
Opponent Modeling in Scrabble

Mark Richards and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
{ mdrichar,eyal} @cs.uiuc.edu

Abstract

Computers have already eclipsed the level of hu-
man play in competitive Scrabble, but there re-
mains room for improvement. In particular, there
is much to be gained by incorporating information
about the opponent’s tiles into the decision-making
process. In this work, we quantify the value of
knowing what letters the opponent has. We use
observations from previous plays to predict what
tiles our opponent may hold and then use this infor-
mation to guide our play. Our model of the oppo-
nent, based on Bayes’ theorem, sacrifices accuracy
for simplicity and ease of computation. But even
with this simplified model, we show significant im-
provement in play over an existing Scrabble pro-
gram. These empirical results suggest that this sim-
ple approximation may serve as a suitable substi-
tute for the intractable partially observable Markov
decision process. Although this work focuses on
computer-vs-computer Scrabble play, the tools de-
veloped can be of great use in training humans to
play against other humans.

1 Introduction
Scrabble is a popular crosswords game played by millions
of people worldwide. Competitors make plays by forming
words on a 15 x 15 grid (see Figure 1), abiding by constraints
similar to those found in crossword puzzles. Each player has
a rack of seven letter tiles that are randomly drawn from a bag
that initially contains 100 tiles. Achieving a high score re-
quires a delicate balance between maximizing one’s score on
the present turn and managing one’s rack in order to achieve
high-scoring plays in the future.

Because opponents’ tiles are hidden and because tiles
are drawn randomly from the bag on each turn, Scrab-
ble is a stochastic partially observable game[Russell and
Norvig, 2003]. This feature distinguishes Scrabble from
games like chess and go, where both players can make de-
cisions based on full knowledge of the state of the game.
Stochastic games of imperfect information can be modeled
formally by partially observable Markov decision processes
(POMDPs)[Littman, 1996]. While POMDPs are expres-

Figure 1: A sample Scrabble game. The shaded premium
squares on the board double or triple the value of single letter
or a whole word. Note the frequent use of obscure words.

sive and theoretically powerful, solving them is intractable
for problems containing more than a few states.

At the beginning of a Scrabble game, an opposing player
can hold any of more than four million different racks. Al-
though the number of possibilities decreases as letters are
drawn from the bag, solving Scrabble directly with a formal
model like POMDPs does not seem to be a viable option.

Scrabble’s inherent partial observability invites compari-
son with games like poker and bridge. Significant progress
has been made in managing the hidden information in
those games and in creating computer agents that can com-
pete with intermediate-level human players[Billings et al.,
2002] [Ginsberg, 1999]. In Scrabble, championship-level
play is already dominated by computer agents[Sheppard,
2002]. Although computers can already play better than hu-
mans, Scrabble is not a solved game. Even the best exist-
ing computer Scrabble agents can improve their play by in-
corporating knowledge about the unseen letters on the op-
ponent’s rack into their decision-making processes. Improve-
ments in the handling of hidden information in Scrabble could
shed insight into more strategically complex partially observ-
able games such as poker. Furthermore, advanced computer
Scrabble agents are of great benefit to expert human Scrabble



players. Humans rely on computer Scrabble programs to im-
prove their play by analyzing previous games and identifying
where suboptimal decisions were made.

One of the strategies that has been successfully used in
poker-playing programs is opponent modeling—trying to
identify what cards the opponents have and how they might
play, based on observations of previous plays.[Billings et al.,
2002] In this work, we propose an opponent modeling strat-
egy for Scrabble.

First, we run simulations in which one of the players is
given full knowledge of his opponent’s rack. These results
show how much potential benefit there could be in attempting
to make such inferences. Then we attempt to achieve some
fraction of that potential improvement by creating a simple
model of our opponent based on Bayes’ theorem[Bolstad,
2004].

Our computer agent makes inferences about what tiles
the opponent may have based on observations from pre-
vious plays. While our agent relies heavily on multi-ply
simulations—as other popular computer Scrabble programs
do—we use these inferences to bias the contents of our op-
ponent’s rack during simulation towards those letters which
we believe he is more likely to have. Our model sacrifices
accuracy for simplicity. But even with this simple model,
we show empirical results that suggest this strategy is sig-
nificantly better than other common approaches for computer
play that make no attempt to deduce the opponent’s letters.
This strategy may be a suitable substitute for the computa-
tionally intractable partially observable Markov decision pro-
cess.

The structure of the paper is as follows. Section 2 gives an
overview of Scrabble, including a review of the rules and ba-
sic strategy. Section 3 discusses previous work on Scrabble-
playing artificial intelligence. In Section 4, we present an
algorithm which makes inferences about the opponent’s tiles.
Experimental results are discussed in Section 5. Finally, pos-
sibilities for future work are presented in Section 6.

2 Scrabble Overview
Alfred M. Butts invented Scrabble during the 1930s. He used
letter frequency counts from newspaper crossword puzzles to
help determine the distribution of tiles and their relative point
values. Of the 100 letters in the standard Scrabble game, there
are 9-12 tiles for common vowels like A, E, and I, but only
one tile each for less common letters like Q, X, and Z1.

Point values for the individual letters range from one point
for the vowels to 10 points for the Q and Z. There are two
blank tiles that act as “wild cards”; they can be substituted
for any other letter. The blanks do not have an intrinsic point
value but are extremely valuable because of the flexibility
they add to a player’s rack.

The first player combines two or more of his letters into a
word and places it on the board with one letter touching the
center square. Thereafter, players alternate placing words on
the board, and each new word must have at least one letter

1Variants of Scrabble have been developed for many different
languages. Here we restrict our focus to the original English version.

that is adjacent to an existing word. New tiles placed on a
single turn must all be played in one row or one column.

Players score points for all new words formed on each turn.
The score for each word is determined by adding up the to-
tal points for the individual tiles; premium squares distributed
throughout the board can double or triple the value of an in-
dividual tile or the whole word.

As long as letters remain in the bag, players replenish their
rack to seven tiles after each turn. A Scrabble game normally
ends when the bag is empty and one player has used all of
his tiles. The game can also end if neither player can make a
legal move, but in practice this rarely happens.

When a player manages to use all seven of his letters in a
single turn, the play is called abingo and scores a 50-point
bonus. While novice players rarely, if ever, play a bingo, ex-
perts might average two or more per game. Since experts usu-
ally score in the 400-500 point range, the bonus for a bingo is
highly significant.

2.1 Basic Strategy

Human Scrabble players must exert considerable effort to
develop an extensive vocabulary—including knowledge of
many obscure words. Since computer agents can easily be
programmed to “know” all the legal words and can quickly
generate all possible plays for any rack and board configu-
ration, they already have a significant advantage over human
players.

A large vocabulary and the ability to recognize high-
scoring opportunities are necessary but not sufficient for high-
level play. Simply making the highest-scoring legal play on
each turn is not an optimal strategy. Using this greedy ap-
proach frequently causes a player to retain tiles that are nat-
urally more difficult to play, eventually leading to awkward
racks like<UHHWVVY >. With such a challenging rack,
even the highest-scoring move is not likely to be very good.

More experienced players are willing to sacrifice a few
points on the current turn in order to play off an awkward
letter or to retain for future turns sets of letters that combine
well with each other. Maintaining a good mix of consonants
and vowels and avoiding duplicate letters (which reduce flex-
ibility) are common goals ofrack balancestrategies. Perhaps
most importantly, expert Scrabble players try to manage their
racks so as to maximize the potential for bingo opportuni-
ties. [Edley and Williams, 2001]. In general, the concept of
rack balance causes a player to evaluate the merits of a move
based on how many points it scores on the current turn and
on the estimated value of the letters that remain on the rack
(called theleave).

Defensive tactics are also important. A player does not
want to make moves that will create high-scoring opportuni-
ties for the opponent. Furthermore, if the board configuration
and opponent’s rack are such that the opponent could make
a high-scoring move on his next turn, a player might want to
consider moves that will block that opportunity, even if the
blocking play does not score as well on the current turn as
some other available alternatives. Also, if one player man-
ages to establish a large lead early in the game, it may be in
his best interest to keep the board as closed as possible. For



example, he might try to cut off areas of the board where a lot
of bingos could be played.

It should be noted that luck plays a significant role in the
outcome of a Scrabble game. Sometimes the random drawing
of letters overwhelmingly favors one player, and not even the
best strategy could compensate for the imbalance. In a game
like poker, a timely bluff can lead to a big win for a player
with a lousy hand. But in Scrabble, a bad rack can be down-
right crippling. Of course, over the course of many games,
the luck of the draw evens out and the most skilled player can
expect to win more games.

2.2 Scope of Study
The primary goal of this work is to improve upon
championship-caliber Scrabble computer programs by ad-
dressing the elements of uncertainty inherent in the game. We
assume that our opponent is also a computer. Not all aspects
of the game are relevant to the present work. We are restrict-
ing our focus in the following ways.

Number of Players
We assume a two-player game. Official rules allow for up to
four players, but tournament matches (and even most casual
games) involve only two competitors. As mentioned previ-
ously, there is already a great deal of luck involved in drawing
“good” tiles; having more than two players only exacerbates
the problem because each competitor takes even fewer turns
and therefore has fewer opportunities to overcome bad luck
with skill.

Timing Constraints
Tournament Scrabble is played under time constraints, of-
ten 25 minutes per player per game. Point deductions are
assessed for time taken in excess of the limit. Since our
Scrabble-playing code is developmental in nature, we do not
impose rigid timing restrictions. However, for practical pur-
poses, the computation allowed to each agent is limited in a
way that keeps the running time for a game to about what it
would be in a tournament setting: 40–60 minutes.

Endgame
Once the bag of letters has been exhausted, a player may de-
duce exactly the opponent’s rack, simply by observing the let-
ters on the board and on his own rack. Expert Scrabble play-
ers do this kind of tile counting routinely. When the bag is
empty, Scrabble becomes a game of perfect information, and
strategy changes. The focus of this work is decision-making
under uncertainty, so we ignore the facets of endgame strat-
egy, which have been studied elsewhere[Sheppard, 2002].

Lexicon
The set of permissible words has a significant impact on how
Scrabble is played. Words which are hyphenated or which oc-
cur exclusively as proper nouns or abbreviations are always
illegal. But inclusion of certain slang, colloquial, archaic,
and/or obscure words varies from one “official” word list to
another. These differences can change how some letters are
evaluated. For example, if the word QI is allowed, the Q is
likely considered an asset; otherwise it is a significant liabil-
ity. In this study, we use the TWL06 (Tournament Word List)

lexicon exclusively. Our belief is that while specific param-
eters may need to be tuned for the various lists, the general
models and strategies are applicable to any of the commonly
used word sets.

Challenges and Bluffing
Finally, we ignore the “challenge” rule. Normally, when a
competitor makes a play, his opponent has the option of chal-
lenging the legality of the newly played word(s). In this case,
both players look up the word in whatever dictionary has been
agreed upon for the game, and the loser of the challenge for-
feits a turn. Some players will intentionally make a “phoney,”
hoping that their opponents will be unfamiliar with the word
and will challenge it. This kind of bluffing tactic must be
reckoned with in human tournament play. In this work, we
focus on computer-vs-computer play. Our agent’s knowledge
base contains all of the legal words, and we assume that our
opponent has the same information.

3 Previous Work
While computers are indisputably the most proficient Scrab-
ble players, it is not generally known which Scrabble-playing
program is the best. Brian Sheppard’s Maven program deci-
sively defeated human World Champion Ben Logan in a 1998
exhibition match. Since that time, the National Scrabble As-
sociation has used Maven to annotate championship games.
Maven’s architecture is outlined in[Sheppard, 2002]. The
program divides the game into three phases: the endgame, the
pre-endgame, and the midgame. The endgame starts when
the last tile is drawn. Maven uses B*-search[Berliner, 1979]
to tackle this phase and is supposedly nearly optimal. Lit-
tle information is available about the tactics used in the pre-
endgame phase, but the goal of that module is to achieve a
favorable endgame situation.

The majority of the game is played under the guidance of
the midgame module. On its turn, Maven generates all possi-
ble legal moves and ranks them according to their immediate
value (points scored on this turn) and on the potential of the
leave. The values used to rank the leaves are computed offline
through extensive simulation. For example, the value of the
leave QU is determined by measuring the difference in future
scoring between a player with that leave and his opponent,
and averaging that value over thousands of games in which it
is encountered.

Once all legal moves have been generated and ranked ac-
cording to the static evaluation function, Maven uses simula-
tions to evaluate the merit of those moves with respect to the
current board configuration and the remaining unseen tiles.
Since it is not uncommon to have several hundred legal plays
to choose from on each turn, deep search is not tractable.
Sheppard suggests that deep search may not be necessary for
excellent play. Since expert players use an average of 3–4
tiles each turn, complete turnover of a rack can be expected
every two to four turns. Simulations beyond that level are of
questionable value, especially if the bag still contains many
letters. Maven generally uses two- to four-ply searches in its
simulations.

After the publication of[Sheppard, 2002], rights to Maven
were purchased by Hasbro, and it is now distributed with that



company’s Scrabble software product. Since its commercial-
ization, additional details about its strategies and algorithms
have not been publicly available.

Jim Homan’s CrossWise is another commercial software
package that can be configured to play Scrabble. In 1990 and
1991, CrossWise won the computer Scrabble competition at
the Computer Olympiad. (In subsequent Olympiad competi-
tions, Scrabble has not been contested.) The algorithmic de-
tails of CrossWise are not readily accessible. Unfortunately,
Maven and Crosswise have not been pitted against each other
in an official competition, so it is not known which program
is superior. Based on publicly available information, Maven
would probably have the edge. Homan claims that CrossWise
generated over US $3 million in sales, which shows that there
is a great demand for powerful Scrabble computer programs.

In March 2006, Jason Katz-Brown and John O’Laughlin
released Quackle, an open source crossword game program2.
Quackle’s computer agent has the same basic architecture as
Maven. It uses a static evaluation function to rank the list
of candidate moves and then makes a final decision based on
the results of simulations using a small subset of the most
promising candidate moves. During the simulations, Quackle
must select one or more potential moves for the opponent.
Since Quackle does not know what letters its opponent holds,
it randomly selects a rack of letters from the set of tiles that
it has not seen (i.e. all letters that are not currently on its own
rack and have not already been placed on the board). Quackle
ignores the fact that not all possible racks are equally likely
for the opponent.

In the next section we show how we can use the opponent’s
most recent play to bias our selection of his tiles during sim-
ulation towards racks which we believe are more likely to oc-
cur. Estimating the probability that our opponent holds cer-
tain tiles requires us to create a model of his decision-making
process. Opponent modeling has been shown to be profitable
in other partially observable games, such as poker[Billings
et al., 2002]. We suspect that opponent modeling in Scrab-
ble would be somewhat easier than in poker. Many different
styles of play can be played profitably in poker, and expert
players are known to change their strategies drastically during
a single match. Among expert Scrabble players– computers
and humans– there is much less variation in strategy. We ex-
pect this fact to lead to simpler opponent models in Scrabble.

4 Modeling the Opponent’s Rack and Play
Selection

A reasonable question to ask is, “how much would it help
me if I could see my opponent’s rack?” To help answer this
question, we conducted experiments in which we allowed
our player to have full knowledge of the opponent’s letters.
During the simulation phase of the decision-making process,
when evaluating the possible responses our opponent could
make to one of our available moves, we generate all of the
possible moves that the opponent could make using the rack
that he actually has (instead of randomly assigning tiles from

2To avoid legal issues, Quackle does not officially have anything
to do with Scrabble. References to Quackle in this work denote
version 0.91.

the set of letters that we have not seen). The opponent in these
tests was Quackle’s Strong Player, which also uses simula-
tions but makes no assumptions about our letters. The results
are summarized in Table 1 and Figure 2. There is high vari-
ability in the final scores for the games, with extreme wins
and losses for both players. This underscores the role that
luck plays in the outcome of a Scrabble game. It is clear,
however, that the Full Knowledge Player has a great advan-
tage, scoring 37 more points per game on average. The dif-
ference is highly statistically significant (p < 10−5 using ran-
dom permutation tests[Ramsey and Schafer, 2002].)

Knowing the contents of our opponent’s rack allows us to
play more aggressively in some situations, because we can be
certain that our opponent does not have a high-scoring coun-
termove. It allows us to avoid plays that would set him up
for a bingo on his next turn. And it gives us an opportunity
to block spots on the board that would be lucrative to him
on his next turn, given his current rack. In real-world play,
we cannot know for certain what letters our opponent holds–
unless the bag is empty–but the results of these hypothetical
full knowledge simulations give an upper bound on what we
can expect to gain by trying to make some inferences about
this hidden information.

Figure 2: Point differential over 127 games between
Quackle’s Strong Player and an agent with full knowledge of
its opponent’s tiles. Each bar shows the result of one game.
Negative values indicate games in which the Full Knowledge
agent lost. The wide variability in the outcomes is a result of
the luck inherent in drawing letters from the bag.

Full Knowledge Quackle
Wins 87 61
Mean Score 438 401
Biggest Win 295 136

Table 1: Summary of results for 127 games between
Quackle’s Strong Player and an agent with full knowledge
of its opponent’s tiles.

During simulation, our model of the opponent consists of
two parts. First, we construct a probability distribution over
the possible racks that the opponent may have. Second, we



must model the decision-making process that our opponent
would go through to select a move, given his rack and the
configuration of the board. Obviously, these two components
are closely related: the letters left on the opponent’s rack be-
fore replenishing from the bag are a direct result of the move
he chose to play on his last turn.

While we do not know exactly what tiles our opponent has,
we can make some inferences based on his most recent move.
Consider the game situation shown in Figure 3. Our oppo-
nent, playing first, held ?IIMNOO and played<8E IMINO
(?O) 16>3. We can observe only the letters he played—
IMINO—and the letters on our own rack GLORRTU, leaving
88 letters which we have not seen:86 in the bag and two on
his rack. When the opponent draws five letters to replenish
his rack, each of the tiles in the bag is equally likely to be
drawn. But assuming that the two letters left on his rack can
also be viewed as being randomly and uniformly drawn from
the88 letters that we have not seen would be a gross oversim-
plification. Of the 372 possible two-letter pairs for the oppo-

Figure 3: The state of the board after observing the oppo-
nent play IMINO with a leave of ?O. The active player holds
GLORRTU. Between the two letters left on the opponent’s
rack and the letters left in the bag, there are 88 unseen tiles.

nent’s leave (??, ?A,. . . ,?Z,AA,AB,. . . ,AZ,. . . ,YZ), some are
considerably more probable, given the most recent play. Sup-
pose our opponent’s leave is ?H. That would mean that he
held ?HIIMNO before he played. If he had held that rack,
he could have played<8D HOMINId 80>, a bingo which
would have earned him 64 more points than what he actually
played. Were our opponent a human, we would have to ac-
count for the possibility that he does not know this word or
that he simply failed to recognize the opportunity to play it.
But since our opponent is a computer, we feel confident that
he would not have made this oversight and conclude that his
leave after IMINO was not ?H. Likewise, we can assume that
his leave was not ?L (<8D MILlION 72>).

3The word IMINO was played on row 8, column E for 16 points,
leaving letters ?O on the player’s rack.

Suppose his leave was NV. With IIMNNOV, he could have
played <8G VINO (IMN) 14>. While this would have
scored two fewer points than IMINO, it has a much better
leave (IMN instead of NV) and would likely have been pre-
ferred. In general, we can consider each of the possible leaves
that an opponent may have had (based on the set of tiles we
have not seen), reconstruct what his full rack would have been
in each case, generate the legal moves he could have made
with that rack, and then use that information to estimate the
likelihood of that leave. Using Bayes’ theorem

P (leave | play) =
P (play | leave)P (leave)

P (play)

The termP (leave) is the prior probability of a particular
leave. It is the probability of a particular combination of let-
ters being randomly drawn from the set of all unseen (by us)
letters. This is the implicit assumption that Quackle makes
about the opponent’s leave. The prior probability for a partic-
ular drawD from a bagB is

P (leave) =

∏
α∈D

(
Bα

Dα

)(|B|
|D|

)
whereα is a distinct letter,Bα is the number ofα-tiles in

B, Dα is the number ofα-tiles in D, and |B| and |D| are
respectively the size of the bag and size of the draw.

We will be interested in computing probabilities for all of
the possible leaves; we can therefore take advantage of the
fact that

P (play) =
∑
leave

P (play | leave)P (leave)

TheP (play | leave) term is our model of the opponent’s
decision-making process. If we are given to know the letters
that comprise theleave, then we can combine those letters
with the tiles that we observed our opponent play to recon-
struct the full rack that our opponent had when he played that
move. After generating all possible legal plays for that rack
on the actual board position, we must estimate the probability
that our opponent would have chosen to make that particular
play. We are assuming that our opponent is a computer, so it
might be reasonable to believe that our opponent also makes
his decisions based on the results of some simulations. Un-
fortunately, simulating our opponent’s simulations would not
be practical from a computational standpoint. Instead, we
naively assume that the opponent chooses the highest-ranked
play according to the same static move evaluation function
that we use. In other words, we assume that our opponent
would make the same move that we would make if we were in
his position and did not do any simulations. This model of our
opponent’s decision process is admittedly overly-simplistic.
However, it is likely to capture the opponent’s behavior in
many important situations. For example, one of the things
we are most interested in is whether our opponent can play a
bingo (or would be able to play a bingo if we made a particu-
lar move). If a bingo move is possible, it is very likely to be
the highest-ranking move according to our static move eval-
uator anyway. A key advantage of modeling the opponent’s
decision-making process in this way is that the calculation



of P (play | leave) is straightforward. If the highest-ranked
word for the corresponding whole rack matches the word that
was actually played, we assign a probability of 1; otherwise,
we assign a probability of 0. LetM be the set of all leaves for
whichP (play | leave) = 1. Then the computation simplifies
to

P (leave | play) =
P (leave)∑

leave∈M P (leave)

Returning to our earlier example, if the opponent plays
IMINO, there are only27 of 372 possibilities to which we
assign non-zero probability. Using only the prior values for
P (leave), the actual leave ?O is assigned a probability of
0.003. After conditioning onplay, that leave is assigned a
0.02 probability. In this example, there were only372 possi-
ble leaves to consider, but in general, there could be hundreds
of thousands. It may be too expensive to run simulations for
every possible leave, but we would like to consider as much
of the probability mass as possible. Using the posterior prob-
abilities,60% of the probability mass is assigned to about10
possible leaves. Using only the priors, the10 most probable
leaves do not even account for10% of the probability mass.
However many samples we can afford computationally, we
expect to get a much better feel for what our opponent’s re-
sponse to our next move might be if we bias our sampling of
leaves for him to those that are most likely to occur.

During simulation, after sampling a leave according to the
distribution discussed above, we randomly draw tiles from
the remaining unseen letters to create a full rack. We have
created an Inference Player in the Quackle framework that is
very similar to Quackle’s Strong Player. It runs simulations
to the same depth and for the same number of iterations as the
Quackle player. The only difference is in how the opponent’s
rack is composed during simulation.

5 Experimental Results
Table 2 shows the results from 630 games in which our Infer-
ence agent competed against Quackle’s Strong Player. While
there is still a great deal of variance in the results, includ-
ing big wins for both players, the Inference Player scores, on
average, 5.2 points per game more than the Quackle Strong
Player and wins 18 more games. The difference is statistically
significant withp < 0.045.

With Inferences Quackle
Wins 324 306
Mean Score 427 422
Biggest Win 279 262

Table 2: Summary of results for 630 games between our In-
ference Agent and Quackle’s Strong Player.

The five-points-per-game advantage against a non-
inferencing agent is also significant from a practical stand-
point. To give the difference some context, we performed
comparisons between a few pairs of strategies. The baseline
strategy is the greedy algorithm: always choose the move that

scores the most points on the present turn. An agent that in-
corporates a static leave evaluation into the ranking of each
move defeats a greedy player by an average of 47 points
per game. When the same Static Player competes against
Quackle’s Strong Player, the simulating agent wins by an av-
erage of about 30 points per game. To be able to average
five points more per game against such an elite player is quite
a substantial improvement. In a tournament setting, where
standings depend not only on wins and losses but also on
point spread, the additional five points per game could make
a significant difference. The improvement gained by adding
opponent modeling to the simulations would seem to justify
the additional computational cost. The expense of inference
calculations has not been measured exactly, but it is not ex-
cessive considering the costs of simulation in general.

6 Conclusions and Future Work
The empirical results discussed above suggest that opponent
modeling adds considerable value to simulation. We do not
expect that the value of information gained through opponent
modeling will be the same in all situations. In particular, we
expect the value to vary with the number of unseen tiles and
with the number of tiles played by the opponent on his previ-
ous moves. Efforts are currently underway to analyze when
the opponent modeling is most helpful.

References
[Berliner, 1979] Hans Berliner. The B* tree search algo-

rithm: A best-first proof procedure.Artif. Intell., 12:23–
40, 1979.

[Billings et al., 2002] Darse Billings, Aaron Davidson,
Jonathan Schaeffer, and Duane Szafron. The challenge of
poker.Artif. Intell., 134:201–240, 2002.

[Bolstad, 2004] William Bolstad. Introduction to Bayesian
Statistics. Wiley, Indianapolis, IN, 2004.

[Edley and Williams, 2001] Joe Edley and John D. Williams.
Everything Scrabble. Pocket Books, New York, 2001.

[Ginsberg, 1999] M. L. Ginsberg. GIB: Steps toward an
expert-level bridge-playing program. InProceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), pages 584–589, 1999.

[Littman, 1996] Michael Lederman Littman. Algorithms for
sequential decision making. Technical Report CS-96-09,
1996.

[Merriam-Webster, 2005] Merriam-Webster. The Official
Scrabble Players Dictionary. Merriam-Webster, 2005.

[Ramsey and Schafer, 2002] Fred L. Ramsey and Daniel W.
Schafer. The Statistical Sleuth: A Course in Methods of
Data Analysis. Duxbury, Pacific Grove, CA, 2002.

[Russell and Norvig, 2003] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition edition, 2003.

[Sheppard, 2002] Brian Sheppard. World-championship-
caliber Scrabble.Artif. Intell., 134:241–245, 2002.


