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Abstract over multinomial distributions (Blei, Ng, & Jordan 2003)),
but are not granular enough for multiple levels of complex
like possibility, necessity, and knowledge. Artificial éfit- beliefs a_bout_bellefs. Fur_thermore, reasoning with th‘?ﬁer
gence uses modal logics most heavily to represent and reason resentathns IS computatlonally h?‘fd becaus_e they migstru
about knowledge of agents about others’ knowledge. This  ture, continuous variables, and discrete variables (isecgs

A modal logic is any logic for handling modalities: concepts

type of reasoning occurs in dialog, collaboration, and cemp for distributions over distributions).

tition. In many applications it is also important to be afde t In this paper we address the need for granular representa-
reason about the probability of beliefs and events. tion of probabilistic belief about probabilistic belief&Ve

In this paper we provide a formal system that represents-prob develop and present a representation and reasoning algo-
abilistic knowledge about probabilistic knowledge. Weoals rithms for nested probabilistic modalities. We describe-sy
present exact and approximate algorithms for reasoningtabo tax, semantics, and tractable algorithms for reasoning wit
the truth value of queries that are encodedpababilistic our representation. Our reasoning algorithms evaluate the

modal logicformulas. We provide an exact algorithm which

takes a probabilistic Kripke structure and answers prdisabi value 0; aquery onha state glv.(zn ? model. id h
tic modal queries in polynomial-time in the size of the model On the way to these contributions we provide a theory

Then, we introduce an approximate method for applications ~ for probabilistic modal logic We introduce a framework
in which we have very many or infinitely many states. Exact for modellng prObabI'lSth knowledge that is based on modal

methods are impractical in these applications and we show  logic and possible worlds semantics with a probability dis-
that our method returns a close estimate efficiently. tribution over the accessibility relations. We introduest
exact methods (Top-Down and Bottom-Up) that we can
: choose from based on the properties of our application. We
1 In_trod.u_c_thn ) ) show that when the numbgr gf nested modz‘flpfunctions is
The study of knowledge in artificial intelligence is bothahe small, our Top-Down method works faster, whereas when
can be known?”, and "what does it mean to say that someone js polynomial-time in the number of states) is faster. For
knows something?” apply to many important areas (Halpern yery |arge (even infinite) models neither of these methods is
1987; Faginet al. 1995; Friedman & Halpern 1994;  tractable. Therefore, we use sampling to estimate the truth
Aumann 1986). Formal models of reasoning about knowl- ygjye of the query. In our approximation method we reduce
edge use modal operators and logic to expiessvledge  our problem to inference in Bayesian networks, so all the ex-
andbelief These enable discussion of knowledge of log- act and variational methods applicable to Bayesian netsvork
ical expressions (e.gJames does not know that Jill is at  ¢an be used.
homg separately from the truth values of these expressions  \1ost previous related works are limited to combining

(it holds thauJill i_s at homg.. : . probability with a special case of modal logic in which ac-
In many applications, it is important to consider knowl-  ceggipiity relations are equivalence relations (we daih t
edge more gradually. For example, a poker player may not ghaig| casprobabilistic knowledge Among those, (Fagin
know what his opponents’ cards are, but may have a prob- g pajnermn 1988; Heifetz & Mongin 1998) are mainly con-
ability distribution over the possible hands. Moreover, he cerneqd with providing a sound and complete axiomatization
should have an estimate of other players’ estimates of his ¢4 the |ogic of knowledge and probability. In contrast, we
hand, or otherwise he cannot bluff effectively. Current for 40,5 on providing tractable reasoning methods to answer
mal logical systems (especially modal logics) (Fitting 3PS 4, /eries (on one model) for the general probabilistic modal

cannot repres_e_nt_this knowledg_e or simulate it. On the other logic, as well as the special case of probabilistic knowmtedg
hand, probabilistic representations (Pearl 1988) carerepr Another work related to ours is (Milch & Koller 2000) in

sent distributions over distributions (e.g., Dirichleigps which probabilistic epistemic logic is used to reason about

Copyright © 2007, American Association for Artificial Intelli- the mental states of an agent. This logic is a special case of
gence (www.aaai.org). All rights reserved. probabilistic knowledge with the additional assumption of



agents having a common prior probability distribution over 2.1 Syntax

states _Of the WO”F’; ) ) o For simplicity we assume that the agent wish to reason about
~Adding probabilistic notions to modal logic is also con- 3 world that can be described in terms of a nonemptyPset
sidered in (Herzig 2003; Nie 1992). The former adds aunary of primitive propositions. Probabilistic modal formula®a
modal operator expressing that a proposition is more prob- pyjit up from a countable set of propositional lett@us-
able than its negation, whereas the latter defines an exten-ing propositional connectives:(A) and the modal function
sion of fuzzy modal logic to perform probabilistic semantic i \We useT and_L for truth and falsehood constants. The
based approaches for finding documents relevant to a query. formation rules are:
1. Every propositional letter is a formula.
2 General Probabilistic Modal Logic 2. Tand | are formulas.
3. If X isaformulasois-X.

In this section, we present the syntax and semantics of prob- 4. If X andY are formulas sois{ A Y.
abilistic modal logic. Our framework is based on probabil- 5. If X is a formula,0 < r < 1, anda € {<,=} then
ity distributions over possible states of the world. From an (K (X) a r) is a formula.
agent perspective besides the true state of the world, there All comparison operators can be implemented with rules 3,
are a number of possible states that he cannot distinguish 4, and 5. Note that we have a different modal function
from each other. An agent has a probability distributionrove  for each agent in the domain. We take', O and= to be
the set of states he considers possible. An agent is then saidabbreviations in the usual way.
to knowa facty with probabilityp if the sum of probabilities Suppose that we have two propositional symbols in our
of the states in whiclp is true isp. Holdem examplew; andws, to show whether player 1 or

An application is modeling a Holdem game (Texas Hol- Player 2 wins the hand, respectively. The value of these sym-
dem poker). In Holdem, players receive two downcards as Pols is determined based on the game rules applied on play-
their personal hand, after which there is a round of bet- €rs’ hands and the boardcards. In this example there are two
ting. Three boardcards are turned simultaneously and an- players, therefore we have two modal functiohs,and K,
other round of betting occurs. The next two boardcards are corresponding to player 1 and player B (w:) < 1/2 is

turned one at a time, with a round of betting after each. A an example of a formula in probabilistic modal logic whose
p|ayer may use any five-card combination from the board truth value can be evaluated on the current state of the world

and personal cards. K;(wy) < 1/2 shows that the probability of player 1 win-

The poker ranking hands are as follows (from the highest Nind the hand is less than'2 from her perspective.
to the lowest).Straight flush five consecutive cards of the .
same suit. ("Suits” are spades, hearts, clubs and diamjonds. 2-2 Seémantics
Four of a kind four cards of the same rank. Higher ranks In this section we describe the semantics of our language.
are better (four tens would beat four sixeS)ll house three Our approach is in terms of possible worlds, which is similar
cards of the same rank, with a pair of another raRkish to Kripke structuresn modal logic.
five cards of the same sulbtraight five sequential cards of L o ) )
different suits.Three of a kindthree cards of the same rank.  Definition 2.1 A probabilistic Kripke structuré/ is a tuple
Two pair. two cards of one rank, and two cards of another (S, P, V) inwhich _
rank. One pair. two cards of the same rank, and three unre- 1.5 IS @ nonempty set aftate_spr pOSS|_bIe worlds.
lated cardsNo pair, high card a hand with no pair or any ~ 2- P is a conditional probability function P(s|s) shows
of the other ranking values above. When comparing no pair ~ the probability of accessing staté given that we are in
hands, the highest card determines the winner. states. P(s'|s) greater than zero indicates that is ac-
Suppose that in a two player game, the boardcards are cesslblefronx. There_fore,_ itis s_lmllar to the_access!blllty
KKQ32, Player 1 has AK, and player 2 has K3. From the relation of modal logic. Sinc® is a probab|llty funcnop,
perspective of player 1, player 2 can have any card except we should/ensure that the following constraints hold:
the boardcards and the cards in player 1's hand. In Holdem, ® Y= P(s']s) <1 ) ,
the possible worlds are all the possible ways the cards could ., * FO eachstate € St 5, cq P(s']s) = 1 .
have been distributed among the players. Initially, a playe - V IS aninterpretatiorthat associates with each state in
may consider possible all deals consistent with the cards in S é:cgruth asagnmenft tlo the primitive propositighg(i.e.,
her hand with equal probability. Players may acquire ad- Vi §x P — {true, falsg).
ditional information in the course of the game that allows  The above definition is for one modal function. For cases
them to eliminate some of the worlds they consider possible in which we havei modal functions &7, . .. K;) we need
or change the probability distribution of others. a conditional probability functiorP; for each modal func-
To be able to infer some information about the knowledge tion Kj;. Intuitively, the conditional probability functio#;
of an agent, we first need a language that allows us to expressrepresents the probability of transition from one statééo t
notions of knowledge and its probability in a straightford/a other from the perspective of agent
way. Modal logic is a model for knowledge but it does not In modal logic, the true state of the world is a statein
contain the probability distribution over different staté€or same as in probabilistic modal logic. Based on the true state
this purpose we introdugerobabilistic modal logic of the world an agent has a probability distribution over all



the states that are indistinguishable to her. The truthevalu
of any formula is evaluated with the following definitions.

Definition 2.2 LetM = (S, P, V') be a probabilistic Kripke
structure. Lets be a state inS. For any probabilistic modal
logic formulayp, we defineval(s, ) recursively as follows.

1. val(s, R) = V (s, R) for a propositional letterR.

2. val(s, T) = true.

3. val(s, L) = false.

4. val(s,~X) = —wal(s, X).

5. val(s, X NY) = val(s, X) ANval(s,Y).

6. val(s, K(X) ar) = trueiff Z P(s'|s) ar.

s’e€S,val(s’,X)=true
Now we can useal definition to defing=.
Definition 2.3 M, s = X iff val(s, X) is true.

3 Probabilistic Knowledge (Special Case)

In this section we focus on a special case of probabilistic
modal logic in which accessibility relation is an indicatio
of knowledge. We take an accessibility relation to be an
equivalence relation since we want to capture the intuition
that agent consider staté accessible from stateif in both

s andt agent has the same information about the world, that
is, the two worlds are indistinguishable to the agent. This
constraint seems natural and it turns out to be the apptepria
choice for many applications (e.g., Texas Holdem poker).

The syntax is the same as probabilistic modal logic.

Definition 3.1 A probabilistic knowledge structurk/ is a

tuple (S, R, P, V') in which

1. S'is a nonempty set dftatesor possible worlds.

2. R C S x S is abinary relation onS called theaccessi-
bility relation. R is an equivalence relation.

3. Pisaprobability functionthat associates with each state
in .S a number. This number represents the probability of
being in that state given that we know that we are in one
of the states accessible froam

4. V is aninterpretatiorthat associates with each stateSn
a truth assignment to the primitive propositioRs

As in previous section for the cases in which we have
more than one modal function (e.g<,... K;) we need
a probability function and an accessibility relation cerre
sponding to each modal function. Intuitively, the probabil
ity function P; represents the probability of being in a state
from the perspective of agejt

Based on above definition, all the states in one equiva-
lence class are indistinguishable to the agent. An actatd st
of the world is a state in S. Since the agent cannot distitguis
the states in one equivalence class, the probability of be-
ing in each state is computed. The probabilistic knowledge
semantics can easily be transformed to probabilistic modal
logic semantics.

Definition 3.2 Let M’ = (S’, R/, P', V') be a probabilis-
tic Knowledge structure. The probabilistic Kripke struetu
M = (S, P, V) is equivalent ta\/’ when:

P'(s")
S=8,V=V,andP(s'|s) = )
ZS”GS,SR/S// P/(SN)

> e

Lt 3

Equivalence class of player 1

Figure 1:Holdem example equivalence classes.

Equivalence class of player 2

This formalism is compatible with (Fagin & Halpern
1988). We can model many games with this framework.
A good example is Holdem. Suppose that in a two player
Holdem, the boardcards are KKQ32, player 1 has AK, and
player 2 has K3. We model this with probabilistic knowl-
edge structurd! = (S, Ry, R, P, P5, V). S is the set of
all states, that is, the set of all possible combination ajet
hands when the boardcards are KKQ32.

Ry, and R, are equivalence relations. All the states
that are indistinguishable from the perspective of player 1
are in the same equivalence classApn. We represent a
state as a tuplé K KQ32, AK, K3) in which the compo-
nents are the boardcards, player 1's hand, and player 2's
hand, respectively. Since player 1 does not know any-
thing about her opponent’'s hand@{ K32, AK, K3) and
(KKQ32, AK, 63) are in the same equivalence classin
(Figure 1). P, is the probability distribution over the ele-
ments in an equivalence class iy. We assume thaP;
is uniform since the player does not have any information
about her opponent’s hand.

There are two propositional symbols in this example,
andw-, to show whether player 1 or player 2 wins the hand
respectively. In one state at most one of them can be true. A
tie is presented with botty; andw being false. The value
of w; andwsy (which is part ofV) is predetermined for each
state based on the game rules.

After modeling Holdem with a probabilistic knowledge
structure, we would like to be able to answer if a formula
(query) is true in our model or not. In the following section
we focus on different reasoning methods to answer a query.

4 Reasoning Algorithms
4.1 Exact Reasoning: Top-Down & Bottom-Up

In this section we provide reasoning algorithms that eval-
uate queries (formulas) about a given state. In Holdem,
K, (Ka(we) < 1/4) > 2/3 is an example of a query. If
Alice and Bob are player 1 and player 2 respectively, this
query refers to Alice’s beliefs about Bob’s beliefs. She be-
lieves that with probability greater thaly3 Bob believes



FUNCTION ToDo(states, queryq)
"value” associates with each state, a truth assignmenetprim-
itive propositions. 'P;(s’|s)" is the probability of accessing state
s’ after being in stata.
if ¢ = T then returrtrue
elseifg = L then returrfalse
elseifq is a propositional letter then return valugg)
elseif¢ = —x then return { ToDo(s, x)]
elseif¢g = x A y then

return [ToDog, x) A ToDo(s, y)]
. elseif¢ = (K;(x) a r) then

@ m<—0

(b) for all statess’ accessible froms

if ToDo(s', x) thenm «— m + P;(s|s)
(c) return (n a )

grwnNPE

2]

Figure 2: Top-Down (ToDo) reasoning algorithm.

that with probability> 3/4 he is losing. Therefore, if Bob
is raising, Alice knows that it is likely he is bluffing.

Computing the value of a query is straightforward in the-
ory given a probabilistic modal structure (definition 2.2).
Given the structure answering a query with no modal func-
tion can be done i®(length of query. The expensive part
of the computation of a query is the part with modal func-
tion. Assume that the number of states accessible from a
state isn. The number of states that should be visited to cal-
culate the value of a query is multiplied byfor each nested
modal function (e.g.O(n"™) states should be visited when
we haven nested modal functions).

We can represent a query with an expression tree (Kozen
1997). In an expression tree, the root is the query itself and
the leaves are propositional primitives. Function Top-Dow
(ToDo) of Figure 2 starts from the root of the query’s expres-
sion tree and recursively computes the value of its subfermu
las on a given state. The running time of the function grows
exponentially with the number of nested modal functions.

Theorem 4.1 Let ¢ be the query whose value on stateve
want to compute and lét| be the length of the query. Let

m be the number of nested modal functions andnldie

the maximum number of states accessible from any state.
Function ToDo calculates the truth value of the query on
states in O(|g| x n™) time.

In function ToDo subformulas may be computed multiple
times. We can overcome this inefficiency, if we take a
bottom-up approach. There, we start from the bottom of the
query’s expression tree and avoid computing a subformula
multiple times. Function Knowledge-Bottom-Up (KBU) of
Figure 3 computes the value of a query about a probabilistic
knowledge structure while it avoids recalculation.

We first compute the value of an innermost modal func-
tion (with no nested modal function in it) for all equivalenc
classes, and associate the results with all the statesim the
respective equivalence classes. For computational pespos
we implement this (line 2(a) in function KBU) with a tem-
porary propositional symbol in all states. Then, we replace
the modal function in the query with the temporary propo-
sition. We continue this operation until all modal functson
in the query are computed. In function KBU, we visit each

FUNCTION KBU(states, queryq)
" P;” associates with each state the probability of being in
state given that we are in its equivalence class. "val” reiwaty
calculates the value of a formula with no modal function.
1. m«1
2. forall (K;(z) a r) in ¢ wherez has no modal function

(a) for alle € equivalency classes of relation

| PN ar

that

s’Ge,VaI(s’,z):true
e addt,, toVs' € e
(b) g < replace(K;(x) o r) in g with ¢,
) m—m+1
3. returnvals, q)

FUNCTION GBU(states, queryq)
1. m«1
2. forall (K;(z) o ) in ¢ wherex has no modal function
(a) addtm true < 0, tm, faise < 0, tm t0Vs1 € set of
states
(b) forall s; € set of states
e for all s; thats; is accessible from,
tm,VaI(sg,z) - tm,Val(sg,z) + Pi(s2‘sl)
(c) for all s; € set of states
® by — [tm,true/(tm,true + tm,false)] ar
(d) g < replace(K;(x) o r) in g with ¢,
e m—m+1
3. returnva(s, q)

Figure 3: Bottom-Up reasoning algorithms.

state once for each modal function.

Theorem 4.2 Let g be the query whose value on statere
want to compute. LéiS| be the number of states in the con-
nected component graph of state Function KBU calcu-
lates the value of the queryon states in O(|q| x |S]) time.

Compared to the runtime of function ToDo which is expo-
nential in the number of nested modal functions, the runtime
of KBU is linear in the length of the query (i.e. total number
of modal functions). As a drawback, KBU is linear in the
total number of states. When the number of nested modal
functions is small, function ToDo is faster than KBU. To
choose the best method for our application, we compére
with |S| and decide whether to use ToDo or KBU.

The bottom-up approach can be extended to general prob-
abilistic modal logic. In probabilistic modal logic we haae
directed graph of states. Each edge in this graph correspond
to an accessibility relation of a modal function. For exaapl
in a two player Holdem game an edge is related to eiffer
or K». To extend the bottom-up algorithm to general modal
logic, we need to know which states are accessible from a
particular state. For example to calculdt¢x) on states;
we need to add the conditional probabiliB(sz|s;) of all
statesss in which formulaz is true.

To calculate () on all the states in a probabilistic modal
logic structure, we first calculate on each state. Suppose
thatzx is true (false) in state;. For eachs; that has a di-
rected edge corresponding to modal functigrtoward s-,
we addP(sy|s1) to the temporary variable that we use for
the probability of the states accessible fremin which z
is true (false). The value oK () easily can be calculated
after performing this operation on each state. The General-



FUNCTION BEST(states, queryq) FUNCTION ARea(state, queryq) }L
1. if¢ = K;(x) then "M” is a constant (number of samples)P4” associates wit

@ m+<0 each node in a graph the list of its parents.

(b) for all statess’ accessible froms 1. definel’(q, s) based on definition 4.4

if ToDo(s', ) thenm «— m + P;(s'|s) 2. N « reverse all the edges if(q, s)

(c) returnm 3. for each nodéin N with operatorA

2. else return ToDg{ q) e for eachv, v1,v2in {0, 1}
CPTn(l =v|Pa(l) = (vi,v2)) « (v=v1 Av2)

Figure 4: The algorithm for computing thestprobability. 4. for each nodéin IV with operator-

e for eachv, v’ in {0,1}

CPTn(l = v|Pa(l) = (v')) « (v= )
Bottom-Up (GBU) algorithm for reasoning in general modal | 5. for each nodéin N with operatorK; (z) < r
logic structures is shown in Figure 3. e foreachv,vi,...,var in {0,1}

CPTNn(l =v|Pa(l) = (v1,..., Formula (1
Theorem 4.3 Letq be the query whose truth value on state | return infejﬁe(ncé%)' P(;’((q)s :(fllll = U?M)) o ) @

s we want to compute. Lé$| be the number of states in the % l4,...,l, are all the nodes itV with no parent (we have
connected component of state Function GBU calculates their valuevs, . . ., v, in the tree)
the value of query on states in O(|q| x |S|?) time.

The proof intuition is that each edge is visited once for each ~ Figure 5: Approximate Reasoning (ARea) algorithm.
modal function. The number of edges in a dense graph is
quadratic in the number of nodes. either KBU or GBU instead of ToDo. The input to this algo-
Although the bottom-up algorithms are faster than top- rithm is of the formK (x). The algorithm returns the proba-
down method when the number of nested modal functions bility of 2 from the perspective of modal functidii.
grows, it is still costly when the number of states is large.
Function ToDo can be slightly improved if we avoid un- 4.2 Sampling Subgraphs

necessary calculation. We can avoid calculating a formula | this section we provide a reasoning method that uses sam-
for the same set of states repeatedly by keeping track of pjing to answer queries on probabilistic knowledge struc-
what we have already calculated. This is specially useful t,res. As we showed in the previous section, the running
when the formula has a modal function. Suppose that we time of the bottom-up reasoning methods depend on the
have two statess; ands,. They are indistinguishable o nymper of states. In our poker example, the number of

both player 1 and player 2 (they are in the same equiva- gstates reachable from an initial state given all five boautca

lence class). Now, assume that we want to answer the query ;g equal to(427) (425)_ Therefore, the bottom-up approach is

le(KQ(Kl (z) <a) <b) < Cﬁn sléatt)esl. IBy Iour(;nethod, tractable. However, in a two player game with hundreds of
unction K5 (K () < a) < bshould be calculated onstates 545 when each player has tens of cards, it is not practical

s1 ands, which are both accessible fros. We first cal- to go through all the states multiple times to answer a query.

culate K(K1(z) < a) < b for one stateq;) and then the All the states accessible from a state should be visited
other ). We need to calculatit; () < a for boths, and to evaluate a formula with a modal function. If the num-
s2, to answer the querk(, (X (z) < a) < b on states; and ber of states accessible from a state is too large, evaguatin
also later to answer the same query on statelf we keep K (z) on that state would be expensive. To avoid this expen-
track of the value oft, (x) < a ons; ands; we canreuse  gjye computation, we sample the states and calculatea

it without any computation. smaller set. Then we calculate the probability &f() o r)

Another unnecessary computation happens in answering yiven the sampled data. Since the probability distribuiton
X AY. It Xis false, the value of’ does not matter. AS  qniinyous, in this section we do not allow equality in the
we showed before, the calculation of formulas with more query (i.e. K (z) = 7).
nested modal functions is more expensive than the others. = 11 't nction Approximate Reasoning (ARea) presented
Therefore, in the case of A Y" it is more efficient to first in Figure 5 returns the probability of a query given the sam-
calculate the formula with fewer nested modal functions. It pjeq'data. This probability serves as an estimate for thi tru
may avoid the computation of the other one. value of the query. We use sampling to compiiter) < .

We calculate the number of sampled states in whichtrue

Best probability. So far, our algorithms assumed that we and use it to estimat& (z). The size of the sampled set is
are interested in finding the truth value of a query about fixed throughout the program. This method is much faster
a given a Kripke structure. For example, if player 1 (Al- than the exact methods when the number of states explodes.
ice) believes thaf(; (w;) < 1/3 is true, she probably will The value of a formula on a sampled state is either
not call the other player’s raise. However, sometimes it is true or false. So, the number of sampled states in which
more important for Alice to know thbestvaluer such that formula z is true has a binomial distribution with pa-
K;(wy) < rholds. Based on this number she has a better rameter K(xz). To calculate K(z) < 1/3 on state
estimate of her chance of winning. s, we sampleM states from the probability distribution

Figure 4 extends our earlier algorithms and provides an P(s")
algorithm that computes the best probability about a query >, . P(s")
(e.g. minimumr such thatK (x) < r is true). It can use Pr(K(z) < 1/3|zs,,...,xs,, \Wherex,, represents the value

(we label themsy,...,sy). We compute



(Kl(KZ(y <%) <%)q(s)

L\ L
olojolofolo

Figure 6:T(K1(K2(y) < 1/3) < 1/2,e1(s)).

of x at states;. We define thesampled expression tred a
formula as follows. From this point on we use 1 and 0 in-
stead of true and false.

Definition 4.4 Letq be a query that we want to evaluate on

states. Lete;(s) be the equivalence class of statén R;

(whereR; is the accessibility relation corresponding £3).

Thesampled expression tr@&gq, s) of queryq on states is:

e If ¢ =T thenT(q, s) is a node whose value is 1.

e If ¢ = 1 thenT'(q, s) is a node whose value is 0.

e If ¢ = r andr is a propositional letter thefl'(q, s) is a
node whose value is equal to the value af states.

e If ¢ = —x thenT(q, s) is @a node whose operator isand
it has one childl'(z, s).

e If ¢ =z Ay thenT(q, s) is a node whose operator is
and it has two childrelf'(z, s) andT (y, s).

o If ¢ = (K;(x) < r) then instead ofl'(¢, s) we define
T(q,e;(s)) since the values af on all the states ir;(s)
are the same.T'(q, e;(s)) is a node whose operator is
g and it hasM children T'(z, s1),...,T(x,s)) when
s1,...,sy are theM samples ire;(s).

We assign a label to each node such that the label of the root

of T'(q, s) is q;. Whenever we defifB(K;(x) < r,e;(s))

for the first time, we sampl&/ states from the probability

P(s)

ZSNR,/S P(s") .

The sampled expression tree for quei (K>(y) <
1/3) < 1/2is shown in figure 6 wherd/ = 3. Here,s;
andss are in the same equivalence class thereféfg(y) <
1/3)ey(s1) aNd(K2(y) < 1/3)c,(s,) are the same.

In algorithm ARea, we transforif'(q, s) to a Bayesian
network(Pearl 1998). First, we reverse the direction of all
the edges. Then, we define the Conditional Probability Table
(CPT) for each node (which is the probability distributidn o
the node given its parents). Defining the CPT fox aode
is straight-forward.Pr((z A y)s = |z, = 1y, = 1) =1
wherex, andy, are the two parents of the node, and the
probability of (x A y)s = 1 given any other combination of
the parents’ values 8. This is the natural way to define
For a— nodePr((—x)s = llzs = 0) = 1 andPr((—z)s =
0]zs = 1) = 1 whenz;, is the parent of the node.

We define the CPT for nodg;(z) < r as follows:

Pr((Ki(x) < T)e;s) = lTs, =v1,...,%sy, =v0m) =
Jo f(Ki(z) = w)u™ (1 —w)™ M du
Jo FOKi() = wus (1= )M =2r du

whenz,,, ..., zs,, arethelM parents of the node, ardd; =
Zf‘il v;. Here,K;(z) is a random variable with probability

distribution
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Figure 7:Running time diagram. Number of states(*) ()

density function (pdf)f (K;(x) = u). To estimate the query
given the sampled data, the pdf &% (z) should be known.
For simplicity, we assume thgt{ K;(z) = u) = 1, that is,
the prior probability distribution is uniform.

In this Bayesian network two or more parents of a node
may be the same (e.g., Bayesian network of Figure 6). In
that case, their value should also be equal. This does not af-
fectthe CPT except that some of the combination of parents’
values never happen. The algorithm returns the probability
of the query given the values of the leaveddf, s).

Theorem 4.5 Let M be the number of samples at each
stage. Ley be the query that we want to evaluate on state
The algorithm ARea returns the probability @f= 1 given
the values of the leaves 61 ¢, s) in time exponential in the
tree-width ofT'(q, s) (Kschischang, Frey, & Loeliger 2001;
Huang & Darwiche 1996).

After reducing the problem to inference in Bayesian net-
works, different approximation methods can be used to cal-
culate the probability (Jordaet al. 1999; Yedidia, Freeman,

& Weiss 2004).

5 Experimental Results

In this section we compare the running time of different ex-
act and approximate reasoning algorithms. We run all the
methods on a probabilistic knowledge structure of our Hol-
dem example. As shown in Figure 7, the running time of
ToDo grows exponentially with the number of nested modal
functions while KBU grows linearly. In typical real-world
situations the number of nested modal functions in queries
is small. In Holdem, most of the times the number of nested
modal functions is< 3. The largest degree of modal nest-
ing that a player may care about is the belief of his oppo-
nent about his belief. Therefore, if we know in advance that
the degree of nesting is small, we may prefer to use ToDo.
Notice that ToDo is only faster when the number of nested
modal functions is small. In applications in which the degre
of nesting is high, KBU is the better option.

We can take advantage of both algorithms by writing a
function that uses ToDo for queries with small number of
nested modal functionsr{) and KBU otherwise. Based on
theorem 4.1 and 4.2, comparing® with |S| gives us a good
intuition about which algorithm to use.

Figure 7 also compares the running time of our approxi-
mation method with the exact ones. It shows that when the
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Figure 8:InfBN running time (M = 10).

number of states is not very large, using the approximation

does not make sense. The approximation should be used

only when we have infinitely many or very many states.

Our approximation algorithm (ARea) consists of two
parts: transforming the query to a Bayesian Network (using
sampling), and performing inference on that network. We
refer to them as TranBN and InfBN, respectively. As shown
in Figure 7, the running time of TranBN ©(|q| x M™)
when M is the number of samples used for calculating
modal functionsin is the number of nested modal functions
in the query, andy| is the size of the query. The size of the
Bayesian network is als@(|¢| x M™). The running time of
INfBN depends on the algorithm that we use for inference.
We used Bayes Net Toolbox (BNT) for Matlab written by
Kevin Murphy? in our experiments.

There are many inference algorithms in BNT, each
of which make different tradeoffs between speed, accu-
racy, complexity and generality. In Figure 7, we use a
Monte Carlo sampling inference algorithm called likeli-
hoodweightinginf_engine. It applies importance sampling
and can handle any node type. We also try the junction tree
engine (jtreeinf_engine), which is the mother of all exact in-
ference algorithms. Figure 8 compares the running time of
these two inference engines on our examples. After trans-
forming the query to a Bayesian network, any inference al-
gorithm with any implementation can be used (as InfBN).

ARea returns an approximation to the value of the query.
It calculates the probability of the query being true given
the sampled data. For some queries this probability is high
(> .9) even for a small set of samples. In those cases
ARea returns a good approximation to the value of the query.
However, when a modal function is compared to a number
close to its actual value, the sampling may not work well
(e.g., the query i (z) < r and K(z) is close tor). In
those cases the probability of the query given sampled data
(the output of ARea) shows our lack of confidence in the
value of the query.

6 Conclusion & Future Work

We provided a syntax and semantics for reasoning with
probabilistic modal logic. We suggested exact and approxi-
mate algorithms for evaluating queries over a probahilisti

Kripke structure. We showed that exact methods are not

! Available from: http://bnt.sourceforge.net/

tractable when we have a very large structure. However,
our approximate algorithm returns an estimate (probabilit
of the query given a sampled model) efficiently.

An important direction for future work is investigating be-
lief update in our language. Given an action and an obser-
vation how to change the structure of the world. Also, given
a set of probabilistic modal logic formulds B, it is impor-
tant to answer whether a query holds or not. In this paper,
we do not have any inferendé B = ¢ beyond a straight-
forward model enumeration or the special case of (Fagin &
Halpern 1988). There are many other questions that can be
raised with this paper. "How to learn a probabilistic modal
logic structure?”, "How to perform planning?”, etc.
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