
Stochastic Filtering in a Probabilistic Action Model

Hannaneh Hajishirzi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801. USA
{hajishir, eyal}uiuc.edu

Abstract
Stochastic filtering is the problem of estimating the state of
a dynamic system after time passes and given partial obser-
vations. It is fundamental to automatic tracking, planning,
and control of real-world stochastic systems such as robots,
programs, and autonomous agents. This paper presents a
novel sampling-based filtering algorithm. Its expected er-
ror is smaller than sequential Monte Carlo sampling tech-
niques given a fixed number of samples, as we prove and
show empirically. It does so by sampling deterministic ac-
tion sequences, and exact filtering of those sequences. These
results are promising for applications in stochastic planning,
natural language processing, and robot control.

1 Introduction
Controlling a complex system involves executing actions
and estimating the system’s state (filtering) given past ac-
tions and partial observations. Filtering determines a poste-
rior distribution over the system’s state at the current time
step, and permits effective control, diagnosis, and evalua-
tion of achievements. Such estimation is necessary when
the system’s exact initial state or the effects of its actions are
uncertain (e.g., there may be some noise in the system or its
actions may fail).

Unfortunately, exact filtering (e.g., (Kjaerulff 1992; Bac-
chus, Halpern, & Levesque 1999)) is not tractable for long
sequence of actions in complex systems. This is because
domain features become correlated after some steps, even
if the domain has much conditional-independence structure
(Dean & Kanazawa 1988). Sequential Monte Carlo methods
(Doucet, de Freitas, & Gordon 2001) are popular sampling
methods that try to circumvent this problem. Unfortunately,
while efficient, they require many samples to yield low error
in high-dimensional domains (frequently, exponential num-
ber in this dimensionality).

In this paper we present a novel sampling algorithm for
filtering that takes fewer samples and yields better accuracy
than sequential Monte Carlo (SMC) methods. The key to
our algorithm’s success is an underlying deterministic struc-
ture for the transition system, and efficient subroutines for
logical regression (e.g., (Reiter 2001)) and logical filtering
(Amir & Russell 2003) .

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We represent actions’ effects as multinomial distributions
over a set of possible deterministic effects (every transition
model can be represented this way). This is modeled con-
veniently in a propositional version of probabilistic situa-
tion calculus (Reiter 2001), extended with a graphical model
prior (Pearl 1988) (Section 2).

Our method (Section 3) samples sequences of determin-
istic actions (called logical particles) that are possible exe-
cutions of the given probabilistic action sequence. Then, it
applies logical regression to the query, and finds a formula
that represents all possible initial states given this sample se-
quence. Finally, we compute the posterior probability as the
weighted sum of the probabilities of these formulae. As a
special case, our algorithm is exact when actions are deter-
ministic, still allowing a probabilistic graphical model prior.

This algorithm achieves superior precision with fewer
samples than SMC sampling techniques (Doucet, de Freitas,
& Gordon 2001). The intuition behind this improvement is
that each logical particle corresponds to exponentially many
state sequences (particles) generated by earlier techniques.

The algorithm is efficient computationally when logi-
cal regression of the deterministic effects is efficient (thus,
whenever the representation of those deterministic effects is
compact). We prove the claims formally (Section 3.3) and
verify them empirically by several experiments (Section 4).

Our representation for a dynamic probabilistic model dif-
fers from the more commonly used Dynamic Bayesian Net-
works (DBNs) (e.g., (Murphy 2002)). DBNs represent
stochastic processes in a compact way using a Bayes Net
(BN) for time 0 and a graphical representation of a transi-
tion distribution between times t and t + 1. Their structure
emphasizes conditional independence among random vari-
ables. In contrast, our model applies a different structure,
namely, a representation for the transition model as a dis-
tribution over deterministic actions. Both frameworks are
universal and can represent each other, but they are more
compact and natural in different scenarios.

Algorithms for exact filtering in discrete probabilistic do-
mains trade efficiency of computation for precision. The
main disadvantage of these algorithms is that they are not
tractable for large domains. Exact algorithms introduced
for DBNs and HMMs (e.g., (Kjaerulff 1992; Murphy 2002;
Rabiner 1989)) are mostly suitable for their given probabilis-
tic structure. (Bacchus, Halpern, & Levesque 1999) presents

an exact algorithm to answer a query given a sequence of ac-
tions in a dynamic probabilistic model in situation calculus.
They assign probability to each world state individually (ex-
ponentially many in the number of variables). Instead, our
algorithm approximates the posterior distribution, and uses
a graphical model to represent the prior distribution.

Approximate filtering algorithms are common in the liter-
ature, and we recount some of those not already mentioned.
Variational methods (Jordan et al. 1999) are in a range of
deterministic approximation schemes and are based on an-
alytical approximations to the posterior distribution; They
make some assumptions about the posterior distribution, for
example by assuming that it factorizes in a particular way.
Therefore, They can never generate exact results. However,
our algorithm does not make such assumptions and can gen-
erate the exact result with infinite number of samples. (Ma-
teus et al. 2001) introduces a probabilistic situation calculus
logical language to model stochastic dynamic systems. The
assumption of knowing the exact initial state a priori is the
key difference from the problem we are addressing here.

Probabilistic planning in partially observable domains
uses stochastic filtering as a subroutine. Exact algorithms
for probabilistic planning (e.g., (Majercik & Littman 1998))
do not scale to large domains. (Ng & Jordan 2000) approxi-
mates the optimal policy in POMDPs by using the underly-
ing deterministic structure of the problem. They achieve this
goal by sampling a look-ahead tree of deterministic execu-
tions of actions and sampling an initial state. In contrast, our
algorithm generates deterministic sequences without sam-
pling the initial state. (Bryce, Kambhampati, & Smith 2006)
uses SMC to generate paths from the initial belief state to the
goal with no observations. Using our action sampling algo-
rithm results in a path which is closer to the optimal solution
while it considers the effect of the observations.

2 Probabilistic Action Models
In this paper we address the problem of estimating the state
of an agent given a sequence of probabilistic actions and
observations in a probabilistic action model. We assume a
prior distribution over the initial world states. Also, actions
have probabilistic effects that are represented with a prob-
ability distribution over possible deterministic executions.
The formal representation of a probabilistic action model is
given as follows:

Definition 2.1 A probabilistic action model is a tuple
〈X ,S, P 0,A, DA, T , P 〉.
• X is a finite set of state variables.
• S is the set of world states s = 〈x1 . . . x|X |〉, where each

xi is a truth assignment to state variable Xi ∈ X , for
every 1 ≤ i ≤ |X |.

• P 0 is a prior probability distribution over the world states
at time 0.

• A, DA are finite sets of probabilistic and deterministic
action names, respectively.

• T : S×DA → S is a transition function for deterministic
actions.

• P : DA×A×S → [0, 1] is a transition distribution over
possible deterministic executions, da, of probabilistic ac-

tion, a, in a given world state, s, denoted by P (da|a, s).
Executing probabilistic action a has several deterministic
outcomes; Each outcome is represented with a deterministic
action. We specify P (da|a, s) using logical cases ψ1 . . . ψk

(mutually disjoint) for action a. When some state s satisfies
ψi (i ≤ k) then P (da|a, s) = Pi(da), where Pi is a proba-
bility distribution over different deterministic executions of
action a corresponding to the logical case ψi.

Example 2.2 (safe) Figure 1 presents a probabilistic action
model for a domain in which an agent attempts to open a
safe by trying several combinations.

Action: (try-com1)
• (try-com1-succ): 0.8

Pre: safe-open∨com1
Eff: safe-open

• (try-com1-fail): 0.2
Pre: safe-open∨com1
Eff: ¬safe-open

Figure 1: left: BN representation for the prior distribution
over states for the safe example. Com1 = true means that
combination 1 is a right one. right: Description of action
(try-com1) for the logical case ψ1 = true. The agent suc-
ceeds in opening the safe with probability 0.8 after executing
(try-com1).

Figure 1, left presents the prior distribution P 0 over vari-
ables in the safe example with a Bayes net (BN). 1 We fo-
cus our presentation on probabilistic systems whose random
variables are Boolean because they simplify our develop-
ment. The representation can be generalized for discrete
variables by encoding those variables in Boolean variables.
We use the standard notation that Capital letters indicate
variables and the corresponding script letters indicate par-
ticular values of those variables.

Figure 1, right shows the probabilistic action (try-com1)
and its possible outcomes as deterministic actions (try-
com1-succ) and (try-com1-fail). Each deterministic action
is described with a set of preconditions and effects. The pre-
conditions and effects are represented with logical formulae
over state variables. Executing an action only changes val-
ues of variables included in that action’s effect (a.k.a. the
Frame Assumption (McCarthy & Hayes 1969)). For in-
stance, after executing action (try-com1-succe)” values of
variables ”Com1”, ”Com2”, and ”Com3” do not change.

In partially observable domains, we update our knowl-
edge as a result of executing an action and collecting obser-
vations in the resulting state. In a probabilistic action model,
transition distribution P represents a distribution over pos-
sible outcomes of a probabilistic action. We do not intro-
duce observations in the transition system. The observa-

1A Bayes net (Pearl 1988) is a directed acyclic graph whose
nodes represent variables and arcs represent causal or probabilis-
tic dependencies between variables. It encodes a joint probability
distribution over world states using the conditional independence
relationships.

a1

da1
1

da2
1

da
3
1

da1
2

da2
2

da
3
2

da1
3

da2
3

da
3
3

o
0

o
2

o
3

o
1

a3a2

Figure 2: Sampling the logical particle 〈da1
2, da2

2, da3
2〉

given probabilistic sequence 〈a1, a2, a3〉. Each de-
terministic action dat is sampled from distribution
P (dat|at, da1:t−1, o0:t−1).

tions are given asynchronously in time without prediction
of what we will observe (thus, this is different from HMMs
(Rabiner 1989), where a sensor model is given). Each ob-
servation ot is represented with a logical formula over state
variables (e.g., ”safe-open∧com1” shows an observation re-
ceived at time t). When ot is observed at time t, the logical
formula ot is true about the state of the world at time t. Note
that throughout the paper superscripts for variables represent
time.

3 Sampling Action Sequences
In this section we present our sampling algorithm for an-
swering a query at time T in a probabilistic action model.
The algorithm approximates the posterior probability of the
query by sampling possible deterministic executions of the
model. Then, it continues in a way that resembles the ex-
act marginalization over those deterministic executions. The
following equation shows the exact computation for the pos-
terior probability of query ϕT given probabilistic action se-
quence a1:T and observations o0:T as P (ϕT |a1:T , o0:T).

P (ϕT |a1:T , o0:T) = (1)∑

i

P (ϕT |−−→DAi, o
0:T)P (

−−→
DAi|a1:T , o0:T−1)

where,
−−→
DAi is one possible execution of the probabilistic

sequence a1:T , and does not depend on oT .
The main (and first) step of our approximate algorithm

is generating N samples (called logical particles) from all
the possible executions of the given probabilistic sequence.
The algorithm (described in Section 3.2 and illustrated in
Figure 2) generates logical particle

−−→
DAi given the sequence

of probabilistic actions a1:T and observations o0:T−1 from
the probability distribution P (

−−→
DAi|a1:T , o0:T−1). The algo-

rithm builds the logical particle incrementally by sampling
each deterministic action in the sequence given the current
probabilistic action, the previous deterministic actions in the
sequence, and observations.

The next step of the algorithm computes the probability
of query ϕT given the logical particle

−−→
DAi and observations

o0:T as P (ϕT |−−→DAi, o
0:T)(described in Section 3.1).

Observation

Query

Regress

Regress

Regress Regress

o1

φ0
φ2

Ob0

da2

o2

da1

time 0 1 2

Figure 3: Regressing query formula ϕ2 and observa-
tions o0:2 to the initial time step given the logical particle
〈da1, da2〉 (generated samples). ϕ0 = Regress(ϕ2, da1:2)
and Ob0 = Regress(o0:2, da1:2).

Finally, the algorithm uses generated samples instead of
the enumeration of

−−→
DAi in Equation (1), and computes

the approximation for the posterior probability of query ϕT

given the probabilistic sequence a1:T and observations o0:T

as P̃N (ϕT |a1:T , o0:T) by using the Monte Carlo Integration
(Doucet, de Freitas, & Gordon 2001):

P̃N (ϕT |a1:T , o0:T) =
1
N

∑

i

P (ϕT |−−→DAi, o
0:T) (2)

Details of each step of our Sample aCtion Approximate In-
ference Algorithm (SCAI, Figure 4) are explained next. We
present the step of computing P (ϕT |−−→DAi, o

0:T) first be-
cause it is used as a subroutine in the sampling step.

3.1 Computing P (ϕt|−−→DA, o0:t)
In this section we present Procedure LP-Posterior (Figure 4)
that computes the probability of the query P (ϕt|−−→DA, o0:t)
given the logical particle

−−→
DA and observations o0:t. Its first

step applies a logical regression subroutine (detailed below
and illustrated in Figure 3) to the query, and as output returns
a logical formula at time 0. The algorithm also regresses the
observations, and also returns a logical formula at time 0.
This can be done since the actions are deterministic. The
algorithm’s second step computes the prior probability of
the regression of the query conditioned on the observations
regressed by the logical particle; Recall that logical particle
is a sampled sequence of deterministic actions.

Regressing a Formula Procedure Regress takes proposi-
tional formula ϕt and logical particle

−−→
DA, and returns as

output another propositional formula ϕ0. ϕ0 represents the
set of possible initial states, given that the final state satisfies
ϕt, and the logical particle

−−→
DA occurs. Thus, every state

that satisfies ϕ0 leads to a state satisfying ϕt after
−−→
DA oc-

curs. Regression of each observation ot is defined similar to
regression of formula ϕt since observations are also repre-
sented with logical formulae.

For deterministic action dat and propositional formula ϕt,
the regression of ϕt through dat is a propositional formula

PROCEDURE SCAI(ϕT , a1:T , o0:T)
Input: Probabilistic sequence a1:T , Observations o0:T ,
and Query ϕT

Output: P (ϕT |a1:T , o0:T)
1. Det = {−−→DA1, . . . ,

−−→
DAN} ←

Sample-Actions(a1:T , o0:T−1)
2. for each

−−→
DAi ∈ Det, LP-Posterior(ϕT ,

−−→
DAi, o

0:T)
3. Return P (ϕT |a1:T , o0:T) from Equation (6).

PROCEDURE Sample-Actions(a1:T , o0:T−1)
Input: Probabilistic sequence a1:T , and Observations
o0:T−1

Output: N logical particles
−−→
DA1:N

1. for time t = 1 : T
(a) for all ψi,at , LP-Posterior(ψt

i,a, da1:t, o0:t−1)
(b) Compute P (dat|at, da1:t−1, o0:t−1) using

Equation (5).
(c) for i = 1 to N

i. dat
i ← a sample from P (dat

i|at, da1:t−1, o0:t−1)
2. return

−−→
DA1:N ← 〈da1 . . . daT 〉1:N

PROCEDURE LP-Posterior(ϕt,
−−→
DA, o0:t)

Input: Logical particle
−−→
DA, and Observations o0:t

Output: P (ϕt|−−→DA, o0:t)
1. ϕ0 = Regress(ϕt,

−−→
DA)

2. Ob0 = Regress(o0:t,
−−→
DA)

3. Compute LP-Prior(ϕ0|Ob0).
return P (ϕt|−−→DA, o0:t) as in Lemma 3.1.

PROCEDURE LP-Prior(ϕ0, P 0)
Input: Formula ϕ0, Graphical model prior P 0

Output: P (ϕ0)
1.

∧
i Ci ← ConvertToCNF(ϕ0)

2. Define indicator functions as Equation (3)
3. return P (ϕ0) ← Formula (4)

Figure 4: SCAI: Sample aCtion Approximate Inference al-
gorithm for computing P (ϕt|a1:t, o0:t). Boldface font is
used to denote subroutines.

ϕt−1 such that state st−1 satisfies ϕt−1 iff the result of tran-
sition function T (st−1, dat) satisfies ϕt. Computing the re-
gression of ϕt through logical particle

−−→
DA is done recur-

sively:

Regress(ϕt, 〈da1, ..., dat〉) =
Regress(Regress(ϕt, dat), 〈da1, ..., dat−1〉).

Figure 5(a) shows regressing query ϕ2 =safe-open through
logical particle DA = 〈try-com1-succ, try-com2-succ〉.
Similarly, the regression of observations o0:t is defined re-
cursively:

Regress(o0:t, 〈da1, ..., dat〉) = Regress(ot, 〈da1, ..., dat〉)
∧ Regress(o0:t−1, 〈da1, ..., dat−1〉).

Figure 5(a) shows regression of observations o0:2 = 〈null,

try-com1-succ try-com2-succ

safe-open V com2(safe-open V com1)
 V com2

safe-open

safe-open ?

~com2 ~com2

Observation

 ~com2

RegressRegress

Regress Regress

P(φ2|da1, da2, o0:2) = P(safe-open V com1 V com2 | ~com2)(b)

(a)

Figure 5: (a) Regressing query ϕ2 =safe-open and obser-
vations o0:2 = 〈null, null,¬com2〉 through logical particle−−→
DA = 〈try-com1-succ, try-com2-succ〉 to ϕ0 and O0, re-
spectively. (b) Computing P (ϕ2 = safe-open|−−→DA, o0:2) us-
ing Lemma 3.1.

null,¬com2〉 through logical particle
−−→
DA = 〈try-com1-succ,

try-com2-succ〉.
Algorithms for regression with deterministic actions (e.g.,

(Reiter 2001; Shahaf & Amir 2007)) work as follows: They
maintain a logical formula for each variable xt, and update it
every time step, s.t. that formula is true if and only if xt cur-
rently holds. They apply axiomatic descriptions (successor-
state axioms) of the form

xt ⇐⇒ Precondt−1(x, dat)

for any action dat’s effect on any variable x, where
Precondt−1(x, dat) is a propositional formula over vari-
ables at time t − 1. Simple techniques for regressing log-
ical formula ϕt (e.g., (Reiter 2001)) replace every variable
xt in ϕt with Precondt−1(x, dat). In our experiments (Sec-
tion 4) we apply the algorithm of (Shahaf & Amir 2007) that
takes linear time and representation space for t steps of re-
gression.

We now summarize and show how to compute the pos-
terior distribution P (ϕt|−−→DA, o0:t) by applying regression.
The algorithm first computes ϕ0 and Ob0 by regressing the
query ϕt and observations o0:t through the logical particle−−→
DA. It then computes P (ϕt|−−→DA, o0:t) which is equal to
P (ϕ0|Ob0) as shown by the following lemma.
Lemma 3.1 Let ϕt be a query and o0:t be observations. If
ϕ0 = Regress(ϕt,

−−→
DA) and Ob0 = Regress(o0:t,

−−→
DA),

then
P (ϕt|−−→DA, o0:t) = P (ϕ0|Ob0).

PROOF We first use the Bayes rule and compute
P (ϕt|−−→DA, o0:t) as follows:

P (ϕt|−−→DA, o0:t) =
P (ϕt, o0:t|−−→DA)

P (o0:t|−−→DA)
.

We then compute P (ϕt, o0:t|−−→DA) by marginalizing
over all the possible world states in the state space S ,

P (ϕt, o0:t|−−→DA) =
∑

s∈S P (ϕt, o0:t|s,−−→DA)P (s|−−→DA). For
every world state s ∈ S , P (ϕt, o0:t|s,−−→DA) = 1 iff s |=
ϕ0 ∧ Ob0 o.w. it is equal to 0. The reason is that execut-
ing sequence of deterministic actions

−−→
DA in state s results

in state s′ that models ϕt and is consistent with observations
o0:t iff s |= ϕ0 ∧ Ob0. Also, note that probability of s does
not depend on the logical particle

−−→
DA. Hence,

P (ϕt, o0:t|−−→DA) =
∑

s|=ϕ0∧Ob0

P (s) = P (ϕ0, Ob0).

Same computations exist for P (o0:t|−−→DA). Therefore,

P (ϕt, o0:t|−−→DA)

P (o0:t|−−→DA)
=

P (ϕ0, Ob0)
P (Ob0)

= P (ϕ0|Ob0).

Figure 5(b) shows computing P (ϕt|−−→DA, o0:t) using
Lemma 3.1. Next section shows how to compute P (ϕ0|Ob0)
using the prior P 0. Note that ϕ0 and Ob0 are propositional
formulae over state variables at time 0.

Computing Probability of the Initial Formula The gen-
eral method for computing P (ϕ0) is summing over prior
probabilities of all the states that satisfy ϕ0. ϕ0 can be any
formula over state variables at time 0. There are many al-
gorithms that include some heuristics for enumerating the
world states satisfying the formula (e.g., (Bacchus, Dalmao,
& Pitassi 2003)). Here, we describe an algorithm in Proce-
dure LP-Prior (Figure 4) to compute P (ϕ0) given a graph-
ical model prior P 0. The algorithm is efficient if the un-
derlying graph of the Conjunctive Normal Form (CNF) 2

form of ϕ0 has low treewidth (see (Robertson & Seymour ;
Amir 2001)).

This algorithm first converts ϕ0 to CNF, ϕ0 =
∧

i Ci,
where each Ci =

∨
j xj is a clause over the state variables

at time 0 or their negations. Then, it defines an indicator
function, δCi(xCi), over all possible realizations of the vari-
ables xCi in the clause Ci. This way, we skip summing over
probabilities of world states that do not satisfy ϕ0.

δCi(xCi) =
{

1 xCi |= Ci

0 otherwise
(3)

Then, P (ϕ0) in the initial graphical model with potential
functions Φj(xClj) is:

P (ϕ0) ∝
∑

x∈X

∏
xClj

,xCi

Φj(xClj)δ(xCi) (4)

where, Clj is a clique in the graphical model, and the nor-
malization factor is

∑
x∈X

∏
xClj

Φj(xCl). We use the vari-
able elimination algorithm (e.g., (Jordan 2006)) to compute
the marginals in Formula (4) and in the normalization fac-
tor.

2The underlying graph of logical formula ϕ (in CNF) is a graph
G(V, E), where each vertex vi ∈ V corresponds to variable xi,
and each edge e ∈ E between two vertices vi, vj ∈ V indicates
that the corresponding variables xi, xj appear in the same clause
in ϕ.

3.2 Sampling Logical Particles
In this section we describe Procedure Sample-Actions (Fig-
ure 4) that generates N independent and identically dis-
tributed (i.i.d.) random samples (called logical particles)
given a sequence of probabilistic actions and observations.
Each logical particle is a possible execution of the given
probabilistic sequence. The algorithm builds a logical par-
ticle incrementally by sampling each deterministic action in
the sequence given the current probabilistic action, previous
deterministic actions in the logical particle and observations.
The details of the algorithm comes in the following.

The goal of the algorithm is to generate logical particle−−→
DA = 〈da1, . . . , daT 〉 given probabilistic sequence a1:T

and observations o0:T−1. The algorithm generates samples
from distribution P (

−−→
DA|a1:T , o0:T−1) (probability of exe-

cuting
−−→
DA as an outcome of sequence a1:T); Recall that

−−→
DA

does not depend on the observation received at time T (last
observation does not affect executing logical particle

−−→
DA).

P (
−−→
DA|−→A, o0:T−1)

= P (da1|a1, o0)
∏

t

P (dat|at, da1:t−1, o0:t−1)

The above definition for P (
−−→
DA|a1:T , o0:T−1) allows it-

erative sampling of deterministic actions. Thus at each
step t, the algorithm samples a deterministic action as
an execution of the given probabilistic action from distri-
bution P (dat|at, da1:t−1, o0:t−1) which can be evaluated
given prior P 0 and transition distribution P (dat|at, st−1)(=
Pi(dat)for st−1 |= ψt−1

i,at):

P (dat|at, da1:t−1, o0:t−1)

=
∑

st−1

P (dat|at, st−1) · P (st−1|da1:t−1, o0:t−1)

=
∑

i

Pi(dat) · P (ψt−1
i,at |da1:t−1, o0:t−1). (5)

P (dat|at, st−1) is derived directly from the transition
distribution (Section 2). ψt−1

i,at is a logical formula over
variables at time t − 1, so we use Procedure LP-Posterior
(Figure 4) to compute P (ψt−1

i,at |da1:t−1, o0:t−1). We first
regress ψt−1

i,at and o0:t−1 to time 0 with deterministic se-
quence da1:t−1. We then use Procedure LP-Prior (Figure
4), and compute P (ψ0

i,at) given the prior P 0. Therefore,
at each step the algorithm samples N deterministic action
{dat

1, . . . , dat
N} from P (dat|at, da1:t−1, o0:t−1).

Figure 6 shows the process of sampling 〈try-com1-succ,
try-com2-succ〉 given probabilistic sequence 〈try-com1, try-
com2〉. Deterministic action da1 = try-com1-succ is
sampled with probability P (da1|a1, o0) = 0.8, and
da2 = try-com2-succ is sampled with probability
P (da2|a1, da1, o0:1) = 0.8P (safe-open ∨ ¬com1). The
probabilities are computed by applying logical case ψ1 =
true in Equation (5).

As a special case, we assume that transition distribution is
in the form of P (dat|at, st−1) = P (dat|at), i.e. the proba-
bilistic choice of a deterministic action depends only on the

P(da1|a1,o0) P(da2|da1, a2 ,o0:1)

try-com1-succ

try-com1-fail

try-com2-fail

.8 P(safe-open V~com1)

.2 P(safe-open V~com1)

try-com2-succ.8

.2

Figure 6: Sampling the logical particle 〈try-scom1-succ,
try-com2-succ〉 given probabilistic sequence 〈try-com1, try-
com2〉. P (da1 = try-com1-succ|a1, o0) = 0.8 and
P (da2 = try-com2-succ|a2, da1, o0:1) = 0.8P (safe-open ∨
¬com1).

probabilistic action and the current state of the agent. As
a consequence, P (dat|at, da1:t−1, o0:t−1) = P (dat|at). In
this case the algorithm samples each deterministic action dat

independently from distribution P (dat|at) which is evalu-
ated directly from transition distribution. Logical particle−−→
DA = 〈da1, . . . , daT 〉 is an i.i.d. sample from distribution
P (
−−→
DA|a1:T) since P (

−−→
DA|a1:T) =

∏
t P (dat|at).

3.3 Correctness, Accuracy and Complexity
Correctness The following theorem shows that output of
our sampling algorithm, P̃N (ϕT |a1:T , o0:T) converges to
the exact posterior distribution P (ϕT |a1:T , o0:T).

Theorem 3.2 Let ϕT be the query, a1:T be the given proba-
bilistic sequence,

−−→
DAi be the logical particles, and o0:T be

the observations. If ϕ0
i = Regress(ϕT ,

−−→
DAi) and Ob0

i =
Regress(o0:T ,

−−→
DAi), then

P̃N (ϕT |a1:T , o0:T) =
1
N

∑

i

P (ϕ0
i |Ob0

i) (6)

and

P̃N (ϕT |a1:T , o0:T) →N→∞ P (ϕT |a1:T , o0:T) (7)

PROOF The exact value for P (ϕT |a1:T , o0:T) is
derived as Equation (1). Procedure Sample-Actions
(Figure 4) generates samples (logical particles) from
distribution P (

−−→
DA|a1:T , o0:T−1). Lemma 3.1 shows that

P (ϕT |−−→DAi, o
0:T) = P (ϕ0

i |Ob0
i). Therefore, by using

Monte Carlo Integration Equation (6) holds.
Moreover, because the variance of P (ϕT |−−→DAi, o

0:T) is
less than ∞, from the law of large numbers convergence,
Formula (7), holds.

Accuracy We define a metric called expected KL-distance
to evaluate the accuracy of our sampling algorithm SCAI
(Figure 4). The expected KL-distance is defined as the
expected value of all the KL-distances 3between the exact
distribution P and the approximation P̃ derived by SCAI,

3KL(P, P̃) =
P

x P (x)log(P (x)/P̃ (x)).

KL(P, P̃) = 0if P = P̃

i.e. Expected-KLSCAI =
∑

Si
PrSCAI(Si)KL(P, P̃Si

),
where Si is a set of N logical particles, and PrSCAI(Si) is
the likelihood that SCAI generates set Si. We then compare
the accuracy of SCAI with the accuracy sequential Monte
Carlo sampling algorithms (SMC) (Doucet, de Freitas, &
Gordon 2001) based on the above metric.

SMC computes the posterior probability of a query by
sampling sequences of states (called particles). It sam-
ples the initial states from the prior distribution P 0(s); It
then samples the next states in the sequence from the dis-
tribution P (s′|s, a). In a probabilistic action model we
compute P (s′|s, a) from the transition function T and the
transition distribution P in the model, i.e. P (s′|s, a) =∑
T (s,dai)=s′ P (dai|a, s). The following theorem shows

that SCAI has higher accuracy than SMC for a fixed number
of samples. The intuition is that each logical particle gener-
ated by SCAI covers many particles generated by SMC.

Theorem 3.3 Let SCAI and SMC use N samples to approx-
imate posterior distribution P (ϕT |a1:T , o0:T). Then, for a
fixed N , Expected-KLSCAI ≤ Expected-KLSMC.

PROOF We define a mapping f which maps each set
of logical particles of SCAI to sets of particles of SMC.
The mapping f is defined such that it covers all the pos-
sible sets of particles of SMC, and f(zi) ∩ f(zj) = ∅
for two separate sets of logical particles zi 6= zj , and
PrSCAI(z) = PrSMC(f(z)). We then prove that ∀y ∈
f(z),KL(P, P̃ z

1) ≤ KL(P, P̃ y
2) where P̃1 and P̃2 are ap-

proximations returned by SCAI and SMC, respectively. We
build the mapping f as follows:

We map z (a set of N logical particles) to a set of par-
ticles y in f(z). To do that, we map each logical parti-
cle 〈da1, da2, . . .〉 ∈ z to some particles in the form of
(s0, s1, s2, . . .) ∈ f(z), where s0 can be any of the world
states at time 0, and the rest of states st+1 are derived from
the transition function T (st, dat) = st+1. This way we
cover all the possible sets of particles of SMC. If two dif-
ferent deterministic actions dai and daj mapped to same
transition (s, s′). Then, we change the mapping by as-
signing two different names s′i and s′j to state s′, whereas
P (s′i|s, a) = P (dai|a, s) and P (s′j |s, a) = P (daj |a, s).
We then map dai to (s, s′i) and daj to (s, s′j). Therefore,
f(zi) and f(zj) do not have intersection for two separate
sets of logical particles zi and zj . Also, for every set of log-
ical particles z, PrSCAI(z) =

∑
y∈f(z) PrSMC(y).

We prove that KL(P, P̃ z
1) ≤ KL(P, P̃ y

2) by induc-
tion on the length of the sequence, t . Induction ba-
sis: SCAI returns the exact value for a sequence with
length t = 0,i.e. KL(P, P̃ z

1) = 0. Induction
step: In SCAI P̃1(st+1) =

∑
st P̃1(st)P̃1(dat+1|at+1, st),

and in SMC P̃2(st+1) =
∑

st P̃2(st)P̃2(st+1|at, st).
Each transition (st, st+1) is covered by deterministic ac-
tion dat+1. Also, by induction assumption we know
that KL(P, P̃ z

1 (st)) ≤ KL(P, P̃ y
2 (st)). Therefore,

KL(P, P̃ z
1 (st+1)) ≤ KL(P, P̃ y

2 (st+1)).

Hence,

KL(P, P̃ z
1)PrSCAI(z) ≤

X

y∈f(z)

KL(P, P̃ y
2)PrSMC(y).

Complexity Running time of our algorithm SCAI (Figure
4) is O(N · T · (TRegress + TLP-Prior)), where N is the
number of samples, and T is the length of the given sequence
of probabilistic actions.

Tractability of SCAI results from tractability of the un-
derlying algorithms for Regress and LP-Prior. SCAI is exact
when the given action sequence is deterministic. An exact
algorithm also exists to compute the full joint posterior dis-
tribution given a sequence of deterministic 1:1 actions (i.e.,
1:1 mappings between world states). This algorithm uses
logical filtering (Amir & Russell 2003) as a subroutine. The
algorithm is efficient if its underlying subroutine of logical
filtering is efficient. An example of 1:1 actions is flipping a
light switch, but turning on the light is not a 1:1 action.

4 Empirical Results
We implemented our algorithm SCAI (Figure 4) for the
case that transition distribution is in form of P (da|a, s) =
P (da|a). Our algorithm takes advantage of a different struc-
ture than that available in DBNs. Therefore, we focused
on planning-type structures, and tested our implementation
in planning domains: Safe, Homeowner, Depots, and Ferry
taken from domains in International Planning Competition
at AIPS-98 and AIPS-02. 4 These domains are determin-
istic, so we modified them to include a probability distribu-
tion over the outcomes of actions. For example, for action
(try-com1) in the safe domain we considered two possible
executions (try-com1-succ) and (try-com1-fail) as in Figure
1.

We compared the accuracy of our SCAI with SMC al-
gorithm by approximating the expected KL-distance as fol-
lows: We built the transition model P (s′|s, a) for SMC from
the transition distribution over the actions P (da|a, s) (as ex-
plained in Section 3.3). We then built a DBN over the
state variables, and ran the junction tree algorithm for DBNs
(Murphy 2002) to compute the exact posterior probability
of the query. We then ran SCAI and SMC for a fixed num-
ber of samples, approximate the distribution and compute
the KL-distance between their approximation and the exact
posterior. We iterated this process for at least 50 times, and
find an average over these derived KL-distances.

We ran SCAI and SMC for the safe domain with differ-
ent number of variables (8, 9, and 10) and different random
sequences with lengths (10, 25, and 50) for the query safe-
open. For longer sequences and more variables we did not
have the exact posterior to compare with since the imple-
mentation for the exact algorithm crashes (runs out of mem-
ory). As Figure 7 shows, with the increase in the number of
variables and the sequence lengths the expected KL-distance
for SCAI remains lower than SMC for a fixed number of
samples.

4Also available from:
ftp://ftp.cs.yale.edu/pub/mcdermott/domains/
http://planning.cis.strath.ac.uk/competition/domains.html

0

0.004

0.008

0.012

0.016

0.02

25 50 75 100 500

SCAI (vars 8)

SMC (vars 8)

SCAI (vars 9)

SMC (vars 9)

SCAI (vars 10)

SMC (vars 10)

E
x

p
e

c
te

d
 K

L
-d

is
ta

n
ce

No. of Samples

0

0.004

0.008

0.012

0.016

0.02

0.024

25 50 75 100 500

SCAI (seq 10)

SMC (seq 10)

SCAI (seq 25)

SMC (seq 25)

SCAI (seq 50)

SMC (seq 50)

No. of Samples

No. of Samples

E
x

p
e

c
te

d
 K

L
-d

is
ta

n
ce

Figure 7: Expected KL-distance of SCAI and SMC with the
exact distribution vs. number of samples for the safe exam-
ple (top) For a sequence with length 50 with 8, 9, and 10
variables. (bottom) For 8 variables for random sequences
with lengths 10, 25, and 50.

We report the experiments on the other domains (Depots,
Homeowner, and Ferry) in Figure 8. For all the experiments
except one the expected KL-distance of SCAI is 2 or 3 times
less than that of SMC. The expected KL-distances for SCAI
and SMC are almost the same for the Homeowner domain
with 4 variables and a sequence with length 100. The reason
is that the posterior distribution converges to the stationary
distribution after 100 transitions for this small number of
variables. But, in larger domains our SCAI returns more
accurate results.

5 Conclusion and Future Work
In this paper we presented a sampling algorithm to compute
the posterior probability of a query at time t given a se-
quence of probabilistic actions and observations. We proved
and showed that for a fixed number of samples, it achieves
higher accuracy compared to SMC sampling techniques.

One criticism of our algorithm is that for long sequences
probability of the query given logical particles can be 0. A
future work is adding a resampling step to overcome the

Number of Samples 50 100 500
Depots: seq(50) SCAI 0.007 0.004 0.0006

SMC 0.017 0.007 0.0010
Depots: seq(100) SCAI 0.010 0.003 0.0006

SMC 0.014 0.005 0.0010
Homeowner: seq(10) SCAI 0.011 0.001 0.0005

SMC 0.069 0.004 0.0008
Homeowner: seq(100) SCAI 0.010 0.004 0.0008

SMC 0.011 0.005 0.0010
Ferry: seq(10) SCAI 0.004 0.001 0.0005

SMC 0.01 0.003 0.0009

Figure 8: Expected KL-distance derived for our SCAI
and SMC in domains Depots (9 variables), Homeowner(4
variables), and Ferry (6 variables) with different sequence
lengths.

problem of increasing variance. Intuitively, our algorithm
needs fewer resampling steps than SMC. It can be proved
by a method similar to the proof of Theorem 3.3, knowing
that each logical particle covers many samples in SMC.

There are several directions that we can continue this
work. One direction is to use this algorithm for an approx-
imate conformant probabilistic planning problem. We sam-
ple the logical particles as paths to the goal, regress the query
with them, and find an approximation for the best plan. The
other direction is finding a more efficient exact algorithm
for computing the probability of logical formulae at time
0, or use an approximation method. The other direction
can be extending the algorithm to continuous domains (real
value random variables). The generalization can be done by
discretizing the real value variables or by combining with
RBPF (Rao-Blackwellised Particle Filtering) (Doucet et al.
2000).

Acknowledgements We would like to thank Leslie P.
Kaelbling and the anonymous reviewers for their helpful
comments. This work was supported by Army CERL grants
DACA420-1-D-004-0014 and W9132T-06-P-0068 and De-
fense Advanced Research Projects Agency (DARPA) grant
HR0011-05-1-0040.

References
Amir, E., and Russell, S. 2003. Logical filtering. In
Proc. Eighteenth International Joint Conference on Arti-
ficial Intelligence (IJCAI ’03), 75–82. Morgan Kaufmann.
Amir, E. 2001. Efficient approximation for triangulation
of minimum treewidth. In Proc. Seventeenth Conference
on Uncertainty in Artificial Intelligence (UAI ’01), 7–15.
Morgan Kaufmann.
Bacchus, F.; Dalmao, S.; and Pitassi, T. 2003. Algorithms
and complexity results for SAT and Bayesian inference. In
Proc. 44st IEEE Symp. on Foundations of Computer Sci-
ence (FOCS’03), 340–351.
Bacchus, F.; Halpern, J. Y.; and Levesque, H. J. 1999.
Reasoning about noisy sensors and effectors in the situation
calculus. Artificial Intelligence 111(1–2):171–208.

Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Se-
quential monte carlo for probabilistic planning reachability
heuristics. In Proceedings of the 16th Int’l Conf. on Auto-
mated Planning and Scheduling (ICAPS’06).
Dean, T., and Kanazawa, K. 1988. Probabilistic tempo-
ral reasoning. In Proc. National Conference on Artificial
Intelligence (AAAI ’88), 524–528. AAAI Press.
Doucet, A.; de Freitas, N.; Murphy, K.; and Russell, S.
2000. Rao-blackwellised particle filtering for dynamic
bayesian networks. In Proceedings of the conference on
Uncertainty in Artificial Intelligence (UAI).
Doucet, A.; de Freitas, N.; and Gordon, N. 2001. Se-
quential Monte Carlo Methods in Practice. Springer, 1st
edition.
Jordan, M. I.; Ghahramani, Z.; Jaakkola, T.; and Saul, L. K.
1999. An introduction to variational methods for graphical
models. Machine Learning 37(2):183–233.
Jordan, M. 2006. Introduction to probabilistic graphical
models. Forthcoming.
Kjaerulff, U. 1992. A computational scheme for reason-
ing in dynamic probabilistic networks. In Proceedings of
the Eighth Conference on Uncertainty in Artificial Intelli-
gence, 121–129.
Majercik, S., and Littman, M. 1998. Maxplan: A new
approach to probabilistic planning. In Proceedings of the
5th Int’l Conf. on AI Planning and Scheduling (AIPS’98).
Mateus, P.; Pacheco, A.; Pinto, J.; Sernadas, A.; and Ser-
nadas, C. 2001. Probabilistic situation calculus. Annals of
Mathematics and Artificial Intelligence.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.
Murphy, K. 2002. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. Ph.D. Dissertation, Univer-
sity of California at Berkeley.
Ng, A. Y., and Jordan, M. 2000. PEGASUS: A policy
search method for large MDPs and POMDPs. In Proc. Six-
teenth Conference on Uncertainty in Artificial Intelligence
(UAI ’00), 406–415. Morgan Kaufmann.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kauf-
mann.
Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE 77(2):257–285.
Reiter, R. 2001. Knowledge In Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. MIT Press.
Robertson, N., and Seymour, P. D. Graph minors XVI,
wagner’s conjecture. To appear.
Shahaf, D., and Amir, E. 2007. Logical circuit filtering. In
Proc. Nineteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI ’07).

