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Abstract

A modal logic is any logic for handling modalities: concepts
like possibility, necessity, and knowledge. Artificial intelli-
gence uses modal logics most heavily to represent and reason
about knowledge of agents about others’ knowledge. This
type of reasoning occurs in dialog, collaboration, and compe-
tition. In many applications it is also important to be able to
reason about the probability of beliefs and events.
In this paper we provide a formal system that represents prob-
abilistic knowledge about probabilistic knowledge. We also
present exact and approximate algorithms for reasoning about
the truth value of queries that are encoded asprobabilistic
modal logicformulas. We provide an exact algorithm which
takes a probabilistic Kripke structure and answers probabilis-
tic modal queries in polynomial-time in the size of the model.
Then, we introduce an approximate method for applications
in which we have very many or infinitely many states. Exact
methods are impractical in these applications and we show
that our method returns a close estimate efficiently.

1 Introduction
The study of knowledge in artificial intelligence is both theo-
retical and applied. Answers to ”what do we know?”, ”what
can be known?”, and ”what does it mean to say that someone
knows something?” apply to many important areas (Halpern
1987; Faginet al. 1995; Friedman & Halpern 1994;
Aumann 1986). Formal models of reasoning about knowl-
edge use modal operators and logic to expressknowledge
and belief. These enable discussion of knowledge of log-
ical expressions (e.g.,James does not know that Jill is at
home) separately from the truth values of these expressions
(it holds thatJill is at home).

In many applications, it is important to consider knowl-
edge more gradually. For example, a poker player may not
know what his opponents’ cards are, but may have a prob-
ability distribution over the possible hands. Moreover, he
should have an estimate of other players’ estimates of his
hand, or otherwise he cannot bluff effectively. Current for-
mal logical systems (especially modal logics) (Fitting 1993)
cannot represent this knowledge or simulate it. On the other
hand, probabilistic representations (Pearl 1988) can repre-
sent distributions over distributions (e.g., Dirichlet priors
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over multinomial distributions (Blei, Ng, & Jordan 2003)),
but are not granular enough for multiple levels of complex
beliefs about beliefs. Furthermore, reasoning with these rep-
resentations is computationally hard because they mix struc-
ture, continuous variables, and discrete variables (necessary
for distributions over distributions).

In this paper we address the need for granular representa-
tion of probabilistic belief about probabilistic beliefs.We
develop and present a representation and reasoning algo-
rithms for nested probabilistic modalities. We describe syn-
tax, semantics, and tractable algorithms for reasoning with
our representation. Our reasoning algorithms evaluate the
value of a query on a state given a model.

On the way to these contributions we provide a theory
for probabilistic modal logic. We introduce a framework
for modeling probabilistic knowledge that is based on modal
logic and possible worlds semantics with a probability dis-
tribution over the accessibility relations. We introduce two
exact methods (Top-Down and Bottom-Up) that we can
choose from based on the properties of our application. We
show that when the number of nested modal functions is
small, our Top-Down method works faster, whereas when
we have complex nesting the Bottom-Up approach (which
is polynomial-time in the number of states) is faster. For
very large (even infinite) models neither of these methods is
tractable. Therefore, we use sampling to estimate the truth
value of the query. In our approximation method we reduce
our problem to inference in Bayesian networks, so all the ex-
act and variational methods applicable to Bayesian networks
can be used.

Most previous related works are limited to combining
probability with a special case of modal logic in which ac-
cessibility relations are equivalence relations (we call this
special caseprobabilistic knowledge). Among those, (Fagin
& Halpern 1988; Heifetz & Mongin 1998) are mainly con-
cerned with providing a sound and complete axiomatization
for the logic of knowledge and probability. In contrast, we
focus on providing tractable reasoning methods to answer
queries (on one model) for the general probabilistic modal
logic, as well as the special case of probabilistic knowledge.

Another work related to ours is (Milch & Koller 2000) in
which probabilistic epistemic logic is used to reason about
the mental states of an agent. This logic is a special case of
probabilistic knowledge with the additional assumption of



agents having a common prior probability distribution over
states of the world.

Adding probabilistic notions to modal logic is also con-
sidered in (Herzig 2003; Nie 1992). The former adds a unary
modal operator expressing that a proposition is more prob-
able than its negation, whereas the latter defines an exten-
sion of fuzzy modal logic to perform probabilistic semantic-
based approaches for finding documents relevant to a query.

2 General Probabilistic Modal Logic

In this section, we present the syntax and semantics of prob-
abilistic modal logic. Our framework is based on probabil-
ity distributions over possible states of the world. From an
agent perspective besides the true state of the world, there
are a number of possible states that he cannot distinguish
from each other. An agent has a probability distribution over
the set of states he considers possible. An agent is then said
to knowa factϕ with probabilityp if the sum of probabilities
of the states in whichϕ is true isp.

An application is modeling a Holdem game (Texas Hol-
dem poker). In Holdem, players receive two downcards as
their personal hand, after which there is a round of bet-
ting. Three boardcards are turned simultaneously and an-
other round of betting occurs. The next two boardcards are
turned one at a time, with a round of betting after each. A
player may use any five-card combination from the board
and personal cards.

The poker ranking hands are as follows (from the highest
to the lowest).Straight flush: five consecutive cards of the
same suit. (”Suits” are spades, hearts, clubs and diamonds.)
Four of a kind: four cards of the same rank. Higher ranks
are better (four tens would beat four sixes).Full house: three
cards of the same rank, with a pair of another rank.Flush:
five cards of the same suit.Straight: five sequential cards of
different suits.Three of a kind: three cards of the same rank.
Two pair: two cards of one rank, and two cards of another
rank.One pair: two cards of the same rank, and three unre-
lated cards.No pair, high card: a hand with no pair or any
of the other ranking values above. When comparing no pair
hands, the highest card determines the winner.

Suppose that in a two player game, the boardcards are
KKQ32, Player 1 has AK, and player 2 has K3. From the
perspective of player 1, player 2 can have any card except
the boardcards and the cards in player 1’s hand. In Holdem,
the possible worlds are all the possible ways the cards could
have been distributed among the players. Initially, a player
may consider possible all deals consistent with the cards in
her hand with equal probability. Players may acquire ad-
ditional information in the course of the game that allows
them to eliminate some of the worlds they consider possible
or change the probability distribution of others.

To be able to infer some information about the knowledge
of an agent, we first need a language that allows us to express
notions of knowledge and its probability in a straightforward
way. Modal logic is a model for knowledge but it does not
contain the probability distribution over different states. For
this purpose we introduceprobabilistic modal logic.

2.1 Syntax
For simplicity we assume that the agent wish to reason about
a world that can be described in terms of a nonempty setP
of primitive propositions. Probabilistic modal formulas are
built up from a countable set of propositional lettersP us-
ing propositional connectives (¬, ∧) and the modal function
K. We use⊤ and⊥ for truth and falsehood constants. The
formation rules are:
1. Every propositional letter is a formula.
2. ⊤ and⊥ are formulas.
3. If X is a formula so is¬X.
4. If X andY are formulas so isX ∧ Y .
5. If X is a formula,0 < r ≤ 1, andα ∈ {<, =} then

(K(X) α r) is a formula.
All comparison operators can be implemented with rules 3,
4, and 5. Note that we have a different modal functionKi

for each agenti in the domain. We take∨, ⊃ and≡ to be
abbreviations in the usual way.

Suppose that we have two propositional symbols in our
Holdem example,w1 andw2, to show whether player 1 or
player 2 wins the hand, respectively. The value of these sym-
bols is determined based on the game rules applied on play-
ers’ hands and the boardcards. In this example there are two
players, therefore we have two modal functions,K1 andK2

corresponding to player 1 and player 2.K1(w1) < 1/2 is
an example of a formula in probabilistic modal logic whose
truth value can be evaluated on the current state of the world.
K1(w1) < 1/2 shows that the probability of player 1 win-
ning the hand is less than1/2 from her perspective.

2.2 Semantics
In this section we describe the semantics of our language.
Our approach is in terms of possible worlds, which is similar
to Kripke structuresin modal logic.

Definition 2.1 A probabilistic Kripke structureM is a tuple
(S, P, V ) in which
1. S is a nonempty set ofstatesor possible worlds.
2. P is a conditional probability function. P (s′|s) shows

the probability of accessing states′ given that we are in
states. P (s′|s) greater than zero indicates thats′ is ac-
cessible froms. Therefore, it is similar to the accessibility
relation of modal logic. SinceP is a probability function,
we should ensure that the following constraints hold:
• 0 ≤ P (s′|s) ≤ 1
• For each states ∈ S:

∑

s′∈S P (s′|s) = 1
3. V is an interpretationthat associates with each state in

S a truth assignment to the primitive propositionsP (i.e.,
V : S × P → {true, false}).

The above definition is for one modal function. For cases
in which we havei modal functions (K1, . . .Ki) we need
a conditional probability functionPj for each modal func-
tion Kj . Intuitively, the conditional probability functionPj

represents the probability of transition from one state to the
other from the perspective of agentj.

In modal logic, the true state of the world is a state inS,
same as in probabilistic modal logic. Based on the true state
of the world an agent has a probability distribution over all



the states that are indistinguishable to her. The truth value
of any formula is evaluated with the following definitions.

Definition 2.2 LetM = (S, P, V ) be a probabilistic Kripke
structure. Lets be a state inS. For any probabilistic modal
logic formulaϕ, we defineval(s, ϕ) recursively as follows.
1. val(s, R) = V (s, R) for a propositional letterR.
2. val(s,⊤) = true.
3. val(s,⊥) = false.
4. val(s,¬X) = ¬val(s, X).
5. val(s, X ∧ Y ) = val(s, X) ∧ val(s, Y ).

6. val(s, K(X) α r) = true iff
∑

s′∈S,val(s′,X)=true

P (s′|s) α r.

Now we can useval definition to define|=.

Definition 2.3 M, s |= X iff val(s, X) is true.

3 Probabilistic Knowledge (Special Case)
In this section we focus on a special case of probabilistic
modal logic in which accessibility relation is an indication
of knowledge. We take an accessibility relation to be an
equivalence relation since we want to capture the intuition
that agenti consider statet accessible from states if in both
s andt agenti has the same information about the world, that
is, the two worlds are indistinguishable to the agent. This
constraint seems natural and it turns out to be the appropriate
choice for many applications (e.g., Texas Holdem poker).

The syntax is the same as probabilistic modal logic.

Definition 3.1 A probabilistic knowledge structureM is a
tuple(S, R, P, V ) in which
1. S is a nonempty set ofstatesor possible worlds.
2. R ⊆ S × S is a binary relation onS called theaccessi-

bility relation. R is an equivalence relation.
3. P is aprobability functionthat associates with each state

in S a number. This number represents the probability of
being in that state given that we know that we are in one
of the states accessible froms.

4. V is aninterpretationthat associates with each state inS
a truth assignment to the primitive propositionsP.

As in previous section for the cases in which we have
more than one modal function (e.g.,K1, . . .Ki) we need
a probability function and an accessibility relation corre-
sponding to each modal function. Intuitively, the probabil-
ity function Pj represents the probability of being in a state
from the perspective of agentj.

Based on above definition, all the states in one equiva-
lence class are indistinguishable to the agent. An actual state
of the world is a state in S. Since the agent cannot distinguish
the states in one equivalence class, the probability of be-
ing in each state is computed. The probabilistic knowledge
semantics can easily be transformed to probabilistic modal
logic semantics.

Definition 3.2 Let M ′ = (S′, R′, P ′, V ′) be a probabilis-
tic Knowledge structure. The probabilistic Kripke structure
M = (S, P, V ) is equivalent toM ′ when:

S = S′, V = V ′, andP (s′|s) =
P ′(s′)

∑

s′′∈S,sR′s′′
P ′(s′′)

.

Equivalence class of player 1 Equivalence class of player 2

State of the world

Figure 1:Holdem example equivalence classes.

This formalism is compatible with (Fagin & Halpern
1988). We can model many games with this framework.
A good example is Holdem. Suppose that in a two player
Holdem, the boardcards are KKQ32, player 1 has AK, and
player 2 has K3. We model this with probabilistic knowl-
edge structureM = (S, R1, R2, P1, P2, V ). S is the set of
all states, that is, the set of all possible combination of player
hands when the boardcards are KKQ32.

R1 and R2 are equivalence relations. All the states
that are indistinguishable from the perspective of player 1
are in the same equivalence class inR1. We represent a
state as a tuple(KKQ32, AK, K3) in which the compo-
nents are the boardcards, player 1’s hand, and player 2’s
hand, respectively. Since player 1 does not know any-
thing about her opponent’s hand,(KKQ32, AK, K3) and
(KKQ32, AK, 63) are in the same equivalence class inR1

(Figure 1). P1 is the probability distribution over the ele-
ments in an equivalence class inR1. We assume thatP1

is uniform since the player does not have any information
about her opponent’s hand.

There are two propositional symbols in this example,w1

andw2, to show whether player 1 or player 2 wins the hand
respectively. In one state at most one of them can be true. A
tie is presented with bothw1 andw2 being false. The value
of w1 andw2 (which is part ofV ) is predetermined for each
state based on the game rules.

After modeling Holdem with a probabilistic knowledge
structure, we would like to be able to answer if a formula
(query) is true in our model or not. In the following section
we focus on different reasoning methods to answer a query.

4 Reasoning Algorithms
4.1 Exact Reasoning: Top-Down & Bottom-Up

In this section we provide reasoning algorithms that eval-
uate queries (formulas) about a given state. In Holdem,
K1(K2(w2) < 1/4) > 2/3 is an example of a query. If
Alice and Bob are player 1 and player 2 respectively, this
query refers to Alice’s beliefs about Bob’s beliefs. She be-
lieves that with probability greater than2/3 Bob believes



FUNCTION ToDo(states, queryq)
”value” associates with each state, a truth assignment to the prim-
itive propositions. ”Pi(s

′|s)” is the probability of accessing state
s′ after being in states.
1. if q = ⊤ then returntrue
2. elseifq = ⊥ then returnfalse
3. elseifq is a propositional letter then return value(s, q)
4. elseifq = ¬x then return [¬ ToDo(s, x)]
5. elseifq = x ∧ y then

return [ToDo(s, x) ∧ ToDo(s, y)]
6. elseifq = (Ki(x) α r) then

(a) m← 0
(b) for all statess′ accessible froms

if ToDo(s′, x) thenm← m + Pi(s
′|s)

(c) return (m α r)

Figure 2: Top-Down (ToDo) reasoning algorithm.

that with probability≥ 3/4 he is losing. Therefore, if Bob
is raising, Alice knows that it is likely he is bluffing.

Computing the value of a query is straightforward in the-
ory given a probabilistic modal structure (definition 2.2).
Given the structure answering a query with no modal func-
tion can be done inO(length of query). The expensive part
of the computation of a query is the part with modal func-
tion. Assume that the number of states accessible from a
state isn. The number of states that should be visited to cal-
culate the value of a query is multiplied byn for each nested
modal function (e.g.,O(nm) states should be visited when
we havem nested modal functions).

We can represent a query with an expression tree (Kozen
1997). In an expression tree, the root is the query itself and
the leaves are propositional primitives. Function Top-Down
(ToDo) of Figure 2 starts from the root of the query’s expres-
sion tree and recursively computes the value of its subformu-
las on a given state. The running time of the function grows
exponentially with the number of nested modal functions.

Theorem 4.1 Let q be the query whose value on states we
want to compute and let|q| be the length of the query. Let
m be the number of nested modal functions and letn be
the maximum number of states accessible from any state.
Function ToDo calculates the truth value of the query on
states in O(|q| × nm) time.

In function ToDo subformulas may be computed multiple
times. We can overcome this inefficiency, if we take a
bottom-up approach. There, we start from the bottom of the
query’s expression tree and avoid computing a subformula
multiple times. Function Knowledge-Bottom-Up (KBU) of
Figure 3 computes the value of a query about a probabilistic
knowledge structure while it avoids recalculation.

We first compute the value of an innermost modal func-
tion (with no nested modal function in it) for all equivalence
classes, and associate the results with all the states in their
respective equivalence classes. For computational purposes,
we implement this (line 2(a) in function KBU) with a tem-
porary propositional symbol in all states. Then, we replace
the modal function in the query with the temporary propo-
sition. We continue this operation until all modal functions
in the query are computed. In function KBU, we visit each

FUNCTION KBU(states, queryq)
”Pi” associates with each state the probability of being in that
state given that we are in its equivalence class. ”val” recursively
calculates the value of a formula with no modal function.
1. m← 1
2. for all (Ki(x) α r) in q wherex has no modal function

(a) for alle ∈ equivalency classes of relationi
• tm ← [

∑

s′∈e,val(s′,x)=true
Pi(s

′)] α r

• addtm to ∀s′ ∈ e
(b) q ← replace(Ki(x) α r) in q with tm

(c) m← m + 1
3. return val(s, q)

FUNCTION GBU(states, queryq)
1. m← 1
2. for all (Ki(x) α r) in q wherex has no modal function

(a) addtm,true ← 0 , tm,false ← 0 , tm to ∀s1 ∈ set of
states

(b) for all s2 ∈ set of states
• for all s1 thats2 is accessible froms1

t
m,val(s2,x)

← t
m,val(s2,x)

+ Pi(s2|s1)

(c) for all s1 ∈ set of states
• tm ← [tm,true/(tm,true + tm,false)] α r

(d) q ← replace(Ki(x) α r) in q with tm

(e) m← m + 1
3. return val(s, q)

Figure 3: Bottom-Up reasoning algorithms.

state once for each modal function.

Theorem 4.2 Let q be the query whose value on states we
want to compute. Let|S| be the number of states in the con-
nected component graph of states. Function KBU calcu-
lates the value of the queryq on states in O(|q| × |S|) time.

Compared to the runtime of function ToDo which is expo-
nential in the number of nested modal functions, the runtime
of KBU is linear in the length of the query (i.e. total number
of modal functions). As a drawback, KBU is linear in the
total number of states. When the number of nested modal
functions is small, function ToDo is faster than KBU. To
choose the best method for our application, we comparenm

with |S| and decide whether to use ToDo or KBU.
The bottom-up approach can be extended to general prob-

abilistic modal logic. In probabilistic modal logic we havea
directed graph of states. Each edge in this graph corresponds
to an accessibility relation of a modal function. For example,
in a two player Holdem game an edge is related to eitherK1

or K2. To extend the bottom-up algorithm to general modal
logic, we need to know which states are accessible from a
particular state. For example to calculateK(x) on states1

we need to add the conditional probabilityP (s2|s1) of all
statess2 in which formulax is true.

To calculateK(x) on all the states in a probabilistic modal
logic structure, we first calculatex on each state. Suppose
that x is true (false) in states2. For eachs1 that has a di-
rected edge corresponding to modal functionK towards2,
we addP (s2|s1) to the temporary variable that we use for
the probability of the states accessible froms1 in which x
is true (false). The value ofK(x) easily can be calculated
after performing this operation on each state. The General-



FUNCTION BEST(states, queryq)
1. if q = Ki(x) then

(a) m← 0
(b) for all statess′ accessible froms

if ToDo(s′, x) thenm← m + Pi(s
′|s)

(c) returnm
2. else return ToDo(s, q)

Figure 4: The algorithm for computing thebestprobability.

Bottom-Up (GBU) algorithm for reasoning in general modal
logic structures is shown in Figure 3.

Theorem 4.3 Let q be the query whose truth value on state
s we want to compute. Let|S| be the number of states in the
connected component of states. Function GBU calculates
the value of queryq on states in O(|q| × |S|2) time.

The proof intuition is that each edge is visited once for each
modal function. The number of edges in a dense graph is
quadratic in the number of nodes.

Although the bottom-up algorithms are faster than top-
down method when the number of nested modal functions
grows, it is still costly when the number of states is large.

Function ToDo can be slightly improved if we avoid un-
necessary calculation. We can avoid calculating a formula
for the same set of states repeatedly by keeping track of
what we have already calculated. This is specially useful
when the formula has a modal function. Suppose that we
have two states:s1 ands2. They are indistinguishable to
both player 1 and player 2 (they are in the same equiva-
lence class). Now, assume that we want to answer the query
K1(K2(K1(x) < a) < b) < c on states1. By our method,
functionK2(K1(x) < a) < b should be calculated on states
s1 ands2 which are both accessible froms1. We first cal-
culateK2(K1(x) < a) < b for one state (s1) and then the
other (s2). We need to calculateK1(x) < a for boths1 and
s2, to answer the queryK2(K1(x) < a) < b on states1 and
also later to answer the same query on states2. If we keep
track of the value ofK1(x) < a on s1 ands2 we can reuse
it without any computation.

Another unnecessary computation happens in answering
X ∧ Y . If X is false, the value ofY does not matter. As
we showed before, the calculation of formulas with more
nested modal functions is more expensive than the others.
Therefore, in the case ofX ∧ Y it is more efficient to first
calculate the formula with fewer nested modal functions. It
may avoid the computation of the other one.

Best probability. So far, our algorithms assumed that we
are interested in finding the truth value of a query about
a given a Kripke structure. For example, if player 1 (Al-
ice) believes thatK1(w1) < 1/3 is true, she probably will
not call the other player’s raise. However, sometimes it is
more important for Alice to know thebestvaluer such that
K1(w1) < r holds. Based on this number she has a better
estimate of her chance of winning.

Figure 4 extends our earlier algorithms and provides an
algorithm that computes the best probability about a query
(e.g. minimumr such thatK(x) < r is true). It can use

FUNCTION ARea(states, queryq)
”M ” is a constant (number of samples). ”Pa” associates with
each node in a graph the list of its parents.
1. defineT (q, s) based on definition 4.4
2. N ← reverse all the edges inT (q, s)
3. for each nodel in N with operator∧
• for eachv, v1, v2 in {0, 1}

CPTN (l = v|Pa(l) = (v1, v2))← (v = v1 ∧ v2)
4. for each nodel in N with operator¬
• for eachv, v′ in {0, 1}

CPTN (l = v|Pa(l) = (v′))← (v = ¬v′)
5. for each nodel in N with operatorKi(x) < r
• for eachv, v1, . . . , vM in {0, 1}

CPTN (l = v|Pa(l) = (v1, . . . , vM ))← Formula (1)
6. return inference(N , Pr(qs = 1|l1 = v1, . . . , lr = vr))

% l1, . . . , lr are all the nodes inN with no parent (we have
their valuev1, . . . , vr in the tree)

Figure 5: Approximate Reasoning (ARea) algorithm.

either KBU or GBU instead of ToDo. The input to this algo-
rithm is of the formK(x). The algorithm returns the proba-
bility of x from the perspective of modal functionK.

4.2 Sampling Subgraphs
In this section we provide a reasoning method that uses sam-
pling to answer queries on probabilistic knowledge struc-
tures. As we showed in the previous section, the running
time of the bottom-up reasoning methods depend on the
number of states. In our poker example, the number of
states reachable from an initial state given all five boardcards
is equal to

(

47
2

)(

45
2

)

. Therefore, the bottom-up approach is
tractable. However, in a two player game with hundreds of
cards when each player has tens of cards, it is not practical
to go through all the states multiple times to answer a query.

All the states accessible from a state should be visited
to evaluate a formula with a modal function. If the num-
ber of states accessible from a state is too large, evaluating
K(x) on that state would be expensive. To avoid this expen-
sive computation, we sample the states and calculatex on a
smaller set. Then we calculate the probability of (K(x) α r)
given the sampled data. Since the probability distributionis
continuous, in this section we do not allow equality in the
query (i.e.,K(x) = r).

The function Approximate Reasoning (ARea) presented
in Figure 5 returns the probability of a query given the sam-
pled data. This probability serves as an estimate for the truth
value of the query. We use sampling to computeK(x) < r.
We calculate the number of sampled states in whichx is true
and use it to estimateK(x). The size of the sampled set is
fixed throughout the program. This method is much faster
than the exact methods when the number of states explodes.

The value of a formula on a sampled state is either
true or false. So, the number of sampled states in which
formula x is true has a binomial distribution with pa-
rameter K(x). To calculateK(x) < 1/3 on state
s, we sampleM states from the probability distribution

P (s′)
∑

s′′Rs
P (s′′)

(we label thems1, . . . , sM ). We compute

Pr(K(x) < 1/3|xs1
, . . . , xsM

)wherexsi
represents the value
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Figure 6:T (K1(K2(y) < 1/3) < 1/2, e1(s)).

of x at statesi. We define thesampled expression treeof a
formula as follows. From this point on we use 1 and 0 in-
stead of true and false.

Definition 4.4 Let q be a query that we want to evaluate on
states. Let ei(s) be the equivalence class of states in Ri

(whereRi is the accessibility relation corresponding toKi).
Thesampled expression treeT (q, s) of queryq on states is:
• If q = ⊤ thenT (q, s) is a node whose value is 1.
• If q = ⊥ thenT (q, s) is a node whose value is 0.
• If q = r and r is a propositional letter thenT (q, s) is a

node whose value is equal to the value ofr in states.
• If q = ¬x thenT (q, s) is a node whose operator is¬ and

it has one childT (x, s).
• If q = x ∧ y thenT (q, s) is a node whose operator is∧

and it has two childrenT (x, s) andT (y, s).
• If q = (Ki(x) < r) then instead ofT (q, s) we define

T (q, ei(s)) since the values ofq on all the states inei(s)
are the same.T (q, ei(s)) is a node whose operator is
q and it hasM children T (x, s1), . . . , T (x, sM ) when
s1, . . . , sM are theM samples inei(s).

We assign a label to each node such that the label of the root
of T (q, s) is qs. Whenever we defineT (Ki(x) < r, ei(s))
for the first time, we sampleM states from the probability

distribution
P (s′)

∑

s′′Ris
P (s′′)

.

The sampled expression tree for queryK1(K2(y) <
1/3) < 1/2 is shown in figure 6 whereM = 3. Here,s1

ands2 are in the same equivalence class therefore(K2(y) <
1/3)e2(s1) and(K2(y) < 1/3)e2(s2) are the same.

In algorithm ARea, we transformT (q, s) to a Bayesian
network(Pearl 1998). First, we reverse the direction of all
the edges. Then, we define the Conditional Probability Table
(CPT) for each node (which is the probability distribution of
the node given its parents). Defining the CPT for a∧ node
is straight-forward.Pr((x ∧ y)s = 1|xs = 1, ys = 1) = 1
wherexs andys are the two parents of the node, and the
probability of(x ∧ y)s = 1 given any other combination of
the parents’ values is0. This is the natural way to define∧.
For a¬ nodePr((¬x)s = 1|xs = 0) = 1 andPr((¬x)s =
0|xs = 1) = 1 whenxs is the parent of the node.

We define the CPT for nodeKi(x) < r as follows:

Pr((Ki(x) < r)ei(s) = 1|xs1
= v1, . . . , xsM

= vM ) =
∫ r

0
f(Ki(x) = u)uMt(1− u)M−Mtdu

∫ 1

0
f(Ki(x) = u)uMt(1− u)M−Mtdu

(1)

whenxs1
, . . . , xsM

are theM parents of the node, andMt =
∑M

i=1 vi. Here,Ki(x) is a random variable with probability
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density function (pdf)f(Ki(x) = u). To estimate the query
given the sampled data, the pdf ofKi(x) should be known.
For simplicity, we assume thatf(Ki(x) = u) = 1, that is,
the prior probability distribution is uniform.

In this Bayesian network two or more parents of a node
may be the same (e.g., Bayesian network of Figure 6). In
that case, their value should also be equal. This does not af-
fect the CPT except that some of the combination of parents’
values never happen. The algorithm returns the probability
of the query given the values of the leaves ofT (q, s).

Theorem 4.5 Let M be the number of samples at each
stage. Letq be the query that we want to evaluate on states.
The algorithm ARea returns the probability ofq = 1 given
the values of the leaves ofT (q, s) in time exponential in the
tree-width ofT (q, s) (Kschischang, Frey, & Loeliger 2001;
Huang & Darwiche 1996).

After reducing the problem to inference in Bayesian net-
works, different approximation methods can be used to cal-
culate the probability (Jordanet al. 1999; Yedidia, Freeman,
& Weiss 2004).

5 Experimental Results
In this section we compare the running time of different ex-
act and approximate reasoning algorithms. We run all the
methods on a probabilistic knowledge structure of our Hol-
dem example. As shown in Figure 7, the running time of
ToDo grows exponentially with the number of nested modal
functions while KBU grows linearly. In typical real-world
situations the number of nested modal functions in queries
is small. In Holdem, most of the times the number of nested
modal functions is≤ 3. The largest degree of modal nest-
ing that a player may care about is the belief of his oppo-
nent about his belief. Therefore, if we know in advance that
the degree of nesting is small, we may prefer to use ToDo.
Notice that ToDo is only faster when the number of nested
modal functions is small. In applications in which the degree
of nesting is high, KBU is the better option.

We can take advantage of both algorithms by writing a
function that uses ToDo for queries with small number of
nested modal functions (m) and KBU otherwise. Based on
theorem 4.1 and 4.2, comparingnm with |S| gives us a good
intuition about which algorithm to use.

Figure 7 also compares the running time of our approxi-
mation method with the exact ones. It shows that when the
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number of states is not very large, using the approximation
does not make sense. The approximation should be used
only when we have infinitely many or very many states.

Our approximation algorithm (ARea) consists of two
parts: transforming the query to a Bayesian Network (using
sampling), and performing inference on that network. We
refer to them as TranBN and InfBN, respectively. As shown
in Figure 7, the running time of TranBN isO(|q| × Mm)
when M is the number of samples used for calculating
modal functions,m is the number of nested modal functions
in the query, and|q| is the size of the query. The size of the
Bayesian network is alsoO(|q|×Mm). The running time of
InfBN depends on the algorithm that we use for inference.
We used Bayes Net Toolbox (BNT) for Matlab written by
Kevin Murphy1 in our experiments.

There are many inference algorithms in BNT, each
of which make different tradeoffs between speed, accu-
racy, complexity and generality. In Figure 7, we use a
Monte Carlo sampling inference algorithm called likeli-
hoodweighting inf engine. It applies importance sampling
and can handle any node type. We also try the junction tree
engine (jtreeinf engine), which is the mother of all exact in-
ference algorithms. Figure 8 compares the running time of
these two inference engines on our examples. After trans-
forming the query to a Bayesian network, any inference al-
gorithm with any implementation can be used (as InfBN).

ARea returns an approximation to the value of the query.
It calculates the probability of the query being true given
the sampled data. For some queries this probability is high
(> .9) even for a small set of samples. In those cases
ARea returns a good approximation to the value of the query.
However, when a modal function is compared to a number
close to its actual value, the sampling may not work well
(e.g., the query isK(x) < r andK(x) is close tor). In
those cases the probability of the query given sampled data
(the output of ARea) shows our lack of confidence in the
value of the query.

6 Conclusion & Future Work
We provided a syntax and semantics for reasoning with
probabilistic modal logic. We suggested exact and approxi-
mate algorithms for evaluating queries over a probabilistic
Kripke structure. We showed that exact methods are not

1Available from: http://bnt.sourceforge.net/

tractable when we have a very large structure. However,
our approximate algorithm returns an estimate (probability
of the query given a sampled model) efficiently.

An important direction for future work is investigating be-
lief update in our language. Given an action and an obser-
vation how to change the structure of the world. Also, given
a set of probabilistic modal logic formulasKB, it is impor-
tant to answer whether a query holds or not. In this paper,
we do not have any inferenceKB |= ϕ beyond a straight-
forward model enumeration or the special case of (Fagin &
Halpern 1988). There are many other questions that can be
raised with this paper. ”How to learn a probabilistic modal
logic structure?”, ”How to perform planning?”, etc.
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