
Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 1

Reasoning about Partially Observed Actions

Megan Nance∗ Adam Vogel Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

mnance@engineering.uiuc.edu{vogel1,eyal}@uiuc.edu

Abstract

Partially observed actionsare observations of action execu-
tions in which we are uncertain about the identity of ob-
jects, agents, or locations involved in the actions (e.g., we
know that actionmove(?o, ?x, ?y) occurred, but do not know
?o, ?y). Observed-Action Reasoningis the problem of rea-
soning about the world state after a sequence of partial obser-
vations of actions and states.
In this paper we formalize Observed-Action Reasoning,
prove intractability results for current techniques, and find
tractable algorithms for STRIPS and other actions. Our new
algorithms update a representation of all possible world states
(the belief state) in logic using new logical constants for un-
known objects. A straightforward application of this idea is
incorrect, and we identify and add two key amendments. We
also present successful experimental results for our algorithm
in Blocks-world domains of varying sizes and in Kriegspiel
(partially observable chess). These results are promising
for relating sensors with symbols, partial-knowledge games,
multi-agent decision making, and AI planning.

1 Introduction
Agents that act in dynamic, partially observable do-
mains have limited sensors and limited knowledge about
their actions and the actions of others. Many such do-
mains includepartially observed actions: observations
of action executions in which we are uncertain about
the identity of objects, agents, or locations involved in
the actions. Examples are robotic object manipulation
(e.g., push(?x) occurs, but we are not sure about?x’s
identity), card games (e.g.,receive(?agent, ?card)
occurs, but we do not know?card’s identity), and
Kriegspiel – partially observable chess (e.g., we observe
capture(?blackP iece, ?x1, ?y1, ?whiteP iece, ?x2, ?y2),
but know only?whiteP iece, ?x2, ?y2).

Inference is computationally hard in partially observable
domains even when the actions are deterministic and fully
observed (Liberatore 1997), and we limit ourselves to up-
dating belief states with actions and observations (filter-
ing). Still, the number of potential applications has moti-
vated considerable work on exact and approximate solutions

∗Currently an employee of Google Inc.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

in stochastic domains, especially to filtering (e.g., (Murphy
2002)). Most recently, research showed that cases of inter-
est (namely, actions that map states 1:1, and STRIPS actions
whose success is known) have tractable algorithms for filter-
ing, if the actions are fully observed (Amir and Russell 2003;
Shirazi and Amir 2005).

In this paper we address the problem ofObserved-Action
Reasoning(OAR): reasoning about the world state at timet,
after a sequence of partial observations of actions and states,
starting from a partially known initial world state at time0.
We are particularly interested in answering questions of the
form “is ϕ possible at timet?” for a logical formula,ϕ.

First (Section 2.1), we formalize the OAR problem us-
ing a transition model and possible-states approach. There,
we assume that we know what operator was executed (e.g.,
we know thatmove(?o, ?x, ?y) occurred), but do not know
some of its parameters (e.g.,?o, ?y).

Then (Section 2.2), we outline two solutions that are
based on current technology, and show that they are in-
tractable. These solutions are a SATPlan-like approach that
is based in part on (Kautzet al. 1996; Kautz and Selman
1996), and an approach based on Logical Filtering (Amir
and Russell 2003; Shirazi and Amir 2005). The main caveat
for both approaches in a partially observed action setting is
their exponential time dependence on the number of time
steps,t, and the number of possible values for the unknown
action parameters.

Motivated by these results for current techniques, we
present a new, tractable algorithm for updating a belief state
representation between time steps with partially observed
actions (Section 3). It does so using new logical constants
for unknown objects. We show that a straightforward ap-
plication of this idea (adding new object constants) is not
complete, and identify and add two key amendments: (1)
one must add implied preconditions and effects of equali-
ties to the belief state before further updating, and (2) one
must keep the belief state representation in a form that can
be processed by subsequent computation.

Our new algorithm is applicable to STRIPS actions that
are partially observable. The update witht partially ob-
served actions is done in timeO(t2 · |ϕ0|), and the size of
the resulting belief state representation is linear int · |ϕ0|,
where|ϕ0| is the size of belief state representation at time
0 (ϕ0 is assumed in CNF). This stands in contrast to stan-

Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 2

dard approaches to belief update and filtering that take time
exponential in the number of propositional symbols inϕ0.

Finally, our approach is complemented with efficient in-
ference at timet about the resulting formula. We experi-
mented with equational model finders, and found that the
Paradox model finder (Claessen and Orensson 2003) allows
specifying a finite domain, and performs orders of magni-
tude better than propositional reasoners and first-order the-
orem provers (Riazanov and Voronkov 2001). Our exper-
imental results show a growth in the time of computation
that is almost linear with the number of time steps,t.

Our experiments (Section 4) are for Blocks-world do-
mains of varying sizes (up to 30 blocks) and Kriegspiel,
with a complete board of (initially) 32 pieces. They show
that we can solve problems of many steps in large domains:
> 10, 000 propositional features and> 10, 000 actions pos-
sible at every step. These results are promising for relat-
ing sensors with symbols, partial-knowledge games, multi-
agent decision making, and AI planning.

2 Partially Observed Actions
Consider an agent playing and tracking a game of
Kriegspiel. Kriegspiel is a variant of chess where each
player can only see his/her own pieces, and there is a referee
who can see both boards. When a player attempts an illegal
move, the referee announces to both players that an illegal
attempt has occurred. The referee also announces when cap-
tures take place, and other information such as Check.

2

321

3

1

Figure 1: Uncertainty in Kriegspiel

For example, Figure 1 shows a white bishop located at
the square(3, 1). If white attempts to move the bishop to
(1, 3), the referee announces “Illegal.” Then, white knows
that the square(2, 2) is occupied by some black piece. When
black makes its next move, the parameters of this action are
hidden from white. If black moves the piece at(2, 2), then
that square becomes empty, and white must update its belief
state accordingly. Similarly, squares that white previously
knew were empty might now be occupied. After just one
partially observed move, the world could be in one of many
possible states.

2.1 Observed-Action Reasoning: The Formal
Problem

In this section we define OAR using a transition model and
a process of filtering (updating belief states with actions and
observations). Our language is zero-order predicate calculus
(with constant symbols and predicates) with equality. We
have a setObjs of constant symbols that appear in our lan-
guage. Anatomis a ground predicate instance, and aliteral

is an atom or its negation. Afluent is an atom whose truth
value can change over time. Aclauseis a disjunction of lit-
erals. For a formulaϕ, the number of atoms inϕ is written
|ϕ|.

In what follows,P is a finite set of propositional fluents,
S ⊆ Pow(P) is the set of all possible world states (each state
gives a truth value to every ground atom), and abelief state
σ ⊆ S is a set of world states. A transition relationRmaps a
states to subsequent statess′ following an actiona. We are
particularly interested inR that are defined by a relational
action schema, such as STRIPS (Fikeset al. 1981). There,
action a(~x) has an effect that is specified in terms of the
parameters~x. Performing actiona in belief stateσ results in
a belief state that includes all the world states that may result
from a in a world state inσ. An observationo is a formula in
our language. We say an actiona(~x) is partially-observable
if ~x contains at least one free variable.

Definition 1 (Filtering Partially Observable Actions). Let
σ ⊆ S be a belief state. Leta be a partially-observable
action, and leto be an observation. The filtering of
a sequence of partial observations of actions and states
〈a1(~x1), o1, . . . at(~xt), ot〉, for ~xi a vector of parameters
(some variables and others constants), is defined as follows:
1. Filter[ε](σ) = σ (ε: an empty sequence)
2. Filter[a](σ) = {s′|〈s, a, s′〉 ∈ R, s ∈ σ}
3. Filter[

∨
i ai](σ) =

⋃
i Filter[ai](σ)

4. Filter[o](σ) = {s ∈ σ|s |= o}
5. Filter[a(~x)](σ) =

Filter[
∨

~c∈Objsarity(a) assign. for the free vars of~x a(~c)](σ)
6. Filter[〈aj(~xj), oj〉i≤j≤t](σ) =

Filter[〈aj(~xj), oj〉i+1≤j≤t]
(Filter[oi](Filter[ai(~xi)](σ)))

OAR concerns answering queries about
Filter[〈ai(~xi), oi〉0<i≤t](σ). Solving it efficiently can
involve encoding belief states in logical formulae (called
belief state formulae), thus avoiding costly updates for
(exponentially sized) belief states. A belief state formulae
ϕ represents the set of states that satisfyϕ. When we
write Filter[a(~x)](ϕ) for some formulaϕ, we mean
Filter[a(~x)] ({s ∈ S|s |= ϕ}). The following section
suggests solutions via straightforward adaptations of current
techniques.

We use the convention that predicates are written in a
lower-case English alphabet, object constants in upper-case
English alphabet, and logical variables for objects are pre-
ceded by a “?”and are in lower-case English alphabet. For
two vectors~x and~y of lengthk, define(~x = ~y) as(x1 =
y1 ∧ . . . ∧ xk = yk). Let arity(a) andarity(p) be the arity
(number of parameters) of actiona and predicatep, respec-
tively. Furthermore, letrpred = maxP∈Predicates arity(P),
and similarly letract = maxA∈Actions arity(A). Finally, let
n be the number of objects in our domain.

2.2 Reasoning with Current Techniques
There are two approaches that are natural to apply to OAR,
and we examine them here.

SATPlan (Kautzet al. 1996; Kautz and Selman 1996)
uses a propositional encoding of a situation calculus theory,

Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 3

and assumes it can find a plan int steps. At each time step,
every action is propositionalized intoaction propositions.
Every predicate is also propositionalized at each time step.
These propositions (both action and non-action) include a
parameter for time. We can use this representation with-
out filtering, by including the complete set of propositional
symbols and axioms for allt steps, using a SAT solver to
find answers to queries about propositional variables at time
t. For the following theorem, letO(SAT (k)) be the time it
takes to determine the satisfiability of formulak.

Theorem 2. A SATPlan-like algorithm takes time
O(SAT (t · (nrpred + nract))). Furthermore, the num-
ber of propositions used is exponential inmax(rpred, ract).

Using propositional or First-Order Logical Filtering
(Amir and Russell 2003; Shirazi and Amir 2005) over a dis-
junction of possible actions is another option. For example,
assume we need to filter some actiona, and all the param-
eters ofa are unknown. We create all ground instantiations
of this action, then filter over the disjunction of those instan-
tiations. Filtering over a disjunction of actions is equivalent
to the disjunction of filtering the actions separately.

The disjunction-filtering method causes an exponential
blow-up in the size of the belief state. Filteringt partially
observed actions (one per time-step) yields a formula of size
larger thannract·t (somewhat smaller if some actions have
fewer unknown parameters). This is because each parameter
can be any of then objects, and there areract parameters.

Theorem 3. Disjunction-filtering a sequence oft actions
takes timeO(t · rpred

n). After t steps, the belief state takes
spaceO((|ϕ0|+ n) · nract·t).

3 Partially-Observed Deterministic Actions
In this section we give two algorithms that update a logical
representation of belief states with partial action and state
observations. The basic insight is an introduction of a sin-
gle new constant symbol into the belief state formula for
each unobserved parameter. Then, as the algorithms filter1

actions and observations, they maintain the constraints that
these new symbols must satisfy, together with the conditions
that literals in our belief state formula satisfy.

Because our algorithms introduce new constant symbols
for unseen parameters, they actually solve a stronger prob-
lem than that defined in Section 2.1. This allows us to an-
swer queries not just about the current belief state, but about
the identityof the unobserved parameters. We define a new
filtering operator to formally represent this change, and re-
late it to the original semantics.

Definition 4 (Filtering with Constants). For a belief state
σ and partially-observed actiona(~x) define

Filterc[a(~x)](σ) =

Filter[a(~x′)]
({

s ∪
{
~x′ = ~A

}
| s ∈ σ, ~A ∈ Objsarity(a)

})
1This is notfiltering per-se because our new representation in-

cludes features (object names) that are not part of the current state,
but we use this name for lack of a better one.

where ~x′ includes all constants of~x and also new con-
stant symbols for all free variables of~x and the filtering

Filter[a(~x′)]
({

s ∪
{
~x′ = ~A

}
| s ∈ σ, ~A ∈ Objsarity(a)

})
is defined with the following transition system:

P~x = P ∪ {x = A | A ∈ Objs, x is a new constant in~x′}

R~x = {〈s ∪ {~x′ = ~A}, a(~x′), s′ ∪ {~x′ = ~A}〉 |
〈s, a(~A), s′〉 ∈ R}.

DefineFilterc[a(~x)](ϕ) asFilterc[a(~x)]({s | s |= ϕ}).
Theorem 5 (Equivalence of Filtering with Constants).
For a states ∈ S, a formulaϕ and an actiona(~x)

Filter[a(~x)]({s | s |= ϕ}) =

{s ∈ S | s ⊆ s′ for somes′ ∈ Filterc[a(~x)](ϕ)}

Accordingly, we present algorithms that computeFilterc

for two classes of actions.

3.1 Domain Description Language
Our algorithms, Param-STRIPS-1:1and Param-STRIPS-
Term, accept as input a domain description in an extension
of the STRIPS (Fikeset al. 1981) action specification lan-
guage, an initial belief state formula, and a sequence of
partially-specified actions and observations.

In this language, each actiona is defined by a single
causal ruleof the form “a causesF if G”, with F a con-
dition that is met aftera is executed, ifG holds before exe-
cutinga. Here,F is limited to be a conjunction of literals;G
is limited to a formula in CNF in Section 3.2, and is limited
to a conjunction of literals in Section 3.3.

We can link these causal rules to our transition model in
a straightforward fashion. For an actiona, let Fa andGa be
from its single causal rule. Furthermore, letI(a, s) be those
propositions which are not changed by executinga in s. We
then define

R = {〈s, a, s′〉 | s |= Ga, s′∩I(a, s) = s∩I(a, s), s′ |= Fa}

The precondition ofa, denotedpre(a), is the set of literals
that appear inG in the rule fora. The effect ofa, denoted
eff(a), is the set of literals that appear inF in the rule fora.
We assume that these actions are successful, i.e. when we
observe an actiona then we know that the precondition ofa
held whena was executed, and now the effect ofa holds.

3.2 STRIPS Domains with CNF Preconditions
In this section we present an algorithm,Param-STRIPS-1:1
(Figure 2) that solves OAR in a generalization of STRIPS
domains. We allow the preconditions of each action to be
a formula in CNF, but restrict our actions to be 1:1, which
allows us to factor the filtering problem.

Definition 6 (1:1 Actions). Grounded actiona(~c) is 1:1
if for every states′ there is at most ones such that
〈s, a(~c), s′〉 ∈ R. A partially-observed actiona(~x) is 1:1
if each of its ground instances is 1:1.

Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 4

PROCEDURE Param-STRIPS-1:1((ai, obsi)0<i≤t, ϕ)
∀i, ai an action,obsi an observation,ϕ a belief-state formula
1: if t=0 then
2: return ϕ
3: return Param-STRIPS-Filter-1:1(at, obst, Param-STRIPS-

1:1((ai,obsi)0<i≤(t−1), ϕ))

PROCEDURE Param-STRIPS-Filter-1:1(a, obs, ϕ)
a an action, obs an observation, ϕ a belief-state for-
mula
1: for free parameterp in PARAMETERS(a) do
2: REPLACE-WITH-CONSTANT(a, p)
3: φ← ϕ∧ PRECONDITIONS(a)
4: for clausec ∈ φ do
5: for clausec′ in PRECONDITIONS(a) do
6: φ← φ∧UNIFY-RESOLVE(c,c′)
7: for literal l(~x) in EFFECTS(a) do
8: if ¬l(~y) or l(~y) occurs inc then
9: c← (~x = ~y) ∨ c

10: return φ∧ EFFECTS(a) ∧obs

PROCEDURE UNIFY-RESOLVE(c,c′)
c andc′ clauses
1: for every two literalsl(~A) ∈ c,¬l(~B) ∈ c′, for some constant

symbols (possibly new)~A, ~B do
2: ψ ← ψ ∧ [(c \ {l(~A)} ∪ c′ \ {¬l(~B)}) ∨ ¬(~A = ~B)]
3: return ψ

Figure 2:Filtering 1:1 STRIPS actions with CNF preconditions

The algorithm progresses as follows: Procedure PARAM-
ETERS returns the parameter list ofa, and REPLACE-
WITH-CONSTANT replaces free parameters ofa with new
constant symbols. Next, the algorithm conjoins the precon-
ditions ofa, representing the assumption thata was success-
ful and the preconditions ofa held in ϕ. Then, for each
clause in the belief-state formula and each clause in the pre-
condition, we perform all possible “resolutions”. These res-
olutions are conditioned on the equality of the arguments of
the complementary literals we resolve on. If the arguments
are different, then the result evaluates to TRUE; if the argu-
ments are equal, then we are left with the correct resolution.
The intuition behind this step is that we must generate all
consequences of the new knowledge obtained through the
preconditions of the current action before the effects of that
same action change the state of the world. Then, steps 7-9
add conditions (in the form of equality statements) to clauses
that contain literals from the effects ofa. These equality
statements are added to specify whether the clause still holds
aftera has been executed; the clause holds only if the argu-
ments ofl in the clause,~y, are different from the arguments
of l in the effect,~x.

Theorem 7 (Correctness of Param-STRIPS-1:1).For
any formula ϕ representing a belief stateσ, a world
state s′, and a sequence of 1:1 partially-observed ac-
tions and observations,〈ai(~xi), oi〉0<i≤t, where ϕt =
Param-STRIPS-1:1(〈ai(~xi), oi〉0<i≤t, ϕ),

s′ ∈ Filterc[〈ai(~xi), oi〉0<i≤t](ϕ) iff s′ satisfiesϕt

We next analyze the running time of our algorithm.

Theorem 8. Let ϕt be a belief-state formula,a is an ac-
tion. Then, procedureParam-STRIPS-1:1returnsϕt+1 in
time O(|ϕt| · rpred · (|pre(a)| + |eff(a)|)). Also, |ϕt+1| =
O(ϕt + |eff(a)|+ |pre(a)| · |ϕt|).

3.3 STRIPS Domains with Term Preconditions

In this section we present an algorithm,Param-STRIPS-
Term (Figure 3), that solves OAR in STRIPS domains. In
STRIPS domains, for a given causal rulea causesF if G,
we limit F andG to be conjunctions of literals. Our algo-
rithm maintains a compact belief state formula which grows
linearly in t. The key insight behind this compactness is
that we only need to addequalitystatements to our formula,
which do not have to be updated in future filtering steps.

PROCEDURE Param-STRIPS-Term((ai, obsi)0<i≤t, ϕ)
∀i, ai an action,obsi an observation,ϕ a belief-state formula
1: if t=0 then
2: return ϕ
3: return Param-STRIPS-Filter-Term(at, obst, Param-STRIPS-

Term((ai,obsi)0<i≤(t−1), ϕ))

PROCEDURE Param-STRIPS-Filter-Term(a, obs, ϕ)
a an action,obs an observation,ϕ a belief-state formula
1: for free parameterp in PARAMETERS(a) do
2: REPLACE-WITH-CONSTANT(a, p)
3: φ← ϕ∧ PRECONDITIONS(a)
4: for clausec in φ do
5: for complex-literallc(~y) in clausec do
6: literal l(~y)← literal from lc(~y)
7: for literal lp(~x) in PRECONDITIONS(a) do
8: if UNIFY(l(~y),¬lp(~x)) then
9: ADD-CONCLUSION(lc(~y), lp(~x))

10: for literal le(~x) in EFFECTS(a) do
11: if UNIFY(l(~y), le(~c)) ∨ UNIFY(l(~y),¬le(~x)) then
12: ADD-CONDITION(lc(~y), le(~x))
13: return φ∧ EFFECTS(a) ∧obs

PROCEDURE ADD-CONCLUSION(lc(~y), lp(~x))
lc a complex-literal,lp a literal

lc(~y)← lc(~y) ∧ (~x 6= ~y)

PROCEDURE ADD-CONDITION(lc(~y), le(~x))
lc a complex-literal,le a literal

lc(~y)← ((~y = ~x) ∨ lc(~y))

Figure 3:Filtering STRIPS actions with term preconditions

Equality statements are added in two different cases,
reflected by the ADD-CONCLUSION and ADD-
CONDITION subroutines in Figure 3. Note that two
vectors ~X and ~Y unify if they are of equal length, and
if Xi = Yi for all ground constants in~X and ~Y . ADD-
CONCLUSION is invoked when a literal in the belief state
unifies with the negation of a literal in the preconditions
of the current action. Equality statements are added to
indicate that the parameters of these two literals cannot
be equal, since we know the preconditions must hold.
ADD-CONDITION is invoked when a literal in the effects
of the current action unifies with a literal (or its negation) in

Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 5

the belief state. In this case, equality statements are added
to indicate when the literal in the belief state still holds.

These equality statements are kept locally for each literal.
We call a literal together with its surrounding equality state-
ments acomplex-literal. In general, a complex-literal is of
the form

[(~E1 = ~A) ∨ . . . ((~Et-1 = ~A) ∨ l(~A))

∧ (~Pt-1 6= ~A)) . . .] ∧ (~P1 6= ~A) (1)

where ~Pi are arguments from literals in the preconditions
of actions (added by ADD-CONCLUSION), and~Ei are ar-
guments from literals in the effects of actions (added by
ADD-CONDITION). A complex-clauseis a disjunction of
complex-literals.

We present our algorithm with the example from Sec-
tion 2. Suppose the literall = ¬empty(2, 2) is part of
our belief stateϕt, indicating that a black piece occu-
pies the square(2, 2). We now observe that black moves
a piece, but we know neither the piece nor its initial or
final destination squares. The partially observed action
a is move(?p, ?x, ?y, ?a, ?b), where ?p is the unobserved
piece,(?x, ?y) is the initial square?p occupies, and(?a, ?b)
is the destination square. PARAMETERS(a) returns
(?p, ?x, ?y, ?a, ?b), and REPLACE-WITH-CONSTANT re-
turnsmove(cp, cx, cy, ca, cb). A precondition of themove
action is that the destination must be empty:empty(ca, cb) ∈
pre(a). Similarly, an effect of themoveaction is that the ini-
tial square becomes empty:empty(cx, cy) ∈ eff(a). Since
¬empty(2, 2) unifies with the preconditionempty(ca, cb),
subroutine ADD-CONCLUSION adds¬empty(2, 2) ∧
((ca 6= 2) ∨ (cb 6= 2)). These conclusions reflect that
(2, 2) cannot be the destination square since it was already
occupied inϕt. Next, since¬empty(2,2)unifies with the
effect empty(cx, cy), subroutine ADD-CONDITION adds
(((cx = 2) ∧ (cy = 2)) ∨ ¬empty(2, 2)). These conditions
reflect that(2, 2) is still occupied after actiona has occurred
only if it was not the initial square for the piece that was
moved. Thus, the final update ofl in ϕt+1 is

[((cx = 2) ∧ (cy = 2))∨(¬empty(2, 2))]
∧ ((ca 6= 2) ∨ (cb 6= 2)) (2)

Subsequent updates would only changel, replacing it with a
form similar to Equation 2.

Unlike Param-STRIPS-1:1, Param-STRIPS-Termdoes
not require that the input actions be 1:1, as long as the initial
belief state is a CNF formula that contains all of its prime
implicates, which we term PI-CNF2.

Theorem 9 (Correctness of Param-STRIPS-Term).For
any PI-CNF formulaϕ representing a belief stateσ, a world
states′, and a sequence of partially observed actions with
1-CNF preconditions and observations〈ai(~xi), oi〉0<i≤t,
whereϕt = Param-STRIPS-Term(〈ai(~xi), oi〉0<i≤t, ϕ),

s′ ∈ Filterc[〈ai(~xi), oi〉0<i≤t](ϕ) iff s′ satisfiesϕt

2If 1:1 actions are used, PI-CNF is not needed. Otherwise, an
initial belief state can be converted to PI-CNF using resolution.

Algorithm Param-STRIPS-Term(Figure 3) updates an ini-
tial belief state witht action-observation steps, returning a
belief state representation of timet. We now show that it
takes time that is proportional tot2, with an output belief
state representation of size proportional tot. Let #lit(ϕt)
be the the number of instances of non-equality literals in
ϕt. Let #eff = maxa |eff(a)| and#pre = maxa |pre(a)|.
Our first theorem concernsParam-STRIPS-Termfor a single
time step, and shows that the algorithm takes time that is lin-
ear in the input size, and outputs a formula that has at most
#eff+ #premore non-equality literals.

Theorem 10 (Time for Update and Size of Result).
Let ϕt be a parametrized belief state formula,a is an
action. Then, procedureParam-STRIPS-Termreturns
ϕt+1 ≡ Filterc[a](ϕt) in timeO(#lit(ϕt) ·rpred · (|eff(a)|+
|pre(a)|)). Also, the returned formula’s number of literals is
#lit(ϕt+1) ≤ #lit(ϕt) + |pre(a)|+ |eff(a)|.

Our update format and belief state format (Equation 1) for
Param-STRIPS-Termimply that every non-equality literal
accumulates at mostarity(a)rpred equality literals after an
update with actiona. Thus, aftert steps, every non-equality
literal accumulates a total oft · rrpred

act equality literals. We
conclude a linear bound for the size of a belief state formula
aftert steps.

Corollary 11 (Iterating Param-STRIPS-Term Filter).
Letϕ0 be a parametrized belief state formula. Fort STRIPS
actions and observations, procedureParam-STRIPS-Term
returnsϕt ≡ Filterc[〈ai(~xi), oi〉0<i≤t](ϕ0) in time O(t2 ·
#lit(ϕ0) · r

rpred

act · rpred · (#eff + #pre)). The belief state
representation size is|ϕt| ≤ |ϕ0| · t · r

rpred

act .

Unlike the SATPlan or the Disjunction-filtering ap-
proaches, our representation does not grow exponentially as
time progresses, and the total time is quadratic int. Param-
STRIPS-Termgives a morecompactsolution to tracking dy-
namic worlds with partially observed actions and fluents
while not compromising efficiency.

4 Experimental Evaluation
We implemented our Param-STRIPS algorithms and tested
them in both the well known Blocks-world and in
Kriegspiel.

0 50 100 150
0

0.05

0.1

0.15

0.2
Average Time−step as Filter Proceeds

Number of Filtering Steps

A
ve

ra
ge

 F
ilt

er
in

g
Ti

m
e

(s
ec

)

5 Blocks
10 Blocks
20 Blocks
30 Blocks

0 50 100 150
0

20

40

60

80

100

120

140

Number of Filtering Steps

A
ve

ra
ge

 F
ilt

er
in

g
Ti

m
e

(s
ec

)

Inference at Time t
5 Blocks
10 Blocks
20 Blocks
30 Blocks

Figure 4: Param-STRIPS-Term in the Blocks-world

Our first experimental results are from the Blocks-world
domain. We experimented with our Param-STRIPS-Term

Appears in Proceedings of 21st National Conference on Artificial Intelligence (AAAI ’06). 6

algorithm over domains of sizes 5 to 30 blocks and action
sequences between 5 and 150 actions in length. The tim-
ing results are shown in Figure 4. We note that the size of
the domain has little effect on the running time, so our algo-
rithm scales well to larger domains. Also, the filter time-step
grows quadratically with the number of performed actions,
as predicted by our theoretical results.

Figure 4 (right) also shows timing results for queries over
the result of Param-STRIPS-Term that were computed us-
ing the Paradox model finder. Interestingly, while infer-
ence takes longer at the result of longer sequences, it grows
slower thant2. One would expect inference to grow expo-
nentially with the number of time steps (the number of new
object constants), so the slow growth is surprising and merits
further investigation.

Next, we constructed random Kriegspiel sequences of 5
to 35 moves. In these sequences, the parameters of white’s
moves are observed, but the parameters of black’s moves are
hidden. All move sequences are on a full 32 piece 64 square
chess board. This domain brings a number of challenges
that space constraints prevent us from describing in length.
It suffices to say that the game has an extremely large state
space.

5 10 15 20 25 30
0

5

10

15

20

25

30
Average Time−step as Filter Proceeds

Number of Filtering Steps

A
ve

ra
ge

 F
ilt

er
in

g
Ti

m
e

(s
ec

)

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

Number of Filtering Steps

A
ve

ra
ge

 R
ea

so
ni

ng
 T

im
e

(s
ec

) Inference at Time t

Figure 5: Param-STRIPS-Term in Kriegspiel

We filtered usingParam-STRIPS-Term, with its efficiency
guarantees, which gave us an approximation to the belief
state. We assume that we are given the type of piece moved,
but not the actual piece nor its initial or final location. Thus,
example actions would bemoveKnight(?p, ?x, ?y, ?a, ?b)
or rookCapture(?c, ?p, ?x, ?y, ?a, ?b). Figure 5 details our
filtering results. Our results are exciting because current
technology cannot track exactly even a few steps (Russell
and Wolfe 2005). Note also the difficulty of using the propo-
sitional STRIPS filter over a disjunction of actions. For each
unspecified move action, each containing 5 parameters, the
propositional filter would have to filter over16 · 84 = 65536
grounded actions. Thus, in practical application, our algo-
rithms render a new class of problems tractable.

5 Conclusion and Discussion
In this paper we presented the problem of Observed-Action
Reasoning and described four algorithms for its solution.
Our main contribution, AlgorithmParam-STRIPS-1:1and
Algorithm Param-STRIPS-Term, update belief-state repre-
sentations using new object constant symbols for unob-
served parameters. This representation allows the tracking

of sequences of partially known actions in practically sized
applications. Our immediate application for this work is in
tracking full games of Kriegspiel.

Beyond our experimental evaluation, there are many real-
world situations to which our algorithms apply. For exam-
ple, consider problems from interpreting narratives. As the
narrative progresses, pronouns are introduced. The verbs
that these pronouns are associated with are represented by
partially observed actions. Together with NLP techniques,
our algorithms can reason about both the end state of world
(after the narrative is finished), and about the unknown pa-
rameters in the actions (i.e., who did what in the story).

Acknowledgments
We wish to acknowledge support from DAF Air Force
Research Laboratory Award FA8750-04-2- 0222 (DARPA
REAL program).

References
Eyal Amir and Stuart Russell. Logical filtering. In
Proc. Eighteenth International Joint Conference on Arti-
ficial Intelligence (IJCAI ’03), pages 75–82. Morgan Kauf-
mann, 2003.
K. Claessen and N. Orensson. New techniques that im-
prove mace-style finite model finding. InCADE-19, Work-
shop W4. Model Computation, 2003.
Richard Fikes, Peter Hart, and Nils Nilsson. Learning and
executing generalized robot plans. In Bonnie Webber and
Nils Nilsson, editors,Readings in Artificial Intelligence,
pages 231–249. Morgan Kaufmann, 1981.
Henry Kautz and Bart Selman. Pushing the envelope: Plan-
ning, propositional logic, and stochastic search. InAAAI-
96, 1996.
Henry Kautz, David McAllester, and Bart Selman. En-
coding plans in propositional logic. In J. Doyle, editor,
Proceedings of KR’96, pages 374–384, Cambridge, Mas-
sachusetts, November 1996. KR, Morgan Kaufmann.
Paolo Liberatore. The complexity of belief update. InPro-
ceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI’97), pages 68–73, 1997.
Kevin Murphy. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. PhD thesis, University of
California at Berkeley, 2002.
Alexander Riazanov and Andrei Voronkov. Vampire 1.1
(system description). InProc. First International Joint
Conference on Automated Reasoning (IJCAR ’01), number
2083 in Lecture Notes in Computer Science, pages 376–
380. Springer, 2001.
Stuart Russell and Jason Wolfe. Finding checkmates in
Kriegspiel. InProc. Nineteenth International Joint Confer-
ence on Artificial Intelligence (IJCAI ’05). Morgan Kauf-
mann, 2005.
Afsaneh Shirazi and Eyal Amir. First order logical filter-
ing. In Proc. Nineteenth International Joint Conference
on Artificial Intelligence (IJCAI ’05). Morgan Kaufmann,
2005.

