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Abstract

Computers have already eclipsed the level of hu-
man play in competitive Scrabble, but there re-
mains room for improvement. In particular, there
is much to be gained by incorporating information
about the opponent's tiles into the decision-making
process. In this work, we quantify the value of
knowing what letters the opponent has. We use
observations from previous plays to predict what
tiles our opponent may hold and then use this infor-
mation to guide our play. Our model of the oppo-
nent, based on Bayes’ theorem, sacrifices accuracy
for simplicity and ease of computation. But even
with this simplified model, we show significant im-
provement in play over an existing Scrabble pro-

gram. These empirical results suggest that this sim- _ .
ple approximation may serve as a suitable substi- Figure 1: A sample Scrabble game. The shaded premium

tute for the intractable partially observable Markov squares on the board double or triple the value of single letter
decision process. Although this work focuses on or a whole word. Note the frequent use of obscure words.
computer-vs-computer Scrabble play, the tools de-
veloped can be of great use in training humans to
play against other humans.

sive and theoretically powerful, solving them is intractable
for problems containing more than a few states.

At the beginning of a Scrabble game, an opposing player
can hold any of more than four million different racks. Al-
though the number of possibilities decreases as letters are
Scrabble is a popular crosswords game played by millionsirawn from the bag, solving Scrabble directly with a formal
of people worldwide. Competitors make plays by forming model like POMDPs does not seem to be a viable option.
words on a 15 x 15 grid (see Figure 1), abiding by constraints Scrabble’s inherent partial observability invites compari-
similar to those found in crossword puzzles. Each player hason with games like poker and bridge. Significant progress
arack of seven letter tiles that are randomly drawn from a baghas been made in managing the hidden information in
that initially contains 100 tiles. Achieving a high score re-those games and in creating computer agents that can com-
quires a delicate balance between maximizing one’s score gpete with intermediate-level human play¢Billings et al,
the present turn and managing one’s rack in order to achieve003 [Ginsberg, 199R In Scrabble, championship-level
high-scoring plays in the future. play is already dominated by computer agefSeppard,

Because opponents’ tiles are hidden and because tile2004. Although computers can already play better than hu-
are drawn randomly from the bag on each turn, Scrabmans, Scrabble is not a solved game. Even the best exist-
ble is a stochastic partially observable gabRussell and ing computer Scrabble agents can improve their play by in-
Norvig, 2003. This feature distinguishes Scrabble from corporating knowledge about the unseen letters on the op-
games like chess and go, where both players can make dpenent’s rack into their decision-making processes. Improve-
cisions based on full knowledge of the state of the gamements in the handling of hidden information in Scrabble could
Stochastic games of imperfect information can be modeledhed insight into more strategically complex partially observ-
formally by partially observable Markov decision processesable games such as poker. Furthermore, advanced computer
(POMDPs)|[Littman, 1996. While POMDPs are expres- Scrabble agents are of great benefit to expert human Scrabble

1 Introduction



players. Humans rely on computer Scrabble programs to imthat is adjacent to an existing word. New tiles placed on a
prove their play by analyzing previous games and identifyingsingle turn must all be played in one row or one column.
where suboptimal decisions were made. Players score points for all new words formed on each turn.
One of the strategies that has been successfully used iFhe score for each word is determined by adding up the to-
poker-playing programs is opponent modeling—trying total points for the individual tiles; premium squares distributed
identify what cards the opponents have and how they mighthroughout the board can double or triple the value of an in-

play, based on observations of previous pléBdlings et al, dividual tile or the whole word.
2007 In this work, we propose an opponent modeling strat-  As long as letters remain in the bag, players replenish their
egy for Scrabble. rack to seven tiles after each turn. A Scrabble game normally

First, we run simulations in which one of the players isends when the bag is empty and one player has used all of
given full knowledge of his opponent’s rack. These resultshis tiles. The game can also end if neither player can make a
show how much potential benefit there could be in attemptindgegal move, but in practice this rarely happens.
to make such inferences. Then we attempt to achieve some Wwhen a player manages to use all seven of his letters in a
fraction of that potential improvement by creating a simplesingle turn, the play is called lsingo and scores a 50-point
model of our opponent based on Bayes’ theol@ulstad,  bonus. While novice players rarely, if ever, play a bingo, ex-
2004. perts might average two or more per game. Since experts usu-

Our computer agent makes inferences about what tileally score in the 400-500 point range, the bonus for a bingo is
the opponent may have based on observations from prévighly significant.
vious plays. While our agent relies heavily on multi-ply
simulations—as other popular computer Scrabble programg,1  Basic Strategy
do—we use these inferences to bias the contents of our op- )
ponent’s rack during simulation towards those letters whiciiuman Scrabble players must exert considerable effort to
we believe he is more likely to have. Our model sacrificesdevelop an extensive vocabulary—including knowledge of
accuracy for simplicity. But even with this simple model, Many obscure words. Since computer agents can easily be
we show empirical results that suggest this strategy is sigProgrammed to “know” all the legal words and can quickly
nificantly better than other common approaches for computegenerate all possible plays for any rack and board configu-
play that make no attempt to deduce the opponent’s letteréation, they already have a significant advantage over human
This strategy may be a suitable substitute for the computaPlayers.
tionally intractable partially observable Markov decision pro- A large vocabulary and the ability to recognize high-
cess. scoring opportunities are necessary but not sufficient for high-

The structure of the paper is as follows. Section 2 gives ateVel play. Simply making the highest-scoring legal play on
overview of Scrabble, including a review of the rules and ba-each turn is not an optimal strategy. Using this greedy ap-
sic strategy. Section 3 discusses previous work on Scrabblgroach frequently causes a player to retain tiles that are nat-
playing artificial intelligence. In Section 4, we present anurally more difficult to play, eventually leading to awkward
algorithm which makes inferences about the opponent's tiledacks like TUHHWVVY >. With such a challenging rack,
Experimental results are discussed in Section 5. Finally, postven the highest-scoring move is not likely to be very good.
sibilities for future work are presented in Section 6. More experienced players are willing to sacrifice a few
points on the current turn in order to play off an awkward
. letter or to retain for future turns sets of letters that combine
2 Scrabble Overview well with each other. Maintaining a good mix of consonants

Alfred M. Butts invented Scrabble during the 1930s. He usednd vowels and avoiding duplicate letters (which reduce flex-
letter frequency counts from newspaper crossword puzzles tility) are common goals afack balancestrategies. Perhaps
help determine the distribution of tiles and their relative pointmost importantly, expert Scrabble players try to manage their
values. Of the 100 letters in the standard Scrabble game, thefacks so as to maximize the potential for bingo opportuni-
are 9-12 tiles for common vowels like A, E, and I, but only ties.[Edley and Williams, 2001 In general, the concept of
one tile each for less common letters like Q, X, arid Z rack balance causes a player to evaluate the merits of a move
Point values for the individual letters range from one pointbased on how many points it scores on the current turn and
for the vowels to 10 points for the Q and Z. There are twoOn the estimated value of the letters that remain on the rack
blank tiles that act as “wild cards”; they can be substitutedcalled theleave.
for any other letter. The blanks do not have an intrinsic point Defensive tactics are also important. A player does not
value but are extremely valuable because of the flexibilitywant to make moves that will create high-scoring opportuni-
they add to a player’s rack. ties for the opponent. Furthermore, if the board configuration
The first player combines two or more of his letters into aand opponent’s rack are such that the opponent could make
word and places it on the board with one letter touching thed high-scoring move on his next turn, a player might want to
center square. Thereafter, players alternate placing words dgi#nsider moves that will block that opportunity, even if the
the board, and each new word must have at least one lett®tocking play does not score as well on the current turn as
some other available alternatives. Also, if one player man-
YVariants of Scrabble have been developed for many differenfiges to establish a large lead early in the game, it may be in
languages. Here we restrict our focus to the original English versionhis best interest to keep the board as closed as possible. For



example, he might try to cut off areas of the board where a lotexicon exclusively. Our belief is that while specific param-

of bingos could be played. eters may need to be tuned for the various lists, the general
It should be noted that luck plays a significant role in themodels and strategies are applicable to any of the commonly

outcome of a Scrabble game. Sometimes the random drawingsed word sets.

of letters overwhelmingly favors one player, and not even th hallen nd Bluffin

best strategy could compensate for the imbalance. In a gar(:t‘:é allenges a uthing

like poker, a timely bluff can lead to a big win for a player Finally, we ignore the “challenge” rule. Normally, when a
with a lousy hand. But in Scrabble, a bad rack can be down¢OMPetitor makes a play, his opponent has the option of chal-

right crippling. Of course, over the course of many g(,J“m:_,slenging the legality of the newly played word(s). In this case,

the luck of the draw evens out and the most skilled player ca?oth Players look up the word in whatever dictionary has been
expect to win more games. agreed upon for the game, and the loser of the challenge for-

feits a turn. Some players will intentionally make a “phoney,”

2.2 Scope of Study hoping that their opponents will be unfamiliar with the word

and will challenge it. This kind of bluffing tactic must be
eckoned with in human tournament play. In this work, we
ocus on computer-vs-computer play. Our agent’'s knowledge

ase contains all of the legal words, and we assume that our
ponent has the same information.

The primary goal of this work is to improve upon
championship-caliber Scrabble computer programs by a
dressing the elements of uncertainty inherent in the game.
assume that our opponent is also a computer. Not all aspec
of the game are relevant to the present work. We are restrict-

ing our focus in the following ways. 3 Previous Work

Number of Players o While computers are indisputably the most proficient Scrab-
We assume a two-player game. Official rules allow for up top|e players, it is not generally known which Scrabble-playing
four players, but tournament matphes (and even most cas_ug}ogram is the best. Brian Sheppard’s Maven program deci-
games) involve only two competitors. As mentioned previ-sjyely defeated human World Champion Ben Logan in a 1998
ously, there is already a great deal of luck involved in drawingexhibition match. Since that time, the National Scrabble As-
“good” tiles; having more than two players only exacerbatessociation has used Maven to annotate championship games.
the problem because each competitor takes even fewer turfigaven’s architecture is outlined ifSheppard, 2042 The

and therefore has fewer opportunities to overcome bad luckrogram divides the game into three phases: the endgame, the
with skill. pre-endgame, and the midgame. The endgame starts when
the last tile is drawn. Maven uses B*-seaf&@erliner, 1979

TI_o tackle this phase and is supposedly nearly optimal. Lit-

Tournament Scrabble is played under time constraints, ONie information is available about the tactics used in the pre-

ten 25 minutes per playe_r per game. Point d'educ.t|ons argndgame phase, but the goal of that module is to achieve a
assessed for time taken in excess of the limit. Since ouf

. ; : vorable endgame situation.
Scrabble-playing code is developmental in nature, we do nof' The majority of the game is played under the guidance of
impose rigid timing restrictions. However, for practical pur-

poses, the computation allowed to each agent is limited in the midgame module. On its trn, Maven generates all possi-
way that keeps the running time for a game to about what i le legal moves and ranks them according to their immediate

would be in a tournament settind: 40—60 minutes alue (points scored on this turn) and on the potential of the
9 ' leave. The values used to rank the leaves are computed offline

Endgame through extensive simulation. For example, the value of the

Once the bag of letters has been exhausted, a player may déave QU is determined by measuring the difference in future
duce exactly the opponent’s rack, simply by observing the letScoring between a player with that leave and his opponent,
ers do this kind of tile counting routinely. When the bag is IS €ncountered.

empty, Scrabble becomes a game of perfect information, and Once all legal moves have been generated and ranked ac-
strategy changes. The focus of this work is decision-makin%grdmg to the static evaluation function, Maven uses simula-
under uncertainty, so we ignore the facets of endgame strations to evaluate the merit of those moves with respect to the

Timing Constraints

egy, which have been studied elsewhSteppard, 2042 current board configuration and the remaining unseen tiles.
_ Since it is not uncommon to have several hundred legal plays
Lexicon to choose from on each turn, deep search is not tractable.

The set of permissible words has a significant impact on hovsheppard suggests that deep search may not be necessary for
Scrabble is played. Words which are hyphenated or which ocexcellent play. Since expert players use an average of 3—4
cur exclusively as proper nouns or abbreviations are alwaysles each turn, complete turnover of a rack can be expected
illegal. But inclusion of certain slang, colloquial, archaic, every two to four turns. Simulations beyond that level are of
and/or obscure words varies from one “official” word list to questionable value, especially if the bag still contains many
another. These differences can change how some letters dedters. Maven generally uses two- to four-ply searches in its
evaluated. For example, if the word QI is allowed, the Q issimulations.

likely considered an asset; otherwise it is a significant liabil- After the publication of Sheppard, 2042rights to Maven

ity. In this study, we use the TWLO06 (Tournament Word List) were purchased by Hasbro, and it is now distributed with that



company’s Scrabble software product. Since its commercialthe set of letters that we have not seen). The opponentin these
ization, additional details about its strategies and algorithmsests was Quackle’s Strong Player, which also uses simula-
have not been publicly available. tions but makes no assumptions about our letters. The results
Jim Homan'’s CrossWise is another commercial softwareare summarized in Table 1 and Figure 2. There is high vari-
package that can be configured to play Scrabble. In 1990 arability in the final scores for the games, with extreme wins
1991, CrossWise won the computer Scrabble competition and losses for both players. This underscores the role that
the Computer Olympiad. (In subsequent Olympiad competifuck plays in the outcome of a Scrabble game. It is clear,
tions, Scrabble has not been contested.) The algorithmic dérowever, that the Full Knowledge Player has a great advan-
tails of CrossWise are not readily accessible. Unfortunatelytage, scoring 37 more points per game on average. The dif-
Maven and Crosswise have not been pitted against each othierence is highly statistically significant & 10~° using ran-
in an official competition, so it is not known which program dom permutation tesfRamsey and Schafer, 200p
is superior. Based on publicly available information, Maven Knowing the contents of our opponent’s rack allows us to
would probably have the edge. Homan claims that CrossWisplay more aggressively in some situations, because we can be
generated over US $3 million in sales, which shows that thereertain that our opponent does not have a high-scoring coun-
is a great demand for powerful Scrabble computer programgermove. It allows us to avoid plays that would set him up
In March 2006, Jason Katz-Brown and John O’Laughlinfor a bingo on his next turn. And it gives us an opportunity
released Quackle, an open source crossword game prégranto block spots on the board that would be lucrative to him
Quackle’s computer agent has the same basic architecture as his next turn, given his current rack. In real-world play,
Maven. It uses a static evaluation function to rank the listwe cannot know for certain what letters our opponent holds—
of candidate moves and then makes a final decision based amless the bag is empty—but the results of these hypothetical
the results of simulations using a small subset of the modfull knowledge simulations give an upper bound on what we
promising candidate moves. During the simulations, Quacklean expect to gain by trying to make some inferences about
must select one or more potential moves for the opponenthis hidden information.
Since Quackle does not know what letters its opponent holds,
it randomly selects a rack of letters from the set of tiles that Cheating Simulation
it has not seen (i.e. all letters that are not currently on its own
rack and have not already been placed on the board). Quackle
ignores the fact that not all possible racks are equally likely
for the opponent. 20
In the next section we show how we can use the opponent’s
most recent play to bias our selection of his tiles during sim-
ulation towards racks which we believe are more likely to oc-
cur. Estimating the probability that our opponent holds cer-
tain tiles requires us to create a model of his decision-making
process. Opponent modeling has been shown to be profitable
in other partially observable games, such as p¢Rdlings
et al, 2004. We suspect that opponent modeling in Scrab- Game Results (Srted by Pont Diffrentis)
ble would be somewhat easier than in poker. Many different
styles of play can be played profitably in poker, and expert_.

players are known to change their strategies drastically during/9uré 2: Point differential over 127 games between
a single match. Among expert Scrabble players— computer uackle’s Strong Player and an agent with full knowledge of

and humans-— there is much less variation in strategy. We extS OPPonents tiles. Each bar shows the result of one game.

pect this fact to lead to simpler opponent models in Scrabbleedative values indicate games in which the Full Knowledge
agent lost. The wide variability in the outcomes is a result of

the luck inherent in drawing letters from the bag.

Difference in Score

4 Modeling the Opponent’s Rack and Play

Selection
A reasonable question to ask is, “how much would it help _ Full Knowledge | Quackle
me if | could see my opponent’s rack?” To help answer this Wins 87 61
guestion, we conducted experiments in which we allowed Mean Score 438 401
our player to have full knowledge of the opponent’s letters. Biggest Win 295 136

During the simulation phase of the decision-making process,
when evaluating the possible responses our opponent coulghpe 1 Summary of results for 127 games between

make to one of our available moves, we generate all of theyackie’s Strong Player and an agent with full knowledge
possible moves that the opponent could make using the ragk jts opponent’s tiles.

that he actually has (instead of randomly assigning tiles from

2To avoid legal issues, Quackle does not officially have anything During simulation, our model of the opponent consists of
to do with Scrabble. References to Quackle in this work denotdwo parts. First, we construct a probability distribution over
version 0.91. the possible racks that the opponent may have. Second, we



must model the decision-making process that our opponent Suppose his leave was NV. With IMNNOV, he could have
would go through to select a move, given his rack and theolayed <8G VINO (IMN) 14>. While this would have
configuration of the board. Obviously, these two componentscored two fewer points than IMINO, it has a much better
are closely related: the letters left on the opponent’s rack beeave (IMN instead of NV) and would likely have been pre-
fore replenishing from the bag are a direct result of the movderred. In general, we can consider each of the possible leaves
he chose to play on his last turn. that an opponent may have had (based on the set of tiles we
While we do not know exactly what tiles our opponent has,have not seen), reconstruct what his full rack would have been
we can make some inferences based on his most recent mowe.each case, generate the legal moves he could have made
Consider the game situation shown in Figure 3. Our oppowith that rack, and then use that information to estimate the
nent, playing first, held ?IIMNOO and playedS8E IMINO likelihood of that leave. Using Bayes’ theorem
(?0) 16>3. We can observe only the letters he played— P(play | leave) P(leave)
IMINO—and the letters on our own rack GLORRTU, leaving P(leave | play) = —2%Y
88 letters which we have not seest in the bag and two on P(play)
his rack. When the opponent draws five letters to replenish The termP(leave) is the prior probability of a particular
his rack, each of the tiles in the bag is equally likely to bejeaye, It is the probability of a particular combination of let-
drawn. But assuming that the two letters left on his rack caners peing randomly drawn from the set of all unseen (by us)
also be viewed as being randomly and uniformly drawn froMetters. This is the implicit assumption that Quackle makes

thess letters that we have not seen would be a gross oversimgpoyt the opponent's leave. The prior probability for a partic-
plification. Of the 372 possible two-letter pairs for the 0ppo-yjar drawD from a bagB is

A B q D B ; G H 1 3 K b M N ] HQGD (go‘)
1. . . P(leaﬂ}e) = Ta
. i ud (\D\)
j wherea is a distinct letterB,, is the number ofv-tiles in
A B, D, is the number ofx-tiles in D, and|B| and|D| are
< " | " | a respectlyely the size of the bag and size of th'e. Qraw.
> We will be interested in computing probabilities for all of
‘Il ' M I N O] ® | the possible leaves; we can therefore take advantage of the
o fact that
| il i i P(play) = Z P(play | leave) P(leave)
E leave
" The P(play | leave) term is our model of the opponent’s
1 [ | ® | decision-making process. If we are given to know the letters
i » | ® | that comprise théecave, then we can combine those letters
with the tiles that we observed our opponent play to recon-
ws | 2IIMNOO s = struct the full rack that our opponent had when he played that

move. After generating all possible legal plays for that rack

Figure 3: The state of the board after observing the oppogn the actual board position, we must estimate the probability

nent play IMINO with a leave of ?0. The active player holdsthat our opponent would have chosen to make that particular

GLORRTU. Between the two letters left on the opponent’splay' We are assuming thafc our opponent is a computer, so it
rack and the letters left in the bag, there are 88 unseen tiIes.m'ght b.e.reasonable to believe that our opponent al_so makes
' his decisions based on the results of some simulations. Un-

nents leave (22, ?A....,?Z,AAAB,... AZ,...,YZ), some arefortunately, simulating our opponent’s simulations would not
considerably more probable, given the most recent play. Su e practical from a computational standpoint. !nstead, we
pose our opponent's leave is ?H. That would mean that hgalvely assume that the opponent chooses the hl'ghest—ra.nked
held ?HIIMNO before he playéd ' If he had held that rack play according to the same static move evaluation function

he could have playee:8D HOMINId 80>, a bingo which ‘that we use. In other words, we assume that our opponent
would have earned him 64 more points than what he actuallWOUId make the same move that we would make if we were in

played. Were our opponent a human, we would have to aC¥_|is position and did not do any simulations. This model of our
count for the possibility that he does not know this word or®PPONENt's decision process is admittedly overly-simplistic.
that he simply failed to recognize the opportunity to play it, TOWEVer it is likely to capture the opponent's behavior in

fhany important situations. For example, one of the things

But since our opponent is a computer, we feel confident tha ; S
he would not have made this oversight and conclude that hiﬁ/e are most interested in is whether our opponent can play a
i

leave after IMINO was not ?H. Likewise, we can assume tha ingo (or would be able to play a bi_ngo i.f we mad? a particu-
el ' ar move). If a bingo move is possible, it is very likely to be

i 2
his leave was not ?L<(8D MILIION 72=). the highest-ranking move according to our static move eval-
3The word IMINO was played on row 8, column E for 16 points, uator anyway. A key advantage of modeling the opponent’s
leaving letters ?0 on the player’s rack. decision-making process in this way is that the calculation



of P(play | leave) is straightforward. If the highest-ranked scores the most points on the present turn. An agent that in-
word for the corresponding whole rack matches the word thatorporates a static leave evaluation into the ranking of each
was actually played, we assign a probability of 1; otherwisemove defeats a greedy player by an average of 47 points
we assign a probability of 0. L&t/ be the set of all leaves for per game. When the same Static Player competes against
which P(play | leave) = 1. Then the computation simplifies Quackle’s Strong Player, the simulating agent wins by an av-
to erage of about 30 points per game. To be able to average
P(lcave) five points more per game against such an elite player is quite
a substantial improvement. In a tournament setting, where
Yteavee s Pleave) standings depend not only on wins and losses but also on

Returning to our earlier example, if the opponent playspoint spread, the additional five points per game could make
IMINO, there are only27 of 372 possibilities to which we a significant difference. The improvement gained by adding

assign non-zero probability. Using only the prior values foropponent modeling to the simulations would seem to justify
o 9 A actp o lon ey.’?O 'sgass'yned 2 obability oiN€ additional computational cost. The expense of inference
(leave), u Ve O '9 P Y Olcalculations has not been measured exactly, but it is not ex-

0.003. After conditioning onplay, that leave is assigned a - L ; o
0.02 probability. In this example, there were orig2 possi- cessive considering the costs of simulation in general.

ble leaves to consider, but in general, there could be hundre .
of thousands. It may be too expensive to run simulations fo Conclusions and Future Work
every possible leave, but we would like to consider as mucihe empirical results discussed above suggest that opponent
of the probability mass as possible. Using the posterior probmodeling adds considerable value to simulation. We do not
abilities,60% of the probability mass is assigned to abb@it ~ expect that the value of information gained through opponent
possible leaves. Using only the priors, tHiemost probable modeling will be the same in all situations. In particular, we
leaves do not even account ft0% of the probability mass. expect the value to vary with the number of unseen tiles and
However many samples we can afford computationally, wewith the number of tiles played by the opponent on his previ-
expect to get a much better feel for what our opponent’s reeus moves. Efforts are currently underway to analyze when
sponse to our next move might be if we bias our sampling othe opponent modeling is most helpful.
leaves for him to those that are most likely to occur.
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