
Goal Achievement in Partially Known, Partially Observable Domains

Allen Chang and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{achang6,eyal}@cs.uiuc.edu

Abstract

We present a decision making algorithm for agents that act in
partially observable domains which they do not know fully.
Making intelligent choices in such domains is very difficult
because actions’ effects may not be known a priori (partially
known domain), and features may not always be visible (par-
tially observable domain). Nonetheless, we show that an effi-
cient solution is achievable in STRIPS domains by using tra-
ditional planning methods. This solution interleaves planning
and execution carefully. Computing each plan takes time that
is linear in the planning time for the fully observable, fully
known domain. The number of actions that it executes is
bounded by a polynomial in the length of the optimal plan
in the fully observable, fully known domain. Our theoretical
results and preliminary experiments demonstrate the effec-
tiveness of the algorithm.

1 Introduction
Agents that act in many real-world domains do not know the
exact state of the world at any point in time. These domains
are partially observable because agents cannot observe all
the features of the world that might be relevant to them. For
example, an agent crawling the World-Wide Web may press
a button on a page, but may not see the immediate effect of
its action (e.g., but it could see it, if it viewed another page).

Problems involving partial observability are especially
difficult, and limited typically to very small domains (e.g.,
100 states or 8 domain features) (Kaelbling, Littman, & Cas-
sandra 1998; Kearns, Mansour, & Ng 2000; Bertoli et al.
2001; Bertoli & Pistore 2004). This is because any choice
of action depends on the state of knowledge of the agent and
the perceptions it receives, leading to a super-exponential
computation in the number of steps and features in the do-
main.

In many such domains, the agent does not know how its
actions affect the world a priori (partially known domains).
For example, a World-Wide Web crawler may not know a
priori how pressing any particular button affects the states
of different web pages. Even after execution of an action,
the crawler does not know that action’s effects because they
may not be reflected on the current page. More generally,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the agent’s task is to make decisions at the same time that it
learns about its domain.

Acting in partially observable, partially known domains
is particularly tricky. The main approaches involve at least
exhaustive exploration of the domain or policy space (e.g.,
Reinforcement Learning in POMDPs (Jaakkola, Singh, &
Jordan 1995; Even-Dar, Kakade, & Mansour 2005)) or ad-
vice about promising trajectories (Kearns, Mansour, & Ng
2000). Approaches that guarantee convergence to a solution
do so only in the limit of an infinite number of steps. Most
importantly, if the goal of the system changes, the policy
must be recomputed, and little use is made of knowledge
accumulated in previous runs.

This paper identifies an important tractable case of partic-
ular interest to the AI community, namely, domains in which
actions are known to be deterministic and without condi-
tional effects (STRIPS actions). We present an algorithm that
interleaves planning and execution and that is guaranteed to
reach the goal within a bounded number of steps. Specifi-
cally, the number of steps that we execute before reaching
the goal is polynomial in the number of steps of an opti-
mal deterministic plan in a fully observable, fully known
domain. The computation time involved in our algorithm
is linear in the time taken by a SAT-style planner in a fully
observable, fully known domain.

Our algorithm iterates: it selects an action, executes it,
and updates a logical representation of the possible effects
of actions and the possible current states (a transition be-
lief state). Our algorithm selects actions by calling a SAT-
style planning subroutine that finds plans that could possibly
work. After each action executes, the algorithm updates a
transition belief state, limiting the set of possible states and
transition models (action effect models) that could be true
for our agent.

There are several key steps in making this algorithm and
its proof succeed. First, we observed that we are guaran-
teed to learn something about the transition model, if the
plan does not succeed (if it succeeds, then the algorithm
succeeded by definition). Second, we find that encoding
the transition belief state is not difficult, following results
about learning in partially observable domains (Amir 2005;
Chang & Amir 2005). Finally, as plans are executed and
more knowledge is acquired by the agent, new plans that
incorporate this knowledge are generated.

In Section 2 of this paper, we present the semantics for
the problem. In Section 3 we present our decision-making
algorithm. In Section 4 we give theoretical results for the
decision making algorithm. Finally, in Section 5, we give
experimental results for the algorithm.

2 Problem definition
In this section we formally describe the framework defin-
ing the problem we are attempting to solve. We give a de-
scription of a transition system, the world with which the
agent interacts. Let a planning domain be defined as the tu-
ple D = 〈P,S,A, φ(0), G〉 where:

• P is a finite set of propositional fluents.
• S ⊆ 2P is a set of states (where 2P is the power set of P).
• A is a finite set of actions.
• T = 2S×A×S is the set of all possible transition relations.
• W = S × T is a set of all possible worlds.

• φ(0) ⊆ W is the initial transition belief state.
• G ⊆ S is the set of goal states.

A state s ∈ S is a subset of P that contains all fluents that
hold in the state. For any transition relation R ∈ T and
action a ∈ A, R(s, a, s′) means that state s′ is one possible
result of taking action a from state s. Each possible world
w ∈ W is a state, transition-relation pair. A transition belief
state φ ⊆ W is a set of possible worlds the agent believes
contains the current actual world.

Formally, the problem we are attempting to solve is, given
the initial transition belief state φ(0), the agent must select
actions in order to reach one of the goal states. There is some
actual world state s(0) and actual action model R such that
〈s(0), R〉 ∈ φ(0). After taking an action a, the current state
s becomes a new state s′ such that R(s, a, s′). In general,
the agent cannot observe all the fluents of P . Instead after
taking each action, the agent may receive an observation o in
the form of a logical formula over P that holds in the current
state s.

In the general case of partial observability, a decision-
making agent cannot know beforehand whether each action
it decides to take will fail or succeed. However, we assume
that the agent can observe action success or failure after try-
ing an action; this assumption allows our later theoretical
analysis to follow. More precisely, we assume that there is
a special additional proposition OK that is observed by the
agent after taking each action such that OK is true if and
only if the action succeeded. An action succeeds if and only
if the preconditions of the action were met.

For reasons of tractability, we assume all actions are
STRIPS with unconditional effects in this paper. Addition-
ally, we assume that the preconditions of the actions are
known, so only the effects of actions need to be learned.
(We make these assumptions because at the time of writing
we can prove these results under these conditions alone.)
Example 2.1. Consider a domain where an agent is
in a room with a locked door (see Figure 2.1). In its
possession are three different keys, and suppose the

Figure 2.1: Locked door with unknown key domain

agent cannot tell from observation only which key
opens the door. The goal of the agent is to unlock the
door. This domain can be represented as follows: let
P = {locked} where locked is true if and only if the
door is locked. Let S = {s1, s2} where s1 = {locked}
(the state where the door is locked) and s2 = {} (the
state where the door is unlocked). Let G = {s2} rep-
resent the goal. Let A = {unlock1, unlock2, unlock3}
be the three actions where the agent tries unlocking
the door using each of the three keys. Let R1 =
{〈s1, unlock1, s2〉, 〈s1, unlock2, s1〉, 〈s1, unlock3, s1〉}
represent the transition relation that key 1 unlocks the door
(but the other keys do not). Likewise, define R2 and R3 in
similar fashion. A transition belief state where the state of
the world is fully known, but the action model is only par-
tially known, is given by φ = {〈s1, R1〉, 〈s1, R2〉, 〈s1, R3〉}.

We would like the agent to be able to open the door de-
spite not knowing which key to use. To do this, the agent
will learn the actual action model (i.e., which key opens the
door). In general, not only will learning action model be
useful in achieving the immediate goal, but such knowledge
will be useful as the agent attempts to perform other tasks in
the same domain.

2.1 Representing Transition Belief States
In general, it is impractical to represent transition belief
states explicitly as sets of worlds. Instead, we represent
transition belief states symbolically: each transition belief
state is represented by a propositional logic formula, each
model of which corresponds to a world in the transition be-
lief state. First, define the set of propositional variables
L =

⋃
a∈A,f∈P{af , a¬f , af◦}. Each propositional vari-

able af (a¬f) holds if and only if action a causes f (¬f)
to hold after it is executed. Each propositional variable af◦

holds if and only if action a does not affect f . Transition be-
lief states are represented as propositional formulas (which
we will call transition belief formulas) containing proposi-
tions from the vocabulary L∪P . Each model of a transition
belief formula corresponds to a world in the corresponding
transition belief state. (Likewise, we assume the goal G is

Algorithm 1 PLAN-AND-EXECUTE(φ(0), G)

Inputs Initial transition belief formula φ(0), goal formula G

Returns Success if the goal is achieved, Failure otherwise

1. Set φ← φ(0)

2. Set π ← FIND-CANDIDATE-PLAN(φ,G)
3. For i from 1 to length of π

(a) Set ai to be the ith action in the plan.
(b) Execute action ai, and receive observation oi.
(c) Set φ← PRE-STRIPS-SLAF[〈ai, oi〉](φ).
(d) If oi |= ¬OK, go to step 2.
(e) If oi |= G, then return Success.

4. Go to step 2.

specified as a propositional formula over the vocabulary P .)
Therefore, from here forth, we will use φ to denote a transi-
tion belief state and the transition belief formula represent-
ing it, interchangeably.
Example 2.2. Consider the domain from Example 2.1. The
transition belief state φ can be represented by the transition
belief formula:

locked ∧
((unlock¬locked

1 ∧ unlocklocked◦
2 ∧ unlocklocked◦

3) ∨
(unlocklocked◦

1 ∧ unlock¬locked
2 ∧ unlocklocked◦

3) ∨
(unlocklocked◦

1 ∧ unlocklocked◦
2 ∧ unlock¬locked

3))

3 Planning and Execution Algorithm
Now we present an algorithm (Algorithm 1) that interleaves
planning and execution for achievement of goals in the pres-
ence of partial observability and uncertainty about the ac-
tion model. The algorithm maintains a transition belief for-
mula φ containing the agent’s current knowledge about the
state of the world and the effects of actions. In each iter-
ation, the algorithm finds a candidate plan, using subrou-
tine FIND-CANDIDATE-PLAN, and executes the actions
of the plan. Next, it updates its knowledge, using subroutine
PRE-STRIPS-SLAF, according to the executed actions and
received observations. Subroutines FIND-CANDIDATE-
PLAN and PRE-STRIPS-SLAF are described in detail in
subsequent subsections.

We make the following assumptions about the problem
domain. These assumptions guarantee that the algorithm
achieves the goal, if achieving the goal is possible.
Condition 3.1. The domain meets the following criteria:

1. The initial belief φ(0) is consistent with the actual state
of the world.

2. The agent observes whether the goal is met at the end
of each plan execution. That is, it observes the fluents
appearing in G at the end of the plan execution.

3. The domain is strongly connected; it is always possible to
achieve the goal through a sequence of actions from any
reachable state.

4. All actions are deterministic (i.e., STRIPS), and have no
conditional effects.

The first assumption states that the agent’s initial knowl-
edge is correct (that the actual world is actually contained
within the initial belief φ(0)). The second assumption is re-
quired to ensure that the agent makes progress after each
plan execution. Note that no other assumptions need to be
made about the observation model of the domain. The third
assumption ensures that the domain can be safely explored
by the agent.

3.1 Efficient Learning and Filtering
As an agent takes actions and receives observations, its
knowledge about the current state of the world and the ac-
tion model of the world changes. Define the simultaneous
learning and filtering (SLAF) operation over a transition be-
lief state and a sequence of actions and observations to be
the transition belief state containing the set of worlds con-
sistent with the actions taken and the observations received.
More precisely:

Definition 3.2. (SLAF Semantics) Let φ ⊆ W be a transi-
tion belief state. The SLAF of φ with actions/action-failures
and observations 〈aj , oj〉1≤j<t is defined by

1. SLAF [a](φ) = {〈s′, R〉|〈s, a, s′〉 ∈ R, 〈s,R〉 ∈ φ} if a
was successful

2. SLAF [a](φ) = {〈s,R〉|〈s, a, ·〉 /∈ R, 〈s,R〉 ∈ φ} if a
failed

3. SLAF [o](φ) = {〈s,R〉 ∈ φ|o is true in s}
4. SLAF [〈aj , oj〉i≤j≤t](φ) =

SLAF [〈aj , oj〉i<j≤t](SLAF [oi](SLAF [ai](φ)))

Example 3.3. Consider the domain described in example
2.1. The progression of φ on the action unlock1 is given
by SLAF [unlock1](φ) = {〈s2, R1〉, 〈s1, R2〉, 〈s1, R3〉}.
Likewise, the filtering of φ on the observation ¬locked (the
door became unlocked) is given by SLAF [¬locked](φ) =
{〈s2, R1〉}.

We now present an algorithm, PRE-STRIPS-SLAF (Al-
gorithm 3), that performs the SLAF operation on a transition
belief formula efficiently in such a way as to maintain for-
mula compactness. Formula compactness is important not
only for space efficiency reasons, but we also rely on this
property in our theoretical analysis of our algorithm. As
previously stated, we assume that actions are unconditional
STRIPS, and that the action preconditions are known by the
agent. That is, the agent must learn the effects of its actions,
but does not need to learn the preconditions of its actions.

PRE-STRIPS-SLAF uses AE-STRIPS-SLAF (Algorithm
2) as a subroutine. AE-STRIPS-SLAF is described in de-
tail in (Amir 2005), and we display it here for complete-
ness of exposition. PRE-STRIPS-SLAF learns the effects
of always-executable STRIPS actions (i.e., actions which
never fail). That is, it performs learning in the absence of
action failures. AE-STRIPS-SLAF requires that formulas
are maintained in fluent-factored form:

Definition 3.4. A transition belief formula φ is fluent-
factored if it can be written as φ =

∧
f∈P φf where φf =

(¬f ∨explf)∧(f ∨expl¬f)∧Af where explf , expl¬f , and
Af contain only propositions from

⋃
a∈A{af , a¬f , af◦}.

Algorithm 2 AE-STRIPS-SLAF[〈a, o〉](ϕ)
Inputs Action a, observation term o, and ϕ =

∧
f∈P ϕf a

fluent-factored formula.
Returns Filtered transition belief formula ϕ.

1. For each f ∈ P:
(a) Set ϕf ← (¬f ∨ explf) ∧ (f ∨ expl¬f) ∧Af

(b) If oi |= f (we observed f), then set ϕ← (¬f ∨>)∧
(f ∨ ⊥) ∧Af ∧ explf

(c) If oi |= ¬f (we observed ¬f), then set ϕ ← (¬f ∨
⊥) ∧ (f ∨ >) ∧Af ∧ expl¬f

2. Eliminated subsumed clauses in ϕ
3. Return ϕ

Algorithm 3 PRE-STRIPS-SLAF[〈a, o〉](ϕ)
Inputs Action a and observation term o. ϕ a transition

belief formula with the following factored form: ϕ =∧
i

∨
j ϕi,j , where each ϕi,j is a fluent-factored formula.

Returns Filtered transition belief formula ϕ.

1. If o |= ¬OK:
(a) Set ϕ ← ϕ ∧

∨
i F (¬li) where li are the literals

appearing in a’s precondition, and F (l) is the fluent-
factored formula equivalent to l (i.e., F (l) = ((l ⇒
>) ∧ (¬l ⇒ ⊥) ∧ >) ∧

∧
f∈P((f ⇒ >) ∧ (¬f ⇒

>) ∧ >))
(b) Set ϕi,j ← AE-STRIPS-SLAF[o](ϕi,j) for all ϕi,j

2. Else (o |= OK):
(a) For each ϕi,j :

i. Set ϕi,j ← AE-STRIPS-SLAF[P](ϕi,j) where P is
the precondition of a

ii. Set ϕi,j ← AE-STRIPS-SLAF[〈a, o〉](ϕi,j)
3. Each ϕi,j is factored into Ai,j ∧Bi,j where Bi,j contains

all (and only) clauses containing a fluent from P . For any
i such that there exists B such that for all j, Bi,j ≡ B,
replace

∨
j ϕi,j with B ∧

∨
j Ai,j

4. Eliminate subsumed clauses in each ϕi,j

5. Return ϕ

Note that the fluent-factored formula containing no prior
knowledge about the state of the world or the action model
can be represented as

∧
f∈P(¬f ∨ >) ∧ (f ∨ >) ∧ >.

Condition 3.5. For some of our theorems, we assume that
one of the following holds:
1. For every transition relation in ϕ, a maps states 1:1.
2. ϕ contains all its prime implicates.
3. There is at most one state s such that 〈s,R〉 ∈ ϕ for any

R.
The following theorem states the correctness of PRE-

STRIPS-SLAF:
Theorem 3.6 ((Chang & Amir 2005)). The following are
true:
1. SLAF[a, o](ϕ) |= PRE-STRIPS-SLAF[a, o](ϕ)
2. PRE-STRIPS-SLAF[a, o](ϕ) ≡ SLAF[a, o](ϕ) if Condi-

tion 3.5 holds.

Algorithm 4 FIND-CANDIDATE-PLAN(ϕ,G)
Inputs Transition belief formula ϕ, goal formula G

Returns Candidate plan π = 〈a1, . . . , aT 〉
1. Set T ← 1
2. Search for a satisfying assignment to equation (3.1).
3. If satisfying assignment found:

(a) For t from 1 to T : Set at to be the action a such that
a(t) is true in the satisfying assignment.

(b) Return 〈a1, . . . , aT 〉
4. Set T ← T + 1 and goto step 1.

The first property states that PRE-STRIPS-SLAF always
produces a safe approximation of the exact transition be-
lief formula. That is, the exact transition belief state
corresponding to SLAF[〈a, o〉](ϕ) is always a subset of
the transition belief state corresponding to PRE-STRIPS-
SLAF[〈a, o〉](ϕ). The second property gives a sufficient
condition when filtering is exact.

The following theorem gives the time and space complex-
ity for PRE-STRIPS-SLAF:
Theorem 3.7 ((Chang & Amir 2005)). The following are
true of PRE-STRIPS-SLAF:
1. The procedure takes time linear in the size of the formula.
2. If every fluent is observed every at most k steps and the

input formula is in m · k-CNF, then the filtered formula is
in m ·k-CNF, where m is the maximum number of literals
in any action precondition.
The last property states that, under the condition that

every fluent is observed every at most k steps, the resulting
filtered formula stays indefinitely compact (i.e., is in m · k-
CNF).

3.2 Finding Candidate Plans using SAT
Algorithm 1, PLAN-AND-EXECUTE, leverages the power
of propositional satisfiability solvers in its decision mak-
ing routine. This approach is inspired by previous ap-
proaches to encoding traditional (full knowledge) planning
problems as satisfiability problems (Kautz & Selman 1992).
Choice for this approach is motivated by the recent develop-
ment of highly efficient satisfiability algorithms (Zhang et
al. 2001), as well as empirical evidence for the efficacy of
satisfiability-based planners (Kautz & Selman 1999).

As in previous satisfiability-based planning approaches,
we encode our problem as a propositional formula, each
model of which corresponds to a valid candidate plan. More
specifically, for each a ∈ A and time step t, we create
a propositional variable a(t). In any specific model corre-
sponding to a plan, a(t) is true if and only if action a should
be taken at time t. It is assumed that belief states are rep-
resented as logical formulas, as described previously. Let
ϕ(t) and G(t) represent the same formulas as ϕ and G, ex-
cept that all fluents from P appearing in the formulas are
annotated with time-stamp t.

The candidate plan is chosen to be the shortest plan that
achieves the goal from some possible world in ϕ. Intu-
itively, such a plan is the shortest plan that can be found

such that it is known that the agent will gain knowledge af-
ter the plan executes. Finding a shortest candidate plan that
achieves G from some world in ϕ can be reduced to search-
ing for a model for the following formula using a satisfiabil-
ity checker:

ϕ(0) ∧N ∧
∧

1≤t≤T

[
C(t) ∧

∧
a∈A

(
a(t) ⇒ R(t)

a

)]
∧G(T)

(3.1)
T , the length of the plan, is set to 1 initially and is iteratively
deepened by increments of 1 until the formula is satisfiable
and a model is found. Definitions for each of the component
formulas of formula (3.1) are given below:

N ≡
∧

a∈A,f∈P

(af ∨ a¬f ∨ af◦) ∧

¬(af ∧ a¬f) ∧ ¬(a¬f ∧ af◦) ∧ ¬(af ∧ af◦)

Formula N encodes the constraint that for each action a ∈
A and fluent f ∈ P , either action a causes f to hold, a
causes ¬f to hold, or a does not affect f . That is, N ensures
that only consistent action models (where exactly one of af ,
a¬f , af◦ hold) are considered.

R(t)
a ≡ P (t)

a ∧∧
f∈P

((af ⇒ f (t+1)) ∧ (a¬f ⇒ ¬f (t+1))

∧(af◦ ⇒ (f (t) ≡ f (t+1)))

Formula R
(t)
a encodes the transition constraints at time t

given that action a is taken. The sub-formula P
(t)
a is the

precondition of action a at time t. Formula R
(t)
a ensures that

the precondition for action a holds at time t and that the state
of the fluents describing the world between times t and t+1
are consistent according to the particular valuations chosen
for the action propositions af , a¬f , and af◦.

C(t) ≡

∧

a1, a2 ∈ A
a1 6= a2

¬(a(t)
1 ∧ a

(t)
2)

 ∧
∨

a∈A
a(t)

Finally, formula C(t) encodes the constraints that exactly
one action is taken at time t.

Consider any model of formula (3.1). The valuation given
to the propositions of the form af , a¬f , af◦ correspond to
some action model consistent with the agent’s knowledge
about the world contained in ϕ. Likewise, the valuation
given to the fluents at time 0 (f (0) for f ∈ P) corresponds
to some initial state consistent with the agent’s knowledge.
The candidate plan can be extracted from the valuation of
the propositions a(t) for a ∈ A. The candidate plan must
be of the shortest possible length because iterative deepen-
ing is used (assuming the satisfiability solver is sound and
complete).

Example 3.8. Reconsider the domain from example 2.1.
Suppose the agent initially has no knowledge about the ef-
fects of the actions; that is, ϕ(0) ≡ locked. One candidate
plan which achieves the goal from a world in ϕ(0) is to take
the action unlock1 (from some world where unlock¬locked

1
holds). Suppose the agent takes the action and observes that
the door is still locked. The transition belief state becomes
(after learning and filtering) ϕ ≡ locked ∧ (unlocklocked

1 ∨
unlocklocked◦

1). Now, a candidate plan is to take the ac-
tion unlock2 (from some world where unlock¬locked

2 holds).
Suppose after taking the action, the agent observes that the
door is unlocked. Then the new transition belief state be-
comes ϕ ≡ ¬locked ∧ (unlocklocked

1 ∨ unlocklocked◦
1) ∧

unlock¬locked
2 and the goal is achieved. Not only was the

goal achieved, but the agent now knows that key 2 unlocks
the door, while key 1 does not.

4 Correctness and Complexity of Planning
Algorithm

4.1 Actions with Known Preconditions
It is not difficult to show that the agent must gain new knowl-
edge after executing each candidate plan. Once the agent has
obtained full knowledge, the problem becomes equivalent to
a classical planning problem. As a result, we can give the
following theorem, which shows the correctness of the algo-
rithm:

Theorem 4.1. The Interleaved Planning and Execution al-
gorithm achieves the goal in a finite number of steps if the
domain meets Conditions 3.1 and 3.5.

Proof. See Appendix A.1.

More interestingly, given a specific observation model,
we can also give an upper bound on the number of actions re-
quired by the interleaved Planning and Execution algorithm
to achieve the goal (it does not seem possible to give a useful
bound without a specific observation model or some other
additional assumptions). In the observation model, we as-
sume that every fluent in P is observed once every at most k
steps. Note that under this observation model, the transition
belief formula maintained by the algorithm stays indefinitely
compact.

For each state s ∈ S, let d(s), the distance of s, be the
length of the shortest plan that achieves the goal from s
(assuming full knowledge). For each action a ∈ A, let
eff(a) represent the set of fluents that are affected by ac-
tion a. Let pre(a) represent the set of fluents appearing
in the precondition of a. Finally, for each action a, let
v(a) =

∑
a′∈A |pre(a) ∩ eff(a′)|. The following theorem

states the bound:

Theorem 4.2. Suppose every fluent is observed once every
at most k steps and the domain meets Condition 3.1.
Then the Interleaved Planning and Execution algorithm
achieves the goal after executing at most O(r|A|2m3q +
max(r, 2k)|P|(3|A|)k) actions, where r = maxs∈S d(s),
m = maxa∈A |pre(a)|, and q = maxa∈A v(a).

Proof. See Appendix A.2.

The idea behind the proof is to show that a certain amount
of knowledge must be gained whenever a plan executes suc-
cessfully (does not end in an action failure). Likewise, one
can show that actions can fail only a finite number of times,
so there must be a bound on the number of plans that end in
action failures. Together, these two bounds combine to give
the above bound.

4.2 Actions with Unknown Preconditions
Unfortunately, there are no efficient algorithms yet that
maintain a transition belief formula efficiently and indefi-
nitely compactly in the case that preconditions are unknown
and must be learned. Nevertheless, the other portions of the
Interleaved Planning and Execution algorithm (i.e., those
portions unrelated to the SLAF operation) can be general-
ized easily to the case where action preconditions are un-
known. If we call this the ”generalized Planning and Ex-
ploring algorithm,” we can give a similar bound to the one
above:

Theorem 4.3. Suppose every fluent is observed once every
at most k steps and the domain meets Condition 3.1. The
generalized Interleaved Planning and Execution algorithm
achieves the goal after executing at most O(r|A|4m3q +
max(r, 2k)|P|(5|A|)k) actions, where r = maxs∈S d(s),
m = maxa∈A |pre(a)|, and q = maxa∈A v(a).

5 Experimental Results
The algorithm was tested on a virtual-world domain from
(Hlubocky & Amir 2004). The test domain consists of a
small house containing four rooms and five different objects.
The agent’s goal is to exit the house, but it is initially given
no knowledge about the state of the world or the effects of
the actions the agent can take. The world is partially ob-
servable so that the agent can only observe those features of
the domain that are local to the room that the agent is cur-
rently in. The exit to the house is locked, and the agent does
not know initially which object unlocks the exit, nor does it
know how the objects are distributed throughout the house.
Likewise, the agent does not know initially how the rooms
are connected or what happens when the agent interacts with
an object. Ultimately, the agent must learn which object un-
locks the exit by trying to unlock the exit using each object
in turn.

Figure 5.1 shows the average number of actions taken and
total solution time for solving a sequence of 15 randomly
generated problems in this domain. (The numbers were ob-
tained by averaging over 16 such randomly generated se-
quences.) After solving each problem, the agent retains the
knowledge about action effects it learned for use in solving
the subsequent problems (however, at the start of every prob-
lem, the agent knows nothing about the state of the world).
Thus, it is expected that the agent’s performance will im-
prove as it learns more domain knowledge by solving more
problems. As the results indicate, in solving the initial prob-
lems, the agent performs a relatively large number of ac-
tions, because it has so little prior knowledge about the ac-

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trial

Actions

Time (s)

Figure 5.1: Number of actions and time that are required to
achieve the goal as the algorithm solves more problems in
the test domain.

tions’ effects. In these early stages, the agent performs ex-
ploration, because for actions that have never been executed
before, the agent “hypothesizes” that these actions will help
it achieve the goal. As more problems are solved the agent
acquires enough domain knowledge that it can solve the re-
maining problems more quickly.

The algorithm was implemented with relatively unopti-
mized LISP code and uses zChaff (Zhang et al. 2001) as an
external SAT solver. It is suspected that the algorithm will
perform significantly better if written in optimized C, since
a great deal of time is spent by the slower LISP code in con-
structing and manipulating propositional logic formulas.

6 Related Work
Recent approaches to decision making under partial observ-
ability include conformant and contingent planning (Hoff-
mann & Brafman 2005; Bertoli et al. 2001). In gen-
eral, such approaches do not address the problem of ac-
quiring domain knowledge and reasoning with partial do-
main knowledge. Other approaches to acquiring planning
domain knowledge include (Gil 1994), CaMeL (Ilghami et
al. 2002), and (McCluskey, Richardson, & Simpson 2002).
(Pasula, Zettlemoyer, & Kaelbling 2004) give an algorithm
for learning probabilistic relational planning rules. All of
these approaches are for fully observable domains. Other
approaches for acquiring domain knowledge in the case of
partial observability include (Yang, Wu, & Jiang 2005) and
(Chang & Amir 2005), but such approaches treat the prob-
lem as a supervised learning problem, where it is assumed
that the algorithm has access to plan traces produced by an
expert agent.

A number of other approaches to the problem of inte-
grated planning and learning of domain knowledge have
been proposed. OBSERVER (Wang 1994) is a system that
incrementally learns planning operators by first observing
expert agents performing tasks in the domain, and then at-
tempting to form plans of its own from its learned knowl-
edge. OBSERVER differs in that it assumes access to
some plan traces produced by an expert. Additionally, OB-
SERVER does not address the problem of partial observabil-

ity, unlike our work. Finally, the agent’s belief is not tracked
exactly; instead, only a hypothesis about the domain opera-
tors is kept. Thus, for example, the agent cannot tell when it
has learned the action model exactly, for example.

LOPE (Garcia-Martinez & Borrajo 2000) is a fully au-
tonomous system that integrates learning, planning, and ex-
ecution. LOPE, unlike our work, maps world states to ob-
servations perceived by the agent and deals with these ob-
servations only. That is, the “states” dealt with by LOPE
are the inputs to the sensory system of the agent. Because
only sensory information is considered, partial observabil-
ity is dealt with implicitly, rather than explicitly. Unlike our
system, the learning and planning algorithms are stochastic
in nature, and resemble reinforcement learning in some re-
spects.

Min-Max Learning Real-Time A* Search (Min-Max
LRTA*) (Koenig 2001) is another algorithm that integrates
learning, planning, and execution. However, LRTA* does
not learn action models but rather learns estimates for dis-
tances from states to goals. Additionally, Min-Max LRTA*
requires storage of heuristic information on a per-state ba-
sis, which may be infeasible for large domains with many
states. Finally, performance bounds for LRTA* are speci-
fied over the number of states, rather than features, of the
domains, and depend on the quality of the initial heuristic
estimates provided to the algorithm.

There are numerous approaches that deal with Partially
Observable Markov Decision Processes (POMDP) includ-
ing (Jaakkola, Singh, & Jordan 1995), (Kearns, Mansour, &
Ng 1999), and (Even-Dar, Kakade, & Mansour 2005). Cur-
rent approaches are only practical for domains with small
horizon times. Likewise, POMDPs solvers do not learn the
action model of the domain, but rather directly generate a
policy for maximizing utility. In planning domains, the goal
may differ drastically for two problems from the same do-
main. Thus, it is not clear how to use a POMDP policy gen-
erated for achieving one goal to achieve a different goal in
the same domain. Finally, it is not clear how to assign re-
wards for many planning domains in order to represent them
as POMDPs.

7 Conclusion
We have presented a new algorithm for decision making in
the presence of both partial observability and incomplete do-
main knowledge. Our algorithm interleaves planning and
execution in order to achieve the goal in such domains. We
analyzed the algorithm showing correctness and a bound on
the number of actions the algorithm outputs. We have also
given empirical results for our algorithm. Additionally, we
have discussed the assumptions and limitations of our ap-
proach.

Future work will include relaxing the assumptions we
make as well as extending the capabilities of the algorithm.
We hope to extend these results to higher level control tasks
involving some degree of stochasticity. Our larger goal is
to use the present algorithm to create intelligent agents for
real-world domains that involve partial observability and in-
complete domain knowledge. Such domains include au-

tonomous World-Wide Web agents and agents acting in rich
virtual worlds.

Acknowledgements This research was supported by the
Defense Advanced Research Projects Agency (DARPA)
grant HR0011-05-1-0040. The first author is supported by
an Illinois Distinguished Graduate Fellowship provided by
the University of Illinois at Urbana-Champaign.

A Appendix
A.1 Proof of Theorem 4.1
Proof. Let m(ϕ) represent the number of worlds in ϕ. It is
easy to show that for any sequence of deterministic actions
and observations 〈ai, oi〉1≤i≤n:

1. m(SLAF [〈ai, oi〉1≤i≤n](ϕ)) ≤ m(ϕ) for any sequence
of deterministic actions ai and observations oi

2. If σ ⊆ ϕ and σ′ = SLAF [〈ai, oi〉1≤i≤n](σ) and ϕ′ =
SLAF [〈ai, oi〉1≤i≤n](ϕ), then σ′ ⊆ ϕ′

3. SLAF [〈ai, oi〉1≤i≤n](ϕ) ⊆ SLAF [〈ai〉1≤i≤n](ϕ).

Proceed by induction on m(ϕ).
Basis step: m(ϕ) = 1. Then the problem becomes equiv-

alent to planning without uncertainty. If the problem is solv-
able, a solution will be found in step 1.

Inductive step: m(ϕ) > 1. By the assumption that the
domain is strongly connected, some plan that achieves the
goal for some world in ϕ will be found in step 1.

Suppose that executing the plan fails to achieve the goal
and returns to step 1 after actions a1, . . . , an are executed
and observations o1, . . . , on are received.

Let ϕ(i) be the belief state of the algorithm after execut-
ing actions a1, . . . , ai. We claim m(ϕ(n)) < m(ϕ). Sup-
pose for contradiction m(ϕ(n)) = m(ϕ) (because we as-
sume all actions are deterministic, it cannot be the case that
m(ϕ(n)) > m(ϕ)). We have ϕ(n) ⊆ SLAF [a1, . . . , an](ϕ)
and thus ϕ(n) = SLAF [a1, . . . , an](ϕ).

Now consider the case that the plan aborted because the
last action failed (on |= ¬OK). But the plan found in step
1 guarantees that SLAF [a1, . . . , an−1](ϕ) contains some
world where the precondition of an is satisfied. But ϕ(n)

was filtered on the action failure, contradiction.
Now consider the case that the plan executed successfully,

but failed to achieve the goal (on 6|= G). But again, the
plan found in step 1 guarantees that SLAF [a1, . . . , an](ϕ)
contains some world that satisfies G. But ϕ(n) was filtered
on on, so no world in ϕ(n) satisfies G. Contradiction.

By the semantics of SLAF, the actual world is in ϕ(n). By
the assumption that the domain is strongly connected, there
exist a sequence of actions that achieve the goal from ϕ(n).
Therefore, by the induction hypothesis, the claim holds for
the new belief state ϕ(n).

A.2 Proof of Theorem 4.2
Proof. Consider the total number of actions required to
achieve the goal. We will separately bound the number of
these actions contributed by “successful” plans (plans which

did not end in an action failure) and the number of these
actions contributed by “failed” plans (plans that ended in a
failure).

Let L =
⋃

f∈P
⋃

a∈A{af , a¬f , af◦, f} denote the vocab-
ulary of SLAF formulas we are dealing with. A model of a
SLAF formula ϕ is a truth assignment t : L → {0, 1} that
satisfies the formula. Let models(ϕ) denote the set of all
models of ϕ. Let m(ϕ) = |models(ϕ)| denote the number
of models of ϕ.

Lemma A.1. If actions always succeed, then the algorithm
requires O(max(r, 2k)(3|A|)k) steps to achieve the goal.

Proof. In the case that actions always succeed, it can be
shown that the transition belief formula ϕ can always be
maintained in fluent-factored form (see (Amir 2005)). Sup-
pose ϕ is fluent-factored, so ϕ =

∧
f∈P ϕf . Let Lf =⋃

a∈A{af , a¬f , af◦, f} denote the restricted vocabulary of
ϕf . Let mf (ϕf) = |{t|Lf

: t ∈ models(ϕf)}| denote the
number of unique models of ϕf after restriction to Lf .

It is easy to see that m(ϕ) =
∏

f∈P mf (ϕf).
Let 〈ai, oi〉1≤i≤N represent the sequence of actions and

observations taken by the algorithm before the goal is
achieved. Let ϕ(0) represent the initial belief. Let ϕ(i) =
SLAF [〈aj , oj〉1≤j≤i](ϕ(0)) denote the ith belief after exe-
cuting the first i actions and receiving the first i observations.

Consider the first plan executed by the algorithm after the
first k steps. Let ϕ(a) represent the belief before execution
of the plan, and let ϕ(b) represent the belief after execution
of the plan (so we have k < a < b).

Note that mf (ϕ(b)
f) ≤ mf (ϕ(a)

f) for all f ∈ P , (see proof
of Theorem 4.1; note that we assume actions are determinis-
tic). We also have m(ϕ(b)) < m(ϕ(a)) as argued in the same
proof. Because m(ϕ) =

∏
f∈P mf (ϕf), we must have for

some f , mf (ϕ(b)
f) < mf (ϕ(a)

f).
Let x represent the last point less than or equal to a

at which f was observed. Let y represent the first point
greater than or equal to b at which f was observed. Be-
cause mf (ϕ(a)

f) ≤ mf (ϕ(x)
f) and mf (ϕ(b)

f) ≤ mf (ϕ(y)
f),

we have mf (ϕ(y)
f) < mf (ϕ(x)

f). Since f was observed

at both x and y, it follows that ϕ
(a)
f ≡ f (a) ∧ A

(a)
f and

ϕ
(b)
f ≡ f (b) ∧ A

(b)
f , where f (i) denotes the literal observed

for f at step i. Since the Af portion of each fluent-factored
formula grows monotonically as filtering proceeds, A

(a)
f

must contain a subset of the clauses in A
(b)
f , and all clauses

in these formulas contain action propositions only (i.e., they
contain no fluents from P). Therefore, it follows that A

(b)
f

must contain at least one new clause.
Therefore, we see that after execution of the plan, at

least one new clause must have been learned. After an
additional 2k actions are executed, this argument can be
repeated for subsequent plans. Note that there are fewer
than |P|(3|A|)k possible clauses containing only action
propositions (e.g., af , a¬f , af◦) that can appear in the be-
lief formula. Additionally, each plan is of length at most

r. Together, these facts imply that the number of ac-
tions that can occur before the goal is achieved is at most
O(max(r, 2k)|P|(3|A|)k).

Lemma A.2. Each action can fail at most 2m3q times.

Proof. Let Oa =
⋃

a′∈A (eff(a′) ∩ pre(a)). Let La =
pre(a) ∪ (

⋃
f∈Oa

{af , a¬f , af◦}).
Let ∼ denote the relation that two models are equal when

restricted to La. That is, if x, y ∈ models(ϕ), then x ∼
y iff x|La = y|La . The relation ∼ induces a partition of
the models of ϕ into equivalence classes models(ϕ)/ ∼.
Let ma(ϕ) = |models(ϕ)/ ∼ | denote the number of such
equivalence classes.

Now, we claim ma(SLAF [〈ai, oi〉i](ϕ)) ≤ ma(ϕ) for
any sequence of deterministic actions and observations
〈ai, oi〉i. It suffices to show that all models in each equiv-
alence class are mapped to the same equivalence class after
filtering. Clearly this is the case when filtering on an obser-
vation. Likewise, this is the case when we filter on an action,
by the way in which La was constructed.

Furthermore, every time action a fails, ma(ϕ) is de-
creased by at least 1. This is because in at least one of
the equivalence classes, the fluents appearing in the pre-
condition must not agree with the precondition. However,
1 ≤ ma(ϕ) ≤ 2m3q, and thus the claim follows.

Finally, we can show that the bound holds. Consider
〈ai, oi〉1≤i≤N , the sequence of actions taken and observa-
tions received by the algorithm. Now consider the same se-
quence with all steps where actions failed removed. This
sequence still achieves the goal; therefore, by the argument
presented in claim 1, the number of actions from success-
ful plans (plans that did not end in an action failure) in this
sequence is bounded by O(max(r, 2k)|P|(3|A|)k). Like-
wise, by claim 2, the number of actions from failed plans in
this sequence is bounded by O(r|A|2m3q). Thus the claim
holds.

References
Amir, E. 2005. Learning partially observable determinis-
tic action models. In Proc. Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI ’05). Morgan
Kaufmann.
Bertoli, P., and Pistore, M. 2004. Planning with ex-
tended goals and partial observability. In Proceedings of
the 14th Int’l Conf. on Automated Planning and Schedul-
ing (ICAPS’04).
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001.
Planning in nondeterministic domains under partial observ-
ability via symbolic model checking. In Proc. Seventeenth
International Joint Conference on Artificial Intelligence
(IJCAI ’01), 473–478. Morgan Kaufmann.
Chang, A., and Amir, E. 2005. Learning partially ob-
servable deterministic action models (ii). Technical Report
UIUCDCS-R-2005-2661, University of Illinois Urbana-
Champaign, Department of Computer Science, UIUC, Ur-
bana, IL, USA.

Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2005. Rein-
forcement learning in POMDPs. In Proc. Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI
’05), 660–665. AAAI Press.
Garcia-Martinez, R., and Borrajo, D. 2000. An integrated
approach of learning, planning, and execution. J. Intell.
Robotics Syst. 29(1):47–78.
Ghallab, M.; Hertzberg, J.; and Traverso, P., eds. 2002.
Proceedings of the Sixth International Conference on Ar-
tificial Intelligence Planning Systems, April 23-27, 2002,
Toulouse, France. AAAI.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. In Proceedings
of the 11th International Conference on Machine Learning
(ICML-94), 10–13.
Hlubocky, B., and Amir, E. 2004. Knowledge-gathering
agents in adventure games. In AAAI-04 Workshop on Chal-
lenges in Game AI. AAAI Press.
Hoffmann, J., and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Biundo, S.; Myers, K.; and Rajan, K., eds., Proceedings of
the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05). to appear.
Ilghami, O.; Nau, D. S.; Muñoz-Avila, H.; and Aha, D. W.
2002. Camel: Learning method preconditions for htn plan-
ning. In Ghallab et al. (2002), 131–142.
Jaakkola, T.; Singh, S. P.; and Jordan, M. I. 1995. Re-
inforcement learning algorithm for partially observable
Markov decision problems. In Tesauro, G.; Touretzky,
D.; and Leen, T., eds., Advances in Neural Information
Processing Systems, volume 7, 345–352. The MIT Press.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. Artificial Intelligence 101:99–134.
Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of the Tenth European Conference on
Artificial Intelligence (ECAI’92), 359–363.
Kautz, H. A., and Selman, B. 1999. Unifying sat-based
and graph-based planning. In Dean, T., ed., IJCAI, 318–
325. Morgan Kaufmann.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 1999. Approxi-
mate planning in large pomdps via reusable trajectories. In
Solla, S. A.; Leen, T. K.; and Müller, K.-R., eds., NIPS,
1001–1007. The MIT Press.
Kearns, M.; Mansour, Y.; and Ng, A. Y. 2000. Approxi-
mate planning in large POMDPs via reusable trajectories.
In Proceedings of the 12th Conference on Neural Infor-
mation Processing Systems (NIPS’99), 1001–1007. MIT
Press.
Koenig, S. 2001. Minimax real-time heuristic search. Artif.
Intell. 129(1-2):165–197.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An interactive method for inducing operator descrip-
tions. In Ghallab et al. (2002), 121–130.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P.
2004. Learning probabilistic relational planning rules. In

Proceedings of the 14th Int’l Conf. on Automated Planning
and Scheduling (ICAPS’04). AAAI Press.
Wang, X. 1994. Learning planning operators by observa-
tion and practice. In Artificial Intelligence Planning Sys-
tems, 335–340.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning planning
operators by observation and practice. In Proc. National
Conference on Artificial Intelligence (AAAI ’05).
Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Ma-
lik, S. 2001. Efficient conflict driven learning in boolean
satisfiability solver. In ICCAD, 279–285.

