Graph algorithms. Computer Science Press
Inc., 1979.

[9] U. Feige and R. Krauthgamer. A polylogarithmic
approximation of the minimum bisection. SIAM J.
Comput., 31(4):1090–1118, 2002.

[10] N. Garg, H. Saran, and V. V. Vazirani. Finding
separator cuts in planar graphs within twice the
optimal. SIAM J. Comput., 29(1):159–179, 1999.

[11] N. Garg, V. V. Vazirani, and M. Yannakakis.
Multiway cuts in directed and node weighted graphs.
In Automata, Languages and Programming, 21st
ICALP, volume 820 of Lecture Notes in Computer
Science, pages 487–498. Springer-Verlag, 1994.

[12] N. Garg, V. V. Vazirani, and M. Yannakakis.
Approximate max-flow min-(multi)cut theorems and
their applications. SIAM J. Comput., 25(2):235–251,
1996.

[13] R. M. Karp. A characterization of the minimum cycle
mean in a digraph. Discrete Mathematics, 23:309–311,
1978.

[14] P. Klein, S. A. Plotkin, and S. Rao. Excluded minors,
network decomposition, and multicommodity flow. In
25th Annual ACM Symposium on Theory of
Computing, pages 682–690, May 1993.

[15] P. Klein, S. Rao, A. Agrawal, and R. Ravi. An
approximate max-flow min-cut relation for undirected
multicommodity flow, with applications.
Combinatorica, 15(2):187–202, 1995.

[16] P. N. Klein, Se. A. Plotkin, S. Rao, and E. Tardos.
Bounds on the max-flow min-cut ratio for directed
multicommodity flows. Technical Report CS-93-30,
Brown University, 1993.

[17] S. L. Lauritzen and D.J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert systems. J.
Royal Statistical Society B, 50(2):157–224, 1988.

[18] F. T. Leighton and S. Rao. An approximate max-flow
min-cut theorem for uniform multicommodity flow
problems with applications to approximation
algorithms. In 29th Annual Symposium on
Foundations of Computer Science, pages 422–431,
October 1988.

[19] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. J. ACM, 46(6):787–832,
1999.

[20] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Combinatorica, 15(2):215–245, 1995.

[21] R. J. Lipton and R. E. Tarjan. A separator theorem
for planar graphs. SIAM J. Appl. Math.,
36(2):177–189, 1979.

[22] G. L. Miller, S.-H. Teng, W. Thurston, and S. A.
Vavasis. Separators for sphere-packings and nearest
neighbor graphs. J. ACM, 44(1):1–29, 1997.

[23] B. Mohar. Isoperimetric numbers of graphs. J.
Combin. Theory Ser. B, 47(3):274–291, 1989.

[24] J. K. Park and C. A. Phillips. Finding
minimum-quotient cuts in planar graphs. In 25th
Annual ACM Symposium on Theory of Computing,
pages 766–775, May 1993.

[25] S. Rao. Finding near optimal separators in planar
graphs. In 28th Annual Symposium on Foundations of
Computer Science, pages 225–237. IEEE, 1987.

[26] S. Rao. Faster algorithms for finding small edge cuts
in planar graphs. In 24th ACM Symp. on Theory of
Computing, pages 229–240. ACM, 1992.

[27] N. Robertson and P. D. Seymour. Graph minors. II:
algorithmic aspects of treewidth. J. Algorithms,
7:309–322, 1986.

[28] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(8):888–905, 1997.

[29] D. A. Spielman and S.-H. Teng. Spectral partitioning
works: Planar graphs and finite element meshes. In
37th Annual Symposium on Foundations of Computer
Science, pages 96–105. IEEE, 1996.

APPENDIX

A. PROOFS FOR THE PRELIMINARIES

Proof of Lemma 2.3. Let α = 0 and let β = (1 +
α′−α
λ+α

) ·ρ. From the assumption, qα(A,B,C) ≤ β ·OPTα′ ≤
β · qα′

(A,B,C). Without loss of generality, assume that

w(A) ≤ w(B). Then, c(C)
w(A)+α·w(C)

≤ β · c(C)
w(A)+α′·w(C)

. Thus,

w(A) + α′ · w(C) ≤ β · (w(A) + α · w(C)). We get that

w(A) ≥ α′−α·β
β−1

· w(C) =

α′−α·ρ·(1+ α′
−α

λ+α
)

ρ·(1+ α′
−α

λ+α
)−1

· w(C) =

α′−α·ρ·(1+ α′
−α

λ+α
)

(ρ−1)+
ρ(α′

−α)
λ+α

)
· w(C) ≥

α′−α·ρ·(1+ α′
−α

λ+α
)

(ρ−1)+ ρ
λ+α

)
· w(C)

In particular, for α = 0 we get w(A) ≥ α′

(ρ−1)+ ρ
λ

· w(C).

Proof of Lemma 2.4. From α′ > α we get that

qα(A∗, B∗, C∗)

qα′(A∗, B∗, C∗)
= 1+

(α′ − α)w(C∗)

min{w(A∗), w(B∗)} + αw(C∗)
≤ 1+

α′ − α

λ+ α
(3)

It follows that a similar bound holds also for the b-limited
quotients, namely,

qα
b (A∗, B∗, C∗)

qα′

b (A∗, B∗, C∗)
=

min{w(A∗) + α′w(C∗), w(B∗) + α′w(C∗), bW}
min{w(A∗) + αw(C∗), w(B∗) + αw(C∗), bW} ≤ 1+

α′ − α

λ+ α
.

(4)
Indeed, consider the quotient in the middle. If the denomi-
nator equals bW then so does the numerator (since it is at
least as large), and thus their quotient is 1; otherwise this

quotient is upper bounded by w(A∗)+α′w(C∗),w(B∗)+α′w(C∗)
w(A∗)+αw(C∗),w(B∗)+αw(C∗)

,

and thus reduces to the one in (3). Therefore,

qα′

b (A,B,C) ≤ qα
b (A,B,C) ≤ ρ·qα

b (A∗, B∗, C∗) ≤ ρ

(

1 +
α′ − α

λ+ α

)

·qα′

b (A∗, B∗, C∗).

(The first inequality is immediate; the second one follows
from the assumption that (A,B,C) is near-optimal; the
third one is by (4)).

Now, if α′ = 0, then using Lemma 2.3 and the inequal-

ity above (q0b (A,B,C) ≤ ρ · (1 + α′

λ
) · OPTα′

) we get that

w(A), w(B) ≥ w(C) · α′

(ρ−1)+ ρ
λ

.

Proof of Lemma 2.5. Let (A∗, B∗, C∗) be a vertex-cut
whose whose b-limited α′-quotient cost is minimal, and let
λ > 0 be a parameter that we will later choose as λ = α′ρ.

Assume first that min{w(A∗), w(B∗)} ≤ λw(C∗). Then

qα′

b (A∗, B∗, C∗) ≥ c(C∗)

min{(λ+ α′)w(C∗), bW} ≥ c(C∗)

(λ+ α′)w(C∗)
.

(5)

We claim that there always exists v∗ ∈ C∗ such that qα′

b (∅, V \
{v∗}, {v∗}) ≤ (λ

α′ + 1) · qα′

b (A∗, B∗, C∗). Indeed, if C∗ con-
tains a vertex of weight larger than bW then for such a

vertex v∗ we have that qα′

b (∅, V \ {v∗}, {v∗}) = c(v∗)
bW

≤
c(C∗)
bW

= qα′

b (A∗, B∗, C∗). Otherwise, we have by (5) that

v∗ = argminv∈C
c(v)
w(v)

satisfies qα′

b (∅, V \{v∗}, {v∗}) = c(v∗)
α′w(v∗)

≤
c(C∗)

α′w(C∗)
≤ λ+α′

α′ · qα′

b (A∗, B∗, C∗). The claim follows.

By the claim above we have that if we find v′ = argminv∈V
c(v)

min{w(v),bW}
then the vertex-cut (∅, V \ {v′}, {v′}) satisfies

qα′

b (∅, V \{v′}, {v′}) ≤ qα′

b (∅, V \{v∗}, {v∗}) ≤ λ+ α′

α′ ·qα′

b (A∗, B∗, C∗).

In other words, the b-limited α′-quotient cost of this cut is
within a factor of λ

α′ + 1 = ρ+ 1 from the minimum.
Assume now that min{w(A∗), w(B∗)} > λw(C∗). Lemma

2.4 shows that

qα′

b (A,B,C) ≤ ρ

(

1 +
α′ − α

λ+ α

)

· qα′

b (A∗, B∗, C∗).

In other words, the b-limited α′-quotient cost of (A,B,C) is

within a factor of ρ(1 + α′−α
λ+α

) = ρ+ 1− αρ+α
α′ρ+α

≤ ρ+ 1 from
the minimum.

Therefore, taking (A′, B′, C′) to be the vertex-cut with the
smaller b-limited α′-quotient cost among (∅, V \ {v′}, {v′})
and (A∗, B∗, C∗) always yields a vertex-cut whose quotient
cost is within factor ρ+ 1 of the minimum.

B. PROOFS FOR THE STRUCTURAL THE-
OREM

Proposition B.1. Every face of GD has exactly one la-
bel.

Proof of Proposition B.1. It suffices to show that no
face is labeled both by Â and by B̂, so assume to the contrary
that a face is labeled both by Â and B̂. Then the boundary
of this face contains both a vertex a ∈ Â and a vertex b ∈ B̂.
By Proposition 2.2, this boundary is a 3-cycle and thus (a, b)
is an edge in GD, and furthermore this edge belongs to G0.
This contradicts (Â, B̂, Ĉ) being a vertex-cut.

Proposition B.2. w̃(CC(Â)) = w(Â), w̃(CC(B̂)) = w(B̂),

and w̃(CC(Ĉ)) = 0. It immediately follows that w̃(CC) =

w̃(CC(Â)) + w̃(CC(B̂)) + w̃(CC(Ĉ)) = w(Â ∪ B̂).

Proof of Proposition B.2. By definition w̃(CC(Â)) =
∑

R∈CC(Â)

∑

v∈V (R)\Ĉ w(v). Observe that all the faces of

GD around a vertex a ∈ Â are labeled Â and are thus
all in the same connected component of CC(Â). Hence,

every vertex a ∈ Â belongs to V (R) for exactly one con-

nected region Ra ∈ CC(Â). Similarly, every vertex b ∈ B̂

belongs to V (R) for no R ∈ CC(Â) It follows that every ver-

tex of Â contributes its weight (exactly once) to the afore-

mentioned summation, while vertices of B̂ contribute noth-
ing to this summation, and vertices of Ĉ are explicitly ex-
cluded from it. We conclude that this summation is equal
to

∑

v∈Â w(v) = w(Â), as claimed. The proof for B̂ and Ĉ
is similar.

Proposition B.3. If b ≤ 1
3
, then min{w̃(S), w̃(S̄)} ≥

min{w(Â), w(B̂)}.
Proof of Proposition B.3. Proposition B.2 implies that

w̃(S)+w̃(S̄) = w(Â∪B̂); we will use this fact throughout the
proof. Also, notice that max{ 1−b

2
, 1

8
+ b

2
} = 1−b

2
whenever

b ≤ 3
8
.

First, when the algorithm stops, w̃(S) ≥ 1−b
2
w(Â ∪ B̂) ≥

2/3
2
w(Â ∪ B̂) = 1

3
w(Â ∪ B̂) ≥ w(B̂). Now, if S = {R1

max},
then w̃(S) ≤ w(Â) (recall that w(Â) ≥ w(B̂)). Thus,

w̃(S̄) ≥ w(B̂), and we get that min{w̃(S), w̃(S̄)} ≥ min{w(Â), w(B̂)}.
On the other hand, if S 6= {R1

max}, then w̃(R1
max) ≤ 1−b

2
w(Â∪

B̂). We claim that w̃(S) ≤ w(Â). If w̃(S) < 2
3
w(Â∪B̂), then

this is true because w(Â) = (1 − b)w(Â ∪ B̂) ≥ 2
3
w(Â ∪ B̂).

On the other hand, if w̃(S) > 2
3
w(Â∪B̂), then the weight of

S after the last iteration is at least 2
3
w(Â ∪ B̂) and prior to

the last iteration it must have been less than 1−b
2
w(Â ∪ B̂)

(since the last iteration was performed and b ≤ 2
3
). Any

successive step adds at most w̃(R1
max) weight, so w̃(S) <

2 1−b
2
w(Â ∪ B̂) = (1 − b)w(Â ∪ B̂) = w(Â).

Thus, we proved that in both cases w̃(S) ≤ w(Â) and

w̃(S) ≥ b·w(Â∪B̂) implies that min{w(Â), w(B̂)} ≤ min{w̃(S), w̃(S̄}),
and the proof follows.

Proposition B.4. min{w̃(S), w̃(S̄)} ≥ 3
4

min{w(Â), w(B̂)}.
Proof of Proposition B.4. The case of b ≤ 1

3
is pro-

vided by Proposition B.3, so for the rest of this proof we
assume b > 1

3
. First, notice that there cannot be three (or

more) connected regions with more than 1−b
2
w(Â∪B̂) weight

because then two of those regions must be together in one
of A,B, contradicting w(Â), w(B̂) ≤ (1 − b)w(Â ∪ B̂).

Thus, there must be at most two regions with weight
greater than 1−b

2
w(Â ∪ B̂). Thus, the algorithm must stop

with w̃(S) ≤ (max{ 1
8
+ b

2
, 1−b

2
}+ 1−b

2
)w(Â∪B̂) ≤ max{ 5

8
, 1−

b}w(Â∪ B̂). We get that w̃(S) ≤ w(Â) because if 5
8
> 1− b,

then b > 3
8

and w̃(S) ≤ 5
8
w(Â ∪ B̂) ≤ w(Â), and otherwise

if 5
8
≤ 1 − b, then w̃(S) ≤ (1 − b)w(Â ∪ B̂) = w(Â). This

shows that S is not too big. Now we show that it is not too
small either.

If b ≤ 3
8
, then w̃(S) ≥ max{ 1

8
+ b

2
, 1−b

2
}w(Â ∪ B̂) =

1−b
2
w(Â ∪ B̂). We get that

w̃(S)

w(B̂)
≥

1−b
2

b
=

1

2b
− 1

2
≥ 1

2 · 3
8

− 1

2
=

5

6

Thus, in this case w̃(S) ≥ 5
6
w(B̂) and we get thatmin(w̃(S), w̃(S̄)) ≥

5
6

min{w(Â), w(B̂)}. If b > 3
8
, then w̃(S) ≥ (1

8
+ b

2
)w(Â∪B̂).

We get that since b ≤ 1
2
,

w̃(S)

w(B̂)
≥

1
8

+ b
2

b
=

1

8b
+

1

2
≥ 1

8 · 1
2

+
1

2
=

3

4

Thus, in this case w̃(S) ≥ 3
4
w(B̂) and we get thatmin(w̃(S), w̃(S̄)) ≥

3
4

min{w(Â), w(B̂)}.
Proof of Proposition 3.3. We first show that (Â′, B̂′, Ĉ′)

is a vertex-cut. V0 = Â′ ∪ B̂′ ∪ Ĉ′ since every vertex v ∈ V0

appears in at least one face, which by Prop. B.1 must have
a label, and thus the face is in V (CC). Note that Â′, B̂′, Ĉ′

are disjoint by definition.
Assume now to the contrary that G0 contains an edge

between a ∈ Â′ and b ∈ B̂′. By definition, a ∈ V (S) \ V (S̄)
and b ∈ V (S̄) \ V (S). Consequently, a is in no face in (the
connected regions in) S̄ and b is in no face in (the connected
regions in) S. But just like any edge in G0, the edge (a, b)
is on the boundary of a face in GD. But by the above, this
face can be neither in S nor in S̄, which contradicts the fact
that CC contains all the faces of GD (i.e., Proposition B.1).

We thus conclude that (Â′, B̂′, Ĉ′) is a vertex-cut of G0.

We next show that Ĉ′ ⊆ C. Consider any v ∈ Ĉ′ and
assume for contradiction that v /∈ C, i.e., v ∈ A ∪ B. Then

the faces of GD containing v are either all labeled Â or all
labeled B̂. Furthermore, all these faces are in the same con-
nected region in CC(Â) ∪ CC(B̂) (because by ordering all
the faces around a vertex clockwise, then every two succes-
sive faces are adjacent). This connected region is either in S
or in S̄ (but not both), implying that v is in exactly one of

V (S), V (S̄). This contradicts the assumption that v ∈ Ĉ′.

Finally, we show the lower bound on min{w(Â′), w(B̂′)}.
Observe that v ∈ V (S) \C implies that v /∈ V (S̄), as other-

wise we would have that v ∈ V (S)∩V (S̄) = Ĉ′ ⊆ C. Then,
by definition,

w̃(S) =
∑

v∈V (S),v /∈C

w(v) ≤
∑

v∈V (S),v /∈V (S̄)

w(v) =
∑

v∈Â′

w(v) = w(Â′)

where the first inequality follows from the fact that ev-
ery vertex of V0 appears in exactly one connected com-
ponent in CC �make it a separate Proposition? –Robi�.
A similar argument shows that w̃(S̄) ≤ w(B̂′). We then

conclude using Proposition B.4 that min{w(Â′), w(B̂′)} ≥
min{w(S), w(S̄)} ≥ 3

4
min{w(Â), w(B̂)}, as claimed.

We will need the following technical lemma regarding plane
graphs.

Proposition B.5. Let G(V,E) be a plane graph, and sup-
pose that four of the regions around a vertex v ∈ V , when
considered in, say, a counter-clockwise order, belong to the
faces f1, f2, f3, f4 of G, respectively. If f2 ∪ f4 is disjoint
from f1 ∪ f3 then any arc in R

2 \ {v} between f1 and f3
intersects any arc in R

2 \ {v} between f2, f4. (See Figure 6
for illustration.)

PSfrag replacements

f1

f2
f3

f4

v

Figure 6: Four faces touching v

Proof of Proposition B.5. Assume for contradiction
that two such arcs exist. Extend the arc between f1 and f3
into a polygon P in R

2 by going through f1, v and f3. By the
Jordan Curve Theorem, the polygon P divides R

2 \ P into
exactly two regions, each having v on its frontier. Observe
that f2 and f4 must be in different regions of R

2 \ P , as
otherwise v is on the frontier of only one region. Since f2∪f4
is disjoint from f1 ∪ f3, the arc between f2 and f4 does not
intersect the polygon P , which contradicts the fact that f2

and f4 are in different regions of R
2 \ P .

Proposition B.6. For every connected region R ∈ CC(S̄)
there is a directed simple cycle DR such that R is exactly the
set of faces (of GD) that are enclosed by DR.

Proof of Proposition B.6. Consider a connected re-
gion R ∈ CC(S̄) and let R̄ := ∪R′∈S∪S̄\RR

′} denote the set
of all other faces in GD. Let DR be the collection of directed
edges in GD whose face to the left is in R and their face to
the right is not in R. We will show that DR is the desired
cycle.

Let us first show that if a vertex v of GD appears in the
cycle DR then its in-degree in DR is equal to its out-degree
in DR. Each immediate regions around v is contained in a
face ofGD, that must be either in R or not in R. Considering
the regions around v in, say, a counter-clockwise order, the
edge between two successive regions belongs to DR if one of
these regions is in R and the other one is in R̄. Specifically,
when going in the above order, a region of R followed by
one of R̄ corresponds to an edge of the cycle DR that is
directed toward v, and a region of R̄ followed by one of
R corresponds to an edge of the cycle DR that is directed
away from v. Since switches from R to R̄ alternate (when
considered in the above order) with switches from R̄ to R,
edges of DR that are incoming to v alternate with those
edges of DR that are outgoing from v. In particular, the
in-degree and out-degree of v in DR are equal. (See Figure
7 for illustration.)

PSfrag replacements

R̄, S R̄, S

R̄, SR̄, S

RR f1

f2

f3

f4

v

Figure 7: The edges separating between R and R̄

Assume now for contradiction that the in-degree in DR

of v is at least two, and let then e1, e2 be two edges of DR

that are incoming to v. Consider the regions around v in a
counter-clockwise order. The region just before e1 belongs
to a face f1 ∈ R, and the region that is just after e1 belongs
to a face f2 ∈ R̄. In fact, f2 is in S as otherwise R is not a
connected component of S̄. Similarly, the region just before
e2 belongs to a face f3 ∈ R, and the region just after e2
belongs to a face f4 of S. We thus get that there are around
v four regions that when considered in a counter-clockwise
order belong to faces f1, f2, f3, f4 of GD, respectively, with
f1, f3 ∈ R and f2, f4 ∈ S. In particular, f2 ∪ f4 is disjoint
from f1 ∪ f3. Since R is a connected region, it contains
a faces-path between f1 and f3 (trivially, if f1 = f3). This
defines an arc between f1 and f3 that goes only through faces
in R and edges that are on the boundary of two distinct
faces of R. In particular, this arc does not go through v.
Similarly, S is also a connected region and thus it defines an
arc between f2 and f4 that goes only through faces in S and

edges that are on the boundary of two distinct faces of S.
In particular, this arc does not go through v. It follows that
these two arcs do not intersect each other, in contradiction
with Proposition B.5; thus the in-degree and out-degree of
vertices in DR are exactly 1.

We now show that DR is not a union of disjoint cycles.
Assume to the contrary that it contains k ≥ 2 disjoint cycles.
Thus, R

2 \ CR has at least k + 1 ≥ 3 regions in the plane.
Each such region contains at least one face of R ∪ S, since
the frontier of the region is an edge of DR, namely, an edge
that separates between a face of R and a face of S. All the
faces of R are in the same region of R

2 \ DR since R is a
connected region (note that edges between two faces in R
have are not inDR), and similarly all the faces of S are in the
same region of R

2 \DR. It follows that R
2 \DR can have at

most 2 regions, in contradiction with the above assumption.
We furthermore conclude that R is exactly the set of faces
of GD that are contained in one region of R

2 \DR, namely
to the left of DR, as claimed.

Proposition B.7. D(S̄) defines the vertex-cut (Â′, B̂′, Ĉ′)
that is described in (2). Furthermore, the sets of vertices of
V0 that are enclosed by these cycles are disjoint.

Proof of Proposition B.7. Let (A,B,C) be the vertex-
cut defined by D(S̄). Every vertex v ∈ C appears in a di-
rected edge in some Di. This edge is on the boundary of
a face of S̄ and a face of S. Then by the definitions (1)

and (2) we have that v ∈ Ĉ′. Every vertex v ∈ B is in the
region of the plane that is enclosed by (i.e., to the left of)
some Di, and is thus on the boundary only of faces in S̄.
It follows that v ∈ B̂′. Similarly, every vertex v ∈ A is on
the boundary only of faces in S (as otherwise it would have

been in Â or B̂), and thus v ∈ Â′.
Finally, let v be a vertex enclosed by two cycles Di, Dj ∈

D(S̄). Then at least one face around v is contained in both
of these regions, and so Di and Dj enclose (the faces of) the
same connected component of S̄. Therefore, i = j.

Proof of Proposition 3.4. Assume to the contrary that
G̃ contains a cycle D̃ =< d0, v0, . . . , dk−1, vk−1 > where
vi ∈ Ṽ1 and di ∈ Ṽ2 for all i and k ≥ 2. Without loss
of generality this cycle is simple. By the definition of Ẽ,
each vi appears in the cycles di and d(i+1)modk. Thus, there
is in the plane a polygon P that goes through the vertices
v0, . . . , vk−1 and through the connected regions that cor-
respond to d0, . . . , dk−1 (and edges between faces in each
connected region). This polygon does not intersect itself

because the cycle D̃ is simple and the connected regions in
CC(S̄) are disjoint.

Consider the faces around v0 in a counter-clockwise order.
The cycle d0 contains an edge e0 that is incoming to v0, and
thus the region just before e0 belongs to a face f1 in a con-
nected region R0 that is defined by d0, and the region just
after e0 belongs to a face f2 ∈ R̄. In fact, f2 is in S as oth-
erwise R0 is not a connected component of S̄. Similarly, the
cycle d1 contains an edge e2 that is incoming to v0 and thus
the region just before e1 belongs to a face f3 in a connec-
tion region R1 that is defined d1, and the region just after
e1 belongs to a face f4 of S. To see that these four regions
are distinct, observe that the two edges e0, e1 are distinct,
as otherwise they have the same face to their left, and then
the cycles d0, d1 are the boundaries of the same connected
component of CC(S̄). Note that S defines an arc between

f2 and f4 that goes only through faces in S and edges that
are on the boundary of two distinct faces of S, and that the
polygon P defines an arc between f1 and f3 that goes only
through v1, . . . , vk−1 (but not through v0), faces in S̄ and
edges that are on the boundary of two distinct faces in S̄.
It follows that these two arcs do not intersect each other, in
contradiction with Proposition B.5; thus, there is no cycle
D̃ in G̃.

Proof of Proposition 3.5. In each connected compo-
nent of G̃, choose arbitrarily some vertex of Ṽ1 to be the root
of this connected component. (Note that there must be such

a vertex.) Select T to be the connected component of G̃ with
the best q0b quotient. Using averaging arguments we know
that this quotient is at least as good as that of (Â′, B̂′, Ĉ′).

Let the level of a vertex v ∈ V1 in T be the distance (in G̃)
between v and the root of T plus 1, not including vertices of
V2 in the distance count (for example, the level of the root
cycle is 1, and the level of its children cycles is 2).

Choose i ≤ d arbitrarily. Define T i
1 to be the (disjoint)

union of d-tree’s rooted in vertices of V1 on levels l ∼= i(
mod d+ 1) of T . Let T i

2 be the union of the rest of the ver-
tices in T (i.e., those vertices of VD that appear in levels i−1(
mod d+ 1) of T and nowhere else). Thus, w(T) = w(T i

1) +
w(T i

2). If for all i ≤ d, w(T i
1) < d−1

d
w(T), then for all

i ≤ d w(T i
2) >

1
d
w(T). We get that w(T) ≥ ∑

i≤d w(T i
2) >

d 1
d
w(T) = w(T). Thus, there must be some i ≤ d such that

w(T i
1) ≥ d−1

d
w(T). For this i we get

c(T i
1)

w(T i
1)

≤ c(T)

w(T i
1)

≤ c(T)
d−1

d
w(T)

=
d

d− 1

c(T)

w(T)
.

It follows that there exists a vertex-cut (Â′′, B̂′′, Ĉ′′) such
that

q0b (Â′′, B̂′′, Ĉ′′) =
c(Ĉ′′)

min{w(B̂′′), w(Â′′), bW}
≤

d
d−1

c(Ĉ′)

min{w(B̂′), w(Â′), bW}
.

By Proposition 3.3 we have that c(Ĉ′) ≤ c(Ĉ) and that

min{w(Â′), w(B̂′), bW} ≥ 3
4

min{w(Â), w(B̂), bW}. Thus,

d
d−1

c(Ĉ′)

min{w(B̂′), w(Â′), bW}
≤

4
3

d
d−1

c(Ĉ)

min{w(B̂), w(Â), bW}
=

4

3

d

d− 1
·q0b (Â, B̂, Ĉ).

Proof of Proposition 3.6. Now, if λw(C∗) < w(A∗), w(B∗),
for some λ > 0, then Theorem 3.1 guarantees a vertex cut
whose b-limited 0-quotient cost (i.e., α = 0) is within a fac-
tor of 4

3
d

d−1
from optimal. We then have from Lemma 2.4

that also its b-limited α-quotient cost (for any α > 0) is
within a factor of 4

3
d

d−1
(1 + α

λ
) from optimal.

Proof of Proposition 3.7. Let b = min{w(Â), w(B̂)}/w(Â∪
B̂) be as above. The case of b ≤ 1

3
follows from Proposition

B.3 (with Â′ corresponding to only one connected region),
so for the rest of the proof we assume 1

3
< b ≤ 1

2
. We say

that a connected region R ∈ CC is small if w̃(R) ≤ εbw̃(CC),
and big otherwise. The number of big connected regions is
clearly at most 1/(εb) = O(1/ε).

Every big connected region belongs to either CC(Â) or

CC(B̂), since w̃(R) = 0 for all R ∈ CC(Ĉ) by Proposi-
tion B.2. Thus, the O(1/ε) big connected regions can be
partitioned into two groups corresponding to A and B, re-
spectively. Now iteratively pick a small connected region

that is adjacent to a big connected region and add the for-
mer to the latter, until either one of the two groups of big
connected regions R has weight w̃(R) ≥ (1 − ε)b. Notice
that the small connected regions cannot be exhausted, since
if both groups have weight at most (1−ε)bw̃(CC) then the re-
maining 1−2(1−ε)bw̃(CC) must be used by small connected
regions. Furthermore, it is straightforward that there always
exists a small connected region that is adjacent to some big
connected region. By definition, when these iterations ter-
minate, both groups consist of O(1/ε) connected regions.
We can thus add all the remaining small connected regions
to the group of smaller weight. Thus, the group of larger
weight has total weight at least (1 − ε)bw̃(CC) and at most
bw̃(CC), and still consists of O(1/ε) connected regions.

Proof of Proposition 3.8. Theoerm 3.1 guarantees the
existence of a vertex-cut (A,B,C) defined by a 1-CAST,
such that its b-limited 0-quotient cost is within a factor of
8
3

from the minimum. We claim that there is either a triv-
ial cut or a cut defined by one of the cycles in this CAST,
that has b-limited 0-quotient cost that is within a factor
of 2 from that of the whole CAST. Indeed, let D1, . . . , Dk

denote the cycles in the 1-CASTwhose cost is at least 2.
For each such cycle Di let wi and ci denote its weight and
cost, respectively. Similarly, the set of cycles in the 1-CAST
that has cost 1 defines a vertex-cut that has some weight
w0 and cost c0 = 1. By definition, w(B) =

∑k
i=0 wi and

c(C) = 1 +
∑k

i=1(ci − 1). Thus,
∑k

i=0 ci = c(C) + k ≤
2c(C). By averaging arguments, it follows that at least one
of these k+1 vertex-cuts has 0-quotient cost that is at most
2c(C)/min{w(A), w(B), bW}, as claimed.

For α = 0 we thus obtain the desired result (with factor
5 1

3
). This can be extended to any α > 0 (with factor 6 1

3
) by

using Lemma 2.5.

C. PROOFS FOR FINDING A NEAR OPTI-
MAL VERTEX-CUT

Proof of Proposition 4.1. Notice that the weight of a
face in Fi originates from weights of vertices in Vi and/or
weights of vertices in C. Formally, for a face f let w0(f)
be the portion of f ’s weight coming from vertices not in
C, and let w1(f) be the portion of f ’s weight coming from
vertices in C. Observe that the weight of a vertex in Vi

is (completely) distributed among faces that are all in Fi.
Thus, w(Vi) =

∑

f∈Fi
w0(f) for all i.

Since F1, . . . , Fl are disjoint, w(∪i∈IFi) =
∑

i∈I

∑

f∈Fi
w0(f)+

∑

i∈I

∑

f∈Fi
w1(f)). Observe that the weight of a vertex in

Vi is (completely) distributed among faces that are all in Fi,
and that also V1, . . . , Vl are disjoint, and thus the first term
on the right hand side is equal to

∑

i∈I w(Vi) = w(∪i∈IVi).
The second term on that right hand side is similarly bounded
by 0 ≤ ∑

i∈I

∑

f∈Fi
w1(f) ≤ w(C), which proves the propo-

sition.

Proof of Proposition 4.2. We compute T (l+1, s, t, {p1, . . . , pd}, w)
by finding the minimal cost of extending a length l walk by

one additional edge. Formally, if t′ is in the pebble p′i then

T (l + 1, s, t, {p1, ..., p
′
i, ..., pd}, w) =

min(t0,t)∈E















T (l, s, t0, {p1, ..., pi, ..., pd}, w − w((t0, t))) t0 ∈ pi & t ∈ pi−1 & p′i = nil

T (l, s, t0, {p1, ..., pi, ..., pd}, w − w((t0, t))) + c(t)
t0 ∈ pi & ∀o ≤ d t /∈ po &
(t ∈ p′i or t ∈ p′i+1& t0 ∈ p′i)

(6)
The intuition behind this computation is that at every

step we either remove the pebble from the current vertex
and go to a vertex that already has a pebble (this is the first
case above), or we move to a vertex that has no pebble and
either remove the current vertex’s pebble or remove it (this
is the second case above). In the first case we do not add
the cost of the new vertex t, while in the second case we do
add this cost.

The values of T for l = 1 are trivial to compute: T (1, u, v, {<
v, (u, v), (u, v) >}, w(u, v)) = c(u, v) for every edge e =
(u, v), and are undefined (or say ∞) otherwise.

We know that always either the last vertex equals the first,
or it holds a pebble. Also, every pebble can be encoded as
two choices over O(n) edges. These two observations show
that the size of T is W · n2d+2. Proposition 4.2 shows that
we can fill the table in time W · n2d+3.

Proof of Proposition 4.3. The intuition for this the-
orem is that D’s embedding in the plane (as part of the em-
bedding of GD) defines a closed walk on the outside of D.
Regarding D as a rooted tree, and using this walk, whenever
we get to a vertex that connects two cycles of D we leave
a pebble on that vertex for the duration of the walk in the
descendant cycles of that vertex. When we leave the subtree
of that vertex and continue onward we take the pebble with
us.

Formally, let G̃ be as in Proposition 3.4, with D corre-
sponding to a tree in G̃. Recall that G̃ is planar with an
embedding in R

2 that corresponds to the planar embedding
of GD. A left-to-right DFS traversal of G̃ defines an or-
der over the visits in the cycles and the vertices connecting
them. This ordering over the cycles in D can be extended to
a total order over the edges in D that is a closed walk and
that surrounds each of the cycles of D from the left (i.e., the
interior of each cycle is to the left of the directed edge). For

every vertex v in GD that is also in G̃, we leave a pebble in
v from the first time that we enter v until the last time that
we exit the vertex. We take the pebble when we exit v for
the last time.

The total weight surrounded by our walk is the sum of
weight surrounded by cycles in D, i.e., w0, because the edges
of our walk surround the cycles of D (having them on the
left), and the cycles of D have disjoint faces. The counted
cost of our walk is exactly the sum of costs of the vertices in
the walk, counting every vertex exactly once because every
vertex that is visited more than once is a vertex in G̃, so a
pebble is left there between the first and last visit to it.

Proof of Proposition 4.4. First, we mention an equiv-
alent form of a proposition proved in [24].

Proposition C.1 (Park and Phillips [24]). Let π be
a simple closed walk in Gs. Let F be the set of faces of
GD that are separated by π from the outer face. If the
faces of F are to the left of π then w(π) = w(F), and

ncπ(f) =

{

1 if f ∈ F

0 if f /∈ F
. Otherwise, w(π) = −w(F) and

ncπ(f) =

{

−1 if f ∈ F

0 if f /∈ F
.

Decompose the walk π into simple cycles π1, π2, . . . (ar-
bitrarily). If πi contains neither of e, e′ then f1 and f2
are in the same region of R

2 \ πi, so ncπi(f1) = ncπi(f2)
by Proposition C.1. If πi contains e then f1 and f2 are
in different connected regions of R

2 \ πi, and in particular
ncπi(f1) = ncπi(f2) + 1. Similarly, if πi contains e′ then
ncπi(f1) = ncπi(f2) − 1. The proposition follows by adding
these equations for all i, since ncπ(f1) =

∑

i ncπi(f1) and
similarly for f2.

Proof of Proposition 4.5. Let tv be the number of
times that the cost of v contributes to the counted cost of
π. This is the number of times that we put a pebble in v.
We shall show that tv ≥ ∆π(v).

For a walk w, define ∆w(v)

∆w(v) = max
i0<i1≤2d(v)

i1
∑

i=i0

(nvw(e(i mod d(v)))−nvw(e′(i mod d(v))))

where e1, ..., ed(v) enumerate the edges (incoming) incident
on v and e′i is the opposite direction of ei. Proposition 4.4
implies that this definition applied to closed walk π coincides
with our original definition.

Now, we claim that for every walk w with a sequence of
visits to v, if we put a pebble in v initially and pick it up
only at the last exist from v, then ∆w(v) = 1. Consider the
part of that walk that is the directed edges incoming and
outgoing to/from v. The incoming and outgoing edges al-
ternate counter-clockwise from v, never completing a full cy-
cle, by the way our dynamic program is constructed. Thus,
∆w(v) = 1.

Now, break π into walks w1, ..., wl such that every walk
puts a single pebble in v and later picks it up. The definition
implies that ∆π(v) ≤ ∑

i≤l ∆wi(v). We get that ∆π(v) ≤ l.
However, each one of the walks w1, ..., wl counts the cost of v
exactly once, so the overall count of cost for v is l. Thus, the
cost of π is at least ∆π(v) and the proposition is proved.

Proof of Proposition 4.6. Proceed by induction on ∆π(Gs).
If ∆π(Gs) = 1 then we’re trivially done.

Assume now that ∆π(Gs) > 1. Let H = max{ncπ(f) :
f is a face of Gs} and L = min{ncπ(f) : f is a face of Gs}.
Let FH = {f ∈ Gs : ncπ(f) = H}. Let E′ be the set of
directed edges in Gs that have a face from FH to their left
and a face not from FH to their right. Note that E′ ⊆ π,
since by Proposition 4.4 any edge in E′ must occur at least
once in π. We claim that E′ is a union of walks, i.e., that
in-deg(v, E′) = out-deg(v,E′) for every vertex v. This is
easy to see by considering the faces around v in a counter-
clockwise order. As we enumerate the edges incident on v in
a counter-clockwise order, the face between an edge and its
successor alternates from FH to non-FH and back. Every
such alternation gives an incoming or outgoing edge to v
that is in E′ (by Proposition 4.4). Thus, E′ is a union of
disjoint closed walks π′ ⊆ π. Let π′′ = π − π′.

We claim that ∆(π′′) ≤ ∆π(Gs) − 1. Consider any path
ψ = 〈f1, ..., fl〉 from a face in Gs to another face in Gs.
Proposition 4.4 implies that

ncπ(f1)−ncπ(fl) =
∑

i<l

ncπ(fi)−ncπ(fi+1) =
∑

i<l

(nvπ(ei
1)−nvπ(ei

2))

for ei
1 being the edge with face fi to its left and face fi+1

to its right, and ei
2 being the opposite edge. Let ψ be

such a path that connects two faces f1, fl with ncπ′′(f1) −
ncπ′′(fl) = ∆(π′′). We show that ncπ′′(f1) − ncπ′′(fl) ≤
∆π(Gs) − 1. Let e1 =

∑

i<l nvπ(ei
1), e2 =

∑

i<l nvπ(ei
2).

Similarly, define e′1, e
′
2 for π′ and e′′1 , e

′′
2 for π′′. Then, e1 =

e′1 + e′′1 and e2 = e′2 + e′′2 . If f1, fl both belong to FH , then
e1 − e2 = ncπ(f1) − ncπ(fl) = 0 and e′1 − e′2 = ncπ′(f1) −
ncπ′(fl) = 0. Thus,

e′′1 − e′′2 = (e1 − e′1) − (e2 − e′2) = (e1 − e2) − (e′1 − e′2) = 0.

If f1, fl both do not belong to FH , then e1 − e2 = ncπ(f1)−
ncπ(fl) ≤ ∆π(Gs)−1 and e′1−e′2 = ncπ′(f1)−ncπ′(fl) = 0.
Thus,

e′′1−e′′2 = (e1−e′1)−(e2−e′2) = (e1−e2)−(e′1−e′2) ≤ ∆π(Gs)−1.

Finally, if f1 belongs to FH and fl does not belong to FH

(or vice versa), then e1 − e2 = ncπ(f1) − ncπ(fl) ≤ ∆π(Gs)
and e′1 − e′2 = ncπ′(f1) − ncπ′(fl) ≥ 1. Thus,

e′′1−e′′2 = (e1−e′1)−(e2−e′2) = (e1−e2)−(e′1−e′2) ≤ ∆π(Gs)−1.

Now, consider a vertex v. If v does not appear in π′ then
∆π′′(v) = ∆π(v), by Proposition 4.4 and going over the faces
around v in counter-clockwise order. Thus, the induction
hypothesis implies that v appears in at most ∆π′′(v) walks.
If v does appear in π′, then ∆π′′(v) ≤ ∆π(v)−1 by a similar
argument to the one for ∆(π′′). Thus, v appears in at most
∆π′′(v) + 1 ≤ ∆π(v) walks.

Finally, notice that since π′ is a disjoint union of closed
walks π′

1, ..., π
′
j we can consider each of these walks sepa-

rately in the group of walks that we generate for this propo-
sition.

Proof of Proposition 4.7. ∆π(Gs) ≤ 1 implies that
for every face f either ncπ(f) ∈ {0, 1} for all f ∈ Gs or
ncπ(f) ∈ {0,−1} for all f ∈ Gs, since ncπ(f) = 0 for the
outer face f . Similar to Section 4.1.1, the vertices of π sepa-
rate the faces/vertices with nc=0 from those with nc=-1/1.
First, the vertices of π are put in C. Then, the set of vertices
that are on the boundary of some f with ncπ(f) 6= 1 and
not on π are put in A, and the rest of the vertices (those
not in C) are put in B. This is a vertex-cut with cost at
most c(π) because every vertex in π is counted at least once
in the cost computation (by definition of c(π) for a walk
π). For the weight, Proposition 4.1 shows that w(A) ≤
w({f | ncπ(f) 6= 0}) = w(π) (the last equality follows from
∆π(Gs) ≤ 1) and similarly that w(B) ≤ w({f | ncπ(f) =
0}) = W − w(π). Thus, w(A) + w(C) = W − w(B) ≥
W − w({f | ncπ(f) = 0}) = W − (W − w(π)) = w(π) and
similarly w(B) +w(C) ≥W −w(π). Thus, bal1(A,B,C) =
min(w(A) + w(C), w(B) + w(C)) ≥ min(W − w(π), w(π)).
We already showed w(B) ≤ W − w(π) and w(A) ≤ w(π),
so we get bal0(A,B,C) = min(w(A), w(B)) ≤ min(W −
w(π), w(π)).

Proof of Theorem 4.9. Let µ ≥ 1 such that µ = 4
3

d
d−1

(1+
1

µ2−1
). Let β ≥ 1 be a parameter that we will select later

to be µ2 − 1.
If w(A∗) ≤ w(B∗) and w(A∗) ≤ β · w(C∗), then there is

a trivial vertex-cut (A,B,C∗) with A = V0 \C∗, B = ∅ and

q1(A,B,C∗) =
c(C∗)

w(C∗)
≤ c(C∗)

1
β+1

(w(A∗) + w(C∗))
= (β+1)q1(A∗, B∗, C∗).

On the other hand, Theorem ?? shows that there is a
d-tree in GD that defines a vertex-cut (A,B,C) whose quo-
tient cost satisfies q0(A,B,C) ≤ 4

3
d

d−1
· OPT 0. If w(A∗) ≥

λ · w(C∗), for some λ > β, then Lemma 2.4 shows that
q1(A,B,C) ≤ 4

3
d

d−1
(1 + 1

λ
) · q1(A∗, B∗, C∗). and also that

w(A), w(B) ≥ w(C) · 1

(4
3

d
d−1

−1)(1+ 1
λ

)− 1
λ

. Let µ = 4
3

d
d−1

(1 +

1
λ
), and let δ = µ−(1+ 1

λ
)− 1

λ
. Using w(A), w(B) ≥ 1

δ
w(C)

in Corollary 4.8 shows that our algorithm finds a vertex cut
(A′, B′, C′) such that

q1(A′, B′, C′) ≤ (1 + δ)q1(A,B,C) ≤
(1 + δ)µ · q1(A∗, B∗, C∗) ≤
(1 + µ− (1 + 1

λ
) − 1

λ
)µ · q1(A∗, B∗, C∗) =

(µ− 1
λ
− 1

λ
)µ · q1(A∗, B∗, C∗) ≤

µ2 · q1(A∗, B∗, C∗)

Finally, choose β = µ2 − 1. This shows that our resulting
vertex-cut has q1 quotient at most µ2 ·q1(A∗, B∗, C∗). Now,
let µ∞ = limd→∞ µd, for µd the µ we chose in the beginning

of the proof. Then, µ2
∞− 4

3
µ∞−1 = 0, and µ∞ =

4
3
+
√

16
9

+4

2
.

Similarly, we can compute for an arbitrary d that µd =
4
3

d
d−1

+
√

16
9

(d
d−1

)2+4

2
. Thus,

µd

µ∞
=

4
3

d
d−1

+
√

16
9

(d
d−1

)2 + 4

4
3

+
√

16
9

+ 4
≤

4
3

d
d−1

+
√

16
9

+ 4 d
d−1

4
3

+
√

16
9

+ 4
=

d

d− 1

Since µ2
∞ ≤ 3.5 we get that µ2

d ≤ 3.5(d
d−1

)2, so q1(A,B,C) ≤
3.5 · (d

d−1
)2 · q1(A∗, B∗, C∗).

For the second part of the theorem, notice that the vertex-
cut that Theorem ?? selected for us (in the previous para-
graph) satisfies q1(A,B,C) ≤ 4

3
d

d−1
(1 + 1

λ
)q1(A∗, B∗, C∗).

Corollary 4.8 says that our algorithm finds a vertex-cut
(A′, B′, C′) such that q1(A′, B′, C′) ≤ (1 + 1

λ
)q1(A,B,C).

Thus, q1(A′, B′, C′) ≤ 4
3
· d

d−1
· (1+ 1

λ
)2 · q1(A∗, B∗, C∗).

D. PROOF OF FINDING A NEAR OPTI-
MAL SEPARATOR

Proof of Theorem 5.1. The algorithm works as follows.
Iteratively, find a ρ-approximate b-limited α-quotient vertex-
cut; let (Ai, Bi, Ci) denote the vertex-cut found at iteration
i, and assume without loss of generality that w(Ai) ≤ w(Bi);
then remove from the graph the vertices of Ai ∪Ci. Repeat
these iterations until the total weight of the (remaining)
graph vertices is at most (1 − λ)W , where 0 < λ < 1 is
a parameter that we will choose later to be b′/α (much of
the analysis that follows is independent of this choice of λ).
Finally, output the vertex-cut (A′, B′, C′) where A′ = ∪iAi,
C′ = ∪iCi and B′ = V \ (A′ ∪ C′).

We first show that the output cut (A′, B′, C′) is (b′, α)-
balanced. Let k ≥ 1 be the number of iterations performed.
Then B′ = Bk. It follows that w(B′) + w(C ′) ≥ w(Bk) +
w(Ck) = w(Bk−1)−w(Ak). Since w(Ak) = min{w(Ak), w(Bk)} ≤
1
2
w(Bk−1) we get that w(B′) +w(C ′) ≥ 1

2
w(Bk−1) >

1
2
(1−

λ)W . We also have that w(B′) ≤ (1 − λ)W and thus
w(A′) + w(C ′) ≥ λW . We conclude, using α ≤ 1, that

min{w(A′), w(B′)}+αw(C ′) ≥ α·min{w(A′), w(B′)}+αw(C ′) ≥ α·min{1

2
(1−λ), λ}W

Now, let us choose λ := b′/α ≤ 1
3
. Then min{ 1

2
(1−λ), λ} ≥

λ and we get, as desired, that min{w(A′), w(B′)}+αw(C ′) ≥

αλW = b′W .
We next bound the cost of the cut (A′, B′, C′). Let (A∗, B∗, C∗)

be a minimum cost (b, α)-balanced cut, and let OPT =
c(C∗) denote its cost. Iteration i is performed on the sub-
graph induced on Bi−1; this graph contains the vertex-cut
that is induced by (A∗, B∗, C∗), namely, (Bi−1 ∩A∗, Bi−1 ∩
B∗, Bi−1 ∩ C∗). Without loss of generality assume that
w(Bi−1 ∩ A∗) ≤ w(Bi−1 ∩ B∗). We know that w(Bi−1) ≥
(1−λ)W , for W the initial total weight of the graph. Thus,
w(Bi−1 ∩A∗) +w(Bi−1 ∩B∗) +w(Bi−1 ∩C∗) ≥ (1− λ)W .
Since (A∗, B∗, C∗) is (b, α) balanced we get that w(A∗)+α ·
w(C∗) ≥ bW we also get that

w(Bi−1∩B∗)+(1−α)·w(Bi−1∩C∗) ≤ w(B∗)+(1−α)w(C∗) = W−(w(A∗)+α·w(C∗)) ≤W−bW = (1−b)W.
Thus,

w(Bi−1∩A∗)+α·w(Bi−1∩C∗) ≥ (1−λ)W−
(

w(Bi−1∩B∗)+(1−α)·w(Bi−1∩C∗)
)

≥ (1−λ)W−(1−b)W = (b−λ)W.

Thus, the b-limited α-quotient cost of this cut is

qα
b (Bi−1 ∩A∗, Bi−1 ∩B∗, Bi−1 ∩ C∗) ≤ OPT

(b− λ)W

It follows that the ρ-approximate b-limited α-quotient vertex-
cut (Ai, Bi, Ci) that the algorithm finds has quotient cost

qα
b (Ai, Bi, Ci) ≤ ρ · OPT

(b− λ)W

Thus, the total cost of the output cut (A′, B′, C′) is

c(C ′) =
∑

i

c(Ci) ≤ ρ· OPT

(b− λ)W

∑

i

min{w(Ai)+αw(Ci), bW} ≤ ρ· OPT

(b− λ)W
[w(A′)+αw(C ′)].

Using α ≤ 1 we get that w(A′)+αw(C ′) ≤ w(A′)+w(C ′) ≤
W , and thus conclude that

c(C ′) ≤ ρ

b− λ
· OPT =

ρ

b− b′/α
· OPT.

