Strategies for Focusing Structure-Based
Theorem Proving

Eyal Amir! Sheila Mcllraith 2

Stanford University, Computer Science Department, Gates Building 24, Stanford,
CA 94305-9020, USA

Abstract

Motivated by the problem of query answering over multiple structured common-
sense theories, we exploit graph-based techniques to improve the efficiency of the-
orem proving for structured theories. Theories are organized into subtheories that
are minimally connected by the literals they share. We present message-passing al-
gorithms that reason over these theories while minimizing the number of inferences
done within each subtheory and the number of messages sent between subtheo-
ries. We do so using consequence finding, specializing our algorithms for the case
of first-order resolution, and for batch and concurrent theorem proving. We pro-
vide an algorithm that restricts the interaction between subtheories by exploiting
the polarity of literals. We attempt to minimize the reasoning within each individ-
ual partition by exploiting existing algorithms for focused incremental and general
consequence finding. Finally, we propose an algorithm that compiles each subtheory
into one in a reduced sublanguage. We have proven the soundness and completeness
of our algorithms.

1 Introduction

Theorem provers are becoming increasingly prevalent as query-answering ma-
chinery for reasoning over single or multiple large commonsense knowledge
bases (KBs) [Amir and Mcllraith, 2000]. Commonsense KBs, as exemplified
by Cycorp’s Cyc (e.g., [Lenat, 1995]) and the High Performance Knowledge
Base (HPKB) systems developed by Stanford’s Knowledge Systems Lab (KSL)
(e.g., [Fikes and Farquhar, 1999]) and by SRI (e.g.,[Cohen et al., 1998]), often
comprise tens/hundreds of thousands of logical axioms, embodying loosely

1" E-mail: eyal.amir@cs.stanford.edu
2 E-mail: sheila.mcilraith@cs.stanford.edu

Preprint submitted to Elsevier Science 16 November 2001

coupled content in a variety of different subject domains. Unlike mathemati-
cal theories (the original domain of automated theorem provers), commonsense
theories are often highly structured and with large signatures, lending them-
selves to graph-based techniques for improving the efficiency of reasoning.

Graph-based algorithms are commonly used as a means of exploiting structure
to improve the efficiency of reasoning in Bayes Nets (e.g., [Jensen et al., 1990]),
Constraint Satisfaction Problems (CSPs) (e.g., [Dechter and Pearl, 1988]) and
most recently in logical reasoning ([Amir and Mcllraith, 2000,Darwiche, 1996],
and [Rish and Dechter, 2000] are examples). In all cases, the basic approach
is to convert a graphical representation of the problem into a tree-structured
representation, where each node in the tree represents a tightly-connected
subproblem, and the arcs represent the loose coupling between subproblems.
Inference is done locally at each node and the necessary information is prop-
agated between nodes to provide a global solution. Inference thus proves to
be linear in the tree structure, and often worst-case exponential within the
individual nodes.

We leverage these ideas to perform more efficient sound and complete theo-
rem proving over theories in first-order logic (FOL) and propositional logic. In
this paper we assume that we are given a first-order or propositional the-
ory that is partitioned into subtheories that are minimally coupled, shar-
ing minimal vocabulary. Sometimes this partitioning is provided by the user
because the problem requires reasoning over multiple KBs. Other times, a
partitioning is induced automatically to improve the efficiency of reasoning.
(Some automated techniques for performing this partitioning are discussed in
[Amir and Mcllraith, 2000,Amir, 2001].) This partitioning can be depicted as
a graph in which each node represents a particular partition or subtheory and
each arc represents shared vocabulary between subtheories. Theorem proving
is performed locally in each subtheory, and relevant information propagated
to ensure sound and complete entailment in the global theory. To maximize
the effectiveness of structure-based theorem proving we must 1) minimize the
coupling between nodes of the tree to reduce information being passed, and
2) minimize local inference within each node, while, in both cases, preserving
global soundness and completeness.

This paper builds on the work presented in [Amir and Mcllraith, 2000] and in
[Amir and Mcllraith, 2001]. In that work we introduced the notion of partition-
based logical reasoning (PBLR), and proposed a set of associated message-
passing algorithms for query answering and for satisfiability checking. We de-
fined criteria for a partitioning that would optimize the efficiency of reasoning.
Finally, we proposed a graph-based algorithm to decompose a theory into ap-
propriate partitions, following the proposed criteria. In this paper, we pursue
two aspects of PBLR in much greater depth. We tailor PBLR to first-order
resolution-based theorem proving, comparing it to ordering strategies for res-

olution. Further, we develop on strategies that exploit structure inherent in
theories to minimize and focus inference, leading to appreciable reductions in
the number of inferences performed.

In this paper we present message-passing algorithms that reason over parti-
tioned theories, minimizing the number of messages sent between partitions
and the local inference within partitions. We first extend the applicability
of a message-passing algorithm presented in [Amir and Mcllraith, 2000] to a
larger class of local reasoning procedures, and to focused inference in a sub-
language dictated by the partitioning. In Section 3 we modify this algorithm
to use first-order resolution as the local reasoning procedure. In Section 4 we
exploit Lyndon’s Interpolation Theorem to provide an algorithm that reduces
the size of the communication languages connecting partitions by consider-
ing the polarity of literals. Finally, in Section 5 we attempt to minimize the
reasoning within each partition using algorithms for focused and incremental
consequence finding. We also provide an algorithm for compiling partitioned
propositional theories into theories in a reduced sublanguage. We present al-
gorithms that can use these compiled theories to either process partitions one
after the other in batch, or to perform concurrent message passing. We have
proven the soundness and completeness of all of these algorithms with re-
spect to reasoning procedures that are complete for consequence finding in a
specified sublanguage.

2 Partition-Based Logical Reasoning

To perform theorem proving with structured theories or with multiple dis-
tributed theories, we adopt the basic framework of partition-based logical
reasoning [Amir and Mcllraith, 2001,Amir and MclIlraith, 2000]. In this sec-
tion, we review partition-based logical reasoning framework. We also extend
it with new soundness and completeness results that enable us to minimize
local inference.

We say that {A;}i<n is a partitioning of a logical theory A if A = |J; A;. Each
individual A; is a set of axioms called a partition, L(.A;) is its signature (the
set of non-logical symbols), and L(.A;) is its language (the set of formulae built
with L(A;)). The partitions may share literals and axioms. A partitioning of
a theory induces a graphical representation, G = (V, E,[), which we call the
theory’s intersection graph. Each node of the intersection graph, ¢, represents
an individual partition, A;, (V = {1,...,n}), two nodes i,j are linked by
an edge if £(A;) and L£(A;) have a non-logical symbol in common (E =
{(i,7) | L(A;) N L(A;) # 0}), and the edges are labeled with the set of
symbols that the associated partitions share (I(4, j) = L(A;)NL(A;)). We refer
to (7, 7) as the communication language between partitions A; and A;. We

ensure that the intersection graph is connected by adding a minimal number of
edges to E with empty labels, I(4,j) = (. Figure 1 illustrates a propositional
theory A in clausal form (left-hand side) and its partitioning displayed as
an intersection graph (right-hand side). (Figures 1, 2 and 3 first appeared in
[Amir and Mcllraith, 2000].)

Ai

1) —ok_pump V —on_pump V water

(
A (
4 N
(
(

2) —man_fill V water

)
)

—ok_pump V —on_pump V water 3) ~man_fill V —on_pump
)

—man_fill V water 4) man_fill V on_pump

—man_fill V mon_pum,
4 pump water
man_fill V on_pump ./4.2

—water V —ok_boiler V —on_boiler V steamn

(5) ~waterV —ok_boiler V —on_boiler V steam

water V —steam (6) water V —steam

)

)
ok_boiler V —steam (7) ok-boiler V —steam

)

on_boiler V —steam (8) on_boiler V —steam

—steam V —cof fee V hot_drink
cof feeV teabag A3 steam
—steam V —teabag V hot_drink .
N J (9) —steam V —cof fee V hot_drink

(10) cof fee V teabag
(11) —steam V —teabag V hot_drink

Fig. 1. A partitioning of A and its intersection graph, G.

Figure 2 displays FORWARD-M-P (MP), a message-passing algorithm for
partition-based logical reasoning. It takes as input a partitioned theory, A, an
associated graph structure G = (V, E,l), and a query formula @ in L£(Ay),
and returns YES if the query was entailed by A. The algorithm uses proce-
dures that generate consequences (consequence finders) as the local reasoning
mechanism within each partition or graphical node. It passes a concluded for-
mula to an adjacent node if the formula’s signature is in the communication
language [of the adjacent node, and that node is on the path to the node
containing the query.

Recall, consequence finding (as opposed to proof finding) was defined by
Lee [Lee, 1967] to be the problem of finding all nontautological logical con-
sequences of a theory or sentences that subsume them. A prime implicate
generator is a popular example of a consequence finder? .

To determine the direction in which messages should be sent in the graph G,

3 Recall, an implicate is a clause entailed by a theory. It is prime if it is minimal
in some way. Definitions of prime vary including the use of subsumption, syntactic
minimality, or entailment.

step 1 in MP computes a strict partial order over nodes in the graph using
the partitioning together with a query, Q.

Definition 2.1 (<) Given partitioned theory A = U;<,, Ai, associated graph
G = (V,E,l) and query Q € L(Ay), let dist(i, k) (i,k € V) be the length of
the shortest path between nodes i,k in G. Then i < j iff dist(i, k) < dist(j, k).

PROCEDURE FORWARD-M-P (MP)({A;}i<n, G, Q)
{A;}i<n a partitioning of the theory A, G = (V,E,l) a graph describing the
connections between the partitions, @ a query in L(Ag) (k < n).

(1) Determine < as in Definition 2.1.

(2) Concurrently,

(a) Perform consequence finding for each of the partitions A;, i < n.

(b) For every (i,7) € E such that i < j, for every consequence ¢ of A;
found (or ¢ in A;), if ¢ € L(I(7,7)), then add ¢ to the set of axioms
of Az

(c) If Q is proven?® in Ay, return YES.

2 Derive a subsuming formula or initially add =@ to A and derive inconsistency.

Fig. 2. A forward message-passing algorithm.

Figure 3 illustrates an execution of the MP algorithm using resolution as
the consequence finder within a partition. As can be seen from the exam-
ple, the partitioning reduces the number of possible inference steps by pre-
cluding the direct resolution of axioms residing in different partitions. Indeed,
[Amir and Mecllraith, 2000] showed that partition-based reasoning reduces the
search space significantly, as a function of the size of the communication lan-
guage between partitions.

MP is sound and complete if we guarantee some properties of the graph G
and the consequence finders used for each partition. The graph G is required
to be a tree that is properly labeled for A.

Definition 2.2 (Proper Labeling) A tree-structured representation, G =
(V. E,1), of a partitioned theory A = {A;}i<n is said to have a proper labeling,
if for all (i,7) € E and By, By, the two subtheories of A on the two sides of
the edge (i,7) in G, it is true that 1(i,5) D L(B1) N L(By).

For example, every intersection graph that is a tree is properly labeled. Also,
[Amir and Mecllraith, 2000] presented an algorithm called BREAK-CYCLES
that transforms every intersection graph that is not tree into a properly labeled
tree. Note that the notion of proper labeling is equivalent, in this context, to
the running intersection property used in Bayes Nets.

The consequence finders applied to each partition 7 are required to be complete

Using MP to prove hot_drink

Partition Resolve Generating
Ay (2) ,(4) on_pump V water (ml)
Ay (m1),(1) ok_pump V water (m2)
Ay (m2),(12) water (m3)
clause water passed from A; to As
As (m3), (5) ok_boiler N\ on_boiler D steam (m4)
As (m4),(13) —on_boiler V steam (mb5)
As (m5),(14) steam (m6)

clause steam passed from Ay to Ag
As (9) ,(10) -—steam V teabag V hot_drink (m7)
As (m7),(11) —steam V hot_drink (m8)
A3 (m8), (m6) hot_drink (m9)

Fig. 3. A proof of hot_drink from A in Figure 1 after asserting ok_pump (12) in A,
and ok_boiler (13), on_boiler (14) in A,.

for L;-generation for a sublanguage £; C £(A;) that depends on the graph G
and the query Q.

Definition 2.3 (Completeness for £-Generation) Let A be a set of az-
ioms, L C L(A) a language, and R a consequence finder. Let Cyx »(A) be the
consequences of A generated by R that are in L. R is complete for L-generation

if forall p € L, if A= o, then Cx c(A) = o.

Theorem 2.4 (Soundness and Completeness) Let A be a partitioned the-
ory {A;}icn of arbitrary propositional or first-order formulae, G a tree that
is properly labeled with respect to A, and @ € L(Ax), k < n, a query. For
all i < n, let L; = L(U(3,5)) for j such that (i,7) € E and j < i (there
is only one such j), and let {R;}i<n be reasoning procedures associated with
partitions {A;}i<n. If every ®; is complete for L;-generation then A = Q iff
MP({A;}i<n, G, Q) outputs YES.

PROOF See Appendix A.1. =

The completeness in the last theorem relies on Craig’s interpolation theorem.

Theorem 2.5 (Craig’s Interpolation Theorem [Craig, 1957]) Ifat £,
then there is a formula v involving only symbols common to both o and B such
that a =y and v F B.

Our soundness and completeness result improves upon a soundness and com-
pleteness result in [Amir and Mcllraith, 2000] by allowing consequence finders
that focus on consequences in the communication language between partitions.

In certain cases, we can restrict consequence finding in MP even further by
using reasoners that are complete for £-consequence finding.

Definition 2.6 (Completeness for £-Consequence Finding) Let A be a
set of axioms, L C L(A) a language, and R a consequence finder. R is com-
plete for L£-consequence finding iff for every ¢ € L that is not a tautology,
A l= ¢ iff there exists 1 € L such that Atx v and v subsumes* .

Observe that every reasoner that is complete for £L-consequence finding is also
complete for L-generation, for any language £ that is closed under subsump-
tion [del Val, 1999]. The notion of a consequence finder restricting consequence
generation to consequences in a designated sublanguage was discussed by In-
oue [Inoue, 1992], and further developed by del Val [del Val, 1999] and others.
Most results on the completeness of consequence finding exploit resolution-
based reasoners, where completeness results for L-consequence finding are
generally restricted to a clausal language £. The MP reasoners in Theorem
2.4 must be complete for £;-generation in arbitrary FOL languages, £;. Corol-
lary 2.7 refines Theorem 2.4 by restricting A; and £; to propositional clausal
languages and requiring reasoners to be complete for £;-consequence finding
rather than £;-generation.

Corollary 2.7 (Soundness and Completeness) Let A be a partitioned the-
ory {Ai}i<n of propositional clauses, G a tree that is properly labeled with re-

spect to A, and Q € L(Ag), k < n, a query. Let L; = L(I(3,7)) for j such

that (i,7) € E and j < i (there is only one such j), and let {R;}i<n be reason-

ing procedures associated with partitions {A;}i<n. If every %; is complete for

Li-consequence finding then A = Q iff MP({A;}i<n, G, Q) outputs YES.

In Sections 3, 5 we provide examples of reasoners that are complete for £-
consequence finding and show how to exploit them to focus reasoning within
a partition.

3 Local Inference Using Resolution Strategies

In this section, we specialize our message-passing algorithms with consequence
finders that specifically employ resolution and several of its refinements. We
focus on the first-order case of resolution and the restriction strategies of linear
resolution, set-of-support resolution and some of their variants. Also, we relate
MP to resolution strategies that use order on literals or symbols.

For background material on resolution and resolution strategies, the reader is

4 For clausal theories, we say that clause ¢ subsumes ¢ if there is a substitution @
such that ¥6 C .

referred to [Chang and Lee, 1973,Loveland, 1978 Eisinger and Ohlbach, 1993]
and [Genesereth and Nilsson, 1987].

3.1 Resolution Message-Passing

Resolution [Robinson, 1965] is one of the most widely used reasoning methods
for automated deduction, and more specifically for consequence finding. The
resolution rule is complete for clausal consequence finding. It requires the input
formula to be in clausal form, i.e., a conjunction of disjunctions of unquantified
literals. For general first-order formulae, a transformation to clausal form (e.g.,
[Lloyd and Topor, 1985]) includes Skolemization, which eliminates quantifiers
and possibly introduces new constant symbols and new function symbols.

We present algorithm RESOLUTION-M-P (RES-MP), which uses resolution
(or resolution strategies), in Figure 4. The rest of this section is devoted to
explaining four different implementations for subroutine RES-SEND(¢, j, i),
used by this procedure to send appropriate messages across partitions: the
first implementation is for clausal propositional theories; the second is for
clausal FOL theories, with associated graph G, which is a properly labeled
tree and whose labels include all the function and constant symbols of the
language; the third is also for clausal FOL theories, but it uses unskolemization
and subsequent Skolemization to generate the messages to be passed across
partitions; the fourth is a refinement of the third for the same class of theories
that avoids unskolemization.

PROCEDURE RESOLUTION-M-P(RES-MP)({A; }i<n, G, Q)

{Ai}i<n a partitioned theory, G = (V, E,l) a graph, @ a query formula in the
language of L(Ag) (k < n).

(1) Determine < as in Definition 2.1.
(2) Add the clausal form of Q) to Ay.

(3) Concurrently,

(a) Perform resolution for each of the partitions A;, i < n.

(b) For every (i,j) € E such that 7 < j, if partition A; includes the clause
¢ (as input or resolvent) and the predicates of ¢ are in L(I(7, 7)), then
perform RES-SEND(¢, j, 7).

(c) If Q is proven in Ay, return YES.

Fig. 4. A resolution forward message-passing algorithm.

In the propositional case, subroutine RES-SEND(¢y, j, 7) (Implementation
1) simply adds ¢ to A;, as done in MP. If the resolution strategies being
employed, {R;}i<n, are complete for £;-consequence finding (for £; the clausal

sublanguage of L(I(i, 7)), for j < i and (i,j) € E), then RES-MP is sound
and complete. This is because completeness for L;-consequence finding for
the clausal sublanguage £; of L£(I(i,7)) implies completeness for L(I(3,j))-
consequence finding, if [(7, j) is propositional.

In the FOL case, implementing RES-SEND requires more care. To illustrate,
consider the case where resolution generates the clause P(B,x) (B a constant
symbol and z a variable). It also implicitly proves that 3b P (b, z). RES-MP
may need to send 3b P (b, z) from one partition to another, but it cannot send
P(B,z) if B is not in the communication language between partitions (for
ground theories there is no such problem (see [Slagle, 1970])). In the first-
order case, completeness for consequence finding for a clausal first-order logic
language (e.g., Lee’s result for resolution) does not guarantee completeness
for L-generation for the corresponding full FOL language, £. This problem is
also reflected in a slightly different statement of Craig’s interpolation theorem
[Craig, 1957] that applies for resolution [Slagle, 1970].

A simple way of addressing this problem is to add all constant and function
symbols to the communication language between every connected set of parti-
tions. This has the advantage of preserving soundness and completeness, and
is simple to implement. In this case, subroutine RES-SEND(¢, j, i) (Imple-
mentation 2) simply adds ¢ to A;, as done in MP.

In large systems that consist of many partitions, the addition of so many
constant and function symbols to each for the other partitions has the potential
to be computationally inefficient, leading to many unnecessary and irrelevant
deduction steps. Arguably, a more compelling way of addressing the problems
associated with resolution for first-order theories is to infer the existential
formula 3b P(b,z) from P(B,z), send this formula to the proper partition
and Skolemize it there. For example, if ¢ = P(f(g(B)),) is the clause that
RES-SEND gets, replacing it with 3b P (b, z) eliminates unnecessary work of
the receiving partition.

The process of conservatively replacing function and constant symbols by exis-
tentially quantified variables is called unskolemization or reverse Skolemization
and is discussed in [Luckham and Nilsson, 1971,Bledsoe and Ballantyne, 1978]
and [Cox and Pietrzykowski, 1984]. [Chadha and Plaisted, 1993] presents an
algorithm U that is complete for our purposes and generalizes and simplifies
an algorithm of [Cox and Pietrzykowski, 1984].

Theorem 3.1 ([Chadha and Plaisted, 1993]) Let V' be a vocabulary and
@, be formulae such that ¢ € L(V) and ¢ = 1. There exists F € L(V) that
s generated by algorithm U such that F' = 1.

Thus, for every resolution strategy that is complete for £-consequence finding,
unskolemizing ¢ using procedure U for V = [(7, j) and then Skolemizing the

result gives us a combined procedure for message generation that is complete
for £;-generation. This procedure can then be used readily in RES-MP (or in
MP), upholding the soundness and completeness to that supplied by Theorem
2.4. The subroutine RES-SEND(¢p, j, i) that implements this approach is
presented in Figure 5. It replaces ¢ with a a set of formulae in £(I(4, j)) that
follows from ¢. It then Skolemizes the resulting formulae for inclusion in A;.

PROCEDURE RES-SEND(yp, 7, ©) (Implementation 3)

@ a formula, 7,7 < n.

(1) Unskolemize ¢ into a set of formulae, ® in L(I(, 7)), treating every symbol
of L(p) \ I(3,7) as a Skolem symbol.

(2) For every g9 € @, if ¢, is not subsumed by a clause that is in A;, then add
the Skolemized version of 9 to the set of axioms of A;.

Fig. 5. Subroutine RES-SEND using unskolemization.

Procedure U may generate more than one formula for any given clause ¢. For
example, if ¢ = P(z, f(x),u, g(u)), for I(i,j) = {P}, then we must generate
both VzIyVuIvP(x, y, u,v) and YuIoVzIyP(z, y, u, v) (¢ entails both quanti-
fied formulae, and there is no one quantified formula that entails both of them).
In our case we can avoid some of these quantified formulae by replacing the
unskolemize and then Skolemize process of RES-SEND (Implementation 3)
with a procedure that produces a set of formulae directly (Implementation 4).
It is presented in Figure 6.

Steps (2) and (3) of procedure RES-SEND(, 7, i) (Implementation 4) corre-
spond to similar steps in procedure U presented in [Chadha and Plaisted, 1993],
simplifying where appropriate for our setup. Our procedure differs from un-
skolemizing procedures in Step (4), where it stops short of replacing the Skolem
functions and constants with new, existentially quantified variables. Instead,
it replaces them with new functions and constant symbols. The nondetermin-
ism of Step (3) is used to add all the possible combinations of unified terms,
which is required to ensure completeness.

For example , if ¢ = P(f(g9(B)),x) and I(i,j) = {P}, then RES-SEND (im-
plementation 4) adds P(A,z) to A;, for a new constant symbol, A. If ¢ =
P(z, f(x),u, g(u)),for (i, j) = { P}, then RES-SEND adds P(z, h(z), u, he(u))
to A;, for new function symbols hy, hy. Finally, if ¢ = P(z, f(z),u, f(g(u))),
then RES-SEND adds P(z, f(z),u, h(u)) and P(hi(u), ha(u),u, he(u)) to A,
for h, hq, ho new function symbols.

Theorem 3.2 (Soundness & Completeness of RES-MP) Let A = U;<, A;
be a partitioned theory of propositional or first-order clauses, G a tree that is

properly labeled with respect to A, and @ € L(Ayx), k < n, be a sentence that is
the query. A = Q iff applying RES-MP({A;}i<n, G, Q) (with Implementation

10

PROCEDURE RES-SEND(¢, j, %) (Implementation 4)

@ a formula, 7,7 < n.
(1) Set S« L(p) \ 1(3,7).

(2) For every term instance, t = f(t1,...,1x), in ¢, if f € S and ¢ is not a
subexpression of another term t' = f/(¢},...,¢},) of ¢ with f’ € S, then
replace t with “z < ¢” for some new variable, z (if kK = 0, ¢ is a constant
symbol).

(3) Nondeterministically #, for every pair of marked arguments “z < o”, “y +
B” in @, if o, B are unifiable, then unify all occurrences of z,y (i.e., unify
aj, B; for all markings z < «;, y < [;).

(4) For every marked argument “z < o” in ¢,

(a) Collect all marked arguments with the same variable on the left-hand
side of the “—” sign. Suppose these are = < oy, ...,z < q;.

(b) Let y1,...,y, be all the variables occurring in a1, ..., oy. For every i < [,
replace “z < «;” with f(y1,...,4,) in @, for a fresh function symbol f
(if r =0, f is a fresh constant symbol).

(5) Add ¢ to A;.
2 Nondeterministically select the set of pairs for which to unify all occurrences
of z,y.

Fig. 6. Subroutine RES-SEND without unskolemization.
4 of RES-SEND) outputs YES.

PrROOF See Appendix A.2.

3.2 Linear Resolution

In this section we show how linear resolution, a sound and complete resolution
strategy for consequence finding, can be exploited for first-order MP.

For a set of axioms A, linear resolution [Loveland, 1970,Yates et al., 1970,
[Luckham, 1970,Anderson and Bledsoe, 1970] restricts the search space of res-
olution by allowing only resolutions in which one of the clauses is part of the
initial set of clauses (the input) or those in which one of the clauses is an ances-
tor of the other in the resolution tree. Linear resolution is refutation-complete.
It is also complete for consequence finding [Minicozzi and Reiter, 1972].

Figure 7 presents LIN-MP, our procedure for forward message passing using
linear restriction in each of the partitions. Backward message passing with
linear resolution is analogous. LIN-MP takes as input a partitioned theory A,

11

a graph G and a query (), and returns YES if it can prove Q).

PROCEDURE LIN-MP({A;}i<n, G, Q)
{A;}i<n a partitioning of the theory A, G = (V, E,l) a graph, @ a query
formula in the language of £(Ax) (k < n).
(1) Let dist(i,j) (i,j € V) be the length of the shortest path between i, j
in G. Let ¢ < j iff dist(i, k) < dist(j,k) (< is a strict partial order).
(2) Concurrently,
(a) For every (i,j) € E such that i < j, perform linear resolution for
A;.
(b) If at any point A; = ¢ is proven and ¢’s signature is in £(I(7, 5)),
then add ¢ to the axioms of A;, considering ¢ as input for further

linear resolutions.
(c) If @ is proven in Ay, return YES.

Fig. 7. Linear resolution with forward message passing.

Theorem 3.3 (Soundness and Completeness) Let A = U,<, A; be a par-
titioned theory with a tree G that is properly labeled for A. Let k < n and ¢ be
a sentence whose signature is in L(Ay). A = ¢ iff applying LIN-MP outputs
YES.

PROOF Since linear resolution is complete for clausal consequence find-
ing [Minicozzi and Reiter, 1972], it is enough to show that the way messages
are handled does not jeopardize this completeness. In LIN-MP, messages are
treated as input clauses in the receiving partition. Thus, both the original
input clauses and the messages are considered input clauses. This means that
valid consequences of the original set of clauses and the received messages are
generated by linear resolution in each partition. This guarantees completeness
for consequence generation in each partition, and the theorem follows from
Theorem 3.2. m

It is also possible to define a more restrictive version of message passing that
exploits linear resolution. Instead of treating the messages as inputs in the
receiving partition, we may treat them as resolved clauses (i.e., non-input
clauses). It is not clear if this restriction can be made complete. It is more
restrictive than simple linear resolution in that two clauses may not be resolved
against each other even though one is a descendent of the other.

There are variants of linear resolution that include ordering strategies such as
A-ordering (e.g., [Reiter, 1971]), C-ordering (e.g., [Reiter, 1971]) and Model
Elimination [Loveland, 1969,Stickel, 1988] (more on ordering strategies in Sec-
tion 3.4). All of these ordering-based linear resolution strategies turn out to be
incomplete for consequence finding, despite being refutation-complete. Never-
theless, linear resolution with A-ordering can be made L-generation complete

12

for the necessary £ in a way similar to that used in Section 3.4. Also, the
rest of the strategies can be made complete for an incremental version of
L-generation [Inoue, 1992]. We use this observation in Section 5.

3.8 Set-of-Support and Semantic Resolution

In this section we examine the relevance of set-of-support and semantic reso-
lution to our message-passing algorithms. In the general case, semantic reso-
lution and set-of-support resolution are both incomplete for consequence find-
ing. Nevertheless, we are able to propose an algorithm for sound and com-
plete propositional forward message passing using semantic resolution or set-
of-support.

For a set of axioms A, set-of-support resolution [Wos et al., 1965] restricts the
search space of resolution by distinguishing a set S C A as a support and
disallowing resolutions between axioms in A\ S. Resolvents (between clauses
in S or between a clause in A\ S and a clause in S) are added to S. A set-of-
support refutation is such a sequence of resolutions leading to the empty clause
({})- This algorithm is refutation-complete if A \ S is consistent. Typically,
when trying to prove T - ¢, we assume that 7" is consistent and put —¢ in
the set of support.

Semantic resolution [Slagle, 1967] is similar to set-of-support resolution in
that it divides clauses into two distinguished sets, S, Ss. It differs from set-of-
support in two main ways. First, it requires an interpretation / to be supplied.
This interpretation is used to determine the division of axioms into the two
sets. S7 includes clauses that I satisfies, and Sy includes clauses that I does
not satisfy. Second, it allows resolution of two clauses only if each comes from
a different set (set-of-support resolution allows resolutions between clauses in
the support). Resolvents are added to the proper set (S if I satisfies them,
or Sy otherwise). A semantic I-refutation (with an interpretation I) is such a
sequence of resolutions, leading to the empty clause ({}).

The following theorem gives us some insight into the applicability of both
semantic resolution and set-of-support resolution as reasoning procedures in
our message-passing algorithms. From this theorem, we are able to propose an
algorithm for sound and complete forward message passing using semantic res-
olution or set-of-support. The theorem holds for both FOL and propositional
logic.

Theorem 3.4 ([Slagle et al., 1969]) Let C be a clause, S be a finite set
of clauses and I be an interpretation in L(S U {C}). Assume C is a prime
implicate of S. If I = C, then there is a semantic I-deduction of C' from S.

13

This theorem implies a restricted form of completeness for consequence finding:
Given an interpretation, I, semantic resolution will generate all the prime
implicates that are falsified by I. Semantic resolution is a more restricted
strategy than set-of-support (given the right interpretation, I), so this theorem
applies for set-of-support as well.

Figure 8 presents SEM-MP, our procedure for propositional forward message-
passing using semantic restriction in each of the partitions. Backward message-
passing with semantic resolution is analogous. It takes as input a partitioned
theory A, a graph G, and a query, @, and returns YES if it proves Q.

PROCEDURE MULTI-SEM(A, M, L)
A a theory, M an interpretation, L a set of symbols in £(.A).

(1) For every possible truth assignment, a, to L, let M, be an interpreta-
tion derived from M by changing the truth assignment to the values
mentioned in a. Let A be the set of all those truth assignments.

(2) For every interpretation in {M,}sca, let So ={p | ¢ € A, M, I~ ¢}

(3) For every interpretation a € A, perform semantic resolution with M,.

PROCEDURE SEM-MP({A;}i<n, {M;}i<n, G, Q)
{Ai}i<n a partitioning of a theory A, {M,},<, interpretations in languages
corresponding to the partitioning of A, G = (V, E,l) a graph, @ a query
formula in the language of L£(Ax) (k < n).
(1) Let dist(i,j) (3,7 € V) be the length of the shortest path between i, j
in G. Let ¢ < j iff dist(i, k) < dist(j, k) (< is a strict partial order).
(2) Concurrently,

(a) For every (i,7) € E such that i < j, perform MULTI-SEM(A;,
M;, 1(i,7)).

(b) If at any point A; = ¢ is proven and ¢’s signature is in £(I(3, 7)),
then add ¢ to A; (putting it in the correct set for each concurrently
running semantic resolution).

(c) If @ is proven in Ay, return YES.

Fig. 8. Semantic resolution with forward message passing.

The reason this algorithm applies only to the propositional case is that Step
(1) in procedure MULTI-SEM requires us to enumerate all interpretations
over (i, 7). Procedure SEM-MP applies semantic resolution in MP in a way
that uses several complementary interpretations. For each message that may
be sent, we keep an interpretation that does not satisfy it. For example, if
an edge label includes | propositional symbols, we need to keep 2! interpre-
tations (each one does not satisfy a clause of size [in the language of the
link). If an interpretation satisfies all the clauses, then we do not need to con-
sider it in running our semantic resolution. This completes the procedures for
consequence finding and makes SEM-MP complete.

14

Theorem 3.5 (Soundness and Completeness) Let A = U,<, A; be a par-
titioned theory with the properly labeled tree G. Let k < n and ¢ be a sentence
whose signature is in L(Ag). A | ¢ iff applying SEM-MP outputs YES.

PrOOF Procedure MULTI-SEM generates all the consequences in the lan-
guage in which messages need to be sent, according to Theorem 3.4. By The-
orem 3.2, this procedure is sound and complete. m

It is not clear if there is an algorithm that corresponds more closely to set-of-
support resolution that is also complete.

3.4 Directional Resolution, A-ordering and Lock Resolution

So far we have examined resolution strategies, demonstrating their applica-
bility to our message-passing algorithms. The results in this section serve to
place our message-passing algorithms in a broader context by relating them to
some other resolution strategies. We examine three resolution strategies that
are incomplete for consequence finding: directional resolution, A-ordering res-
olution and lock resolution. These strategies use orderings on symbols/literals
to restrict the space of possible resolutions.

We present two interesting results relating these resolution strategies to our
message-passing algorithms. First, we show that our forward message-passing
algorithm, MP, can simulate the symbol ordering strategies of directional res-
olution, A-ordering and lock resolution if the orders correspond to orders on
predicate/propositional symbols. Second, we show that in the propositional
case directional resolution, A-ordering and lock resolution can likewise simu-
late MP, if MP uses unrestricted or directional resolution in each of the parti-
tions. In the FOL case, the same result holds if all the function and constant
symbols are on all the links between partitions.

Directional resolution® [Davis and Putnam, 1960,Dechter and Rish, 1994] is
a procedure for concluding satisfiability of a propositional logic theory. For
a set of propositional axioms A and an order on the propositional symbols
Q1, ..., Qn (Qn is the highest symbol), directional resolution resolves out each of
the propositions in order, if it can. Dechter and Rish [Dechter and Rish, 1994]
present directional resolution using the framework of bucket elimination: Par-
tition the clauses of A into buckety, ..., bucket,, where bucket; contains all the
clauses whose highest literal is ;. For © = n to 1, perform unit resolution
on bucket; and perform all resolutions possible on); in bucket;, putting the
resolvents into the proper buckets. A is satisfiable iff the empty clause was not

5 This name first appeared for this strategy in [Dechter and Rish, 1994].

15

generated in any bucket. Directional resolution is complete for satisfiability.

A-ordering (atom ordering) [Reynolds, 1965,Kowalski and Hayes, 1969] is a
FOL version of directional resolution. It accepts a total order on literals and
uses it as follows: Resolving clauses C7,Cs is allowed only if the resolved
literal [is the highest literal in both® C; and C,. Typically, the order is
given over predicate symbols (instances of each predicate are equivalent for
this order), but it can be given over all atoms if the order satisfies some
natural properties (see [Loveland, 1978]). A-ordering is refutation-complete. It
is sometimes combined with other strategies (e.g., linear resolution, semantic
resolution, etc.), with modifications that allow the preservation of refutation-
completeness.

Lock resolution [Boyer, 1971] is another resolution strategy for first-order the-
ories. It generalizes both directional resolution and A-ordering. In a theory
A, every literal instance is given an index. The same literal appearing in two
different clauses may receive a different index for each instance. Resolution is
allowed between two clauses C1, Cy only upon their respectively lowest literals
(literals with lowest index in the clause). The literals in the resolvent keep
their original index (even if they actually changed due to unification). If two
identical literals appear in the resolvent, only the one with lowest index is
kept. Lock resolution is refutation-complete.

Note that none of these ordering-based resolution strategies is complete for
consequence finding. They are not even L-generation complete, in the general
case. For example, {pV ¢,pV —q} F p, but we will not conclude p if the order
on propositional symbols requires our algorithm to resolve upon p first. Nev-
ertheless, these strategies are closely related to message passing. For any given
partitioned theory and graph, an order can be chosen that makes these com-
plete for L;-generation (as introduced in Section 2), for the needed languages
L;. Thus, such an order make these strategies suitable for inclusion in MP, for
some or all the partitions. Also, for any order, both directional resolution and
A-ordering can be simulated by MP, and for many indices, the lock resolution
can also be simulated by MP. We first present the following useful lemma:

Lemma 3.6 Let Rp be a FOL resolution procedure that resolves two clauses
C1,Cy only if each of them includes a literal containing P, the two respective
literals are unifiable, and the resolution is done on these literals. Let Lp be the
language including all the symbols of A besides P. Then, Rp is Lp-generation
complete.

PROOF See Appendix A.3. =

6 In some places (e.g., [Chang and Lee, 1973]), the reference A-ordering is made to
a modified procedure in which we are not required to resolve on the highest literal
in Cy; this is not the case with the original procedure.

16

This lemma implies that the ordering-based resolution strategies we describe
above can all be used as partition reasoners in MP (and its variants). To
ensure completeness of MP, we make sure that the reasoner in A; is £(I(3, 7))-
generation complete for the right 7 (determined by the query and its partition).
Lemma 3.6 says that we only need to make sure the order is such that the
symbols of [(, j) are last in the order and have equal precedence.

In the following, we consider the resolutions allowed by each of the resolution
strategies, assuming they are run indefinitely. We do not consider which proved
the goal first, but rather we examine the respective search spaces.

Theorem 3.7 (MP Simulates Orderings) The following relationships hold
between the MP algorithm and the ordering strategies of directional resolution,
A-ordering and lock resolution:

(1) Let A be a propositional theory and <4 a total order on its n proposi-
tional symbols. Then, there is a partitioning {A;}i<, of A, a graph G
and partition reasoners that are generation-set complete such that run-
ning MP does not perform more resolutions than directional resolution
(alternatively, A-ordering) of A with order <.

(2) Let A be a FOL theory and <4 a total order on its n predicate symbols.
Then, there is a partitioning of A into {A;}i<n, a graph G and partition
reasoners that are generation-set complete such that running MP does not
perform more resolutions than A-ordered resolution of A with order <j,.

(8) Let A be a FOL theory and I an indexing of its literal instances. Let
n = max eral (1). Assume that I(l) = I(ls) if l1,ls have the same
predicate symbol. Then, there is a partitioning A = U,;<,, A; and partition
reasoners that are generation-set complete, such that running MP does
not perform more resolutions than lock resolution of A with index I.

PROOF See Appendix A.4.

Assuming we have a propositional theory, we use unrestricted resolution for
each partition in MP. Then, directional resolution and lock resolution can be
used to search a proof space that is no larger than that used by MP.

Theorem 3.8 (Orders Simulate MP) The following relationships hold be-
tween the MP algorithm and the ordering-based resolution strategies of direc-
tional resolution and lock resolution:

(1) Let A = U;<, Ai be a partitioned propositional theory and G(V, E,1) be
a tree that is properly labeled for A. Then, there is a total order, <,
on A’s propositional symbols such that if a clause C is a consequence
of directional resolution of A with order <, then C is a consequence
of running MP on this partitioning using unrestricted resolution in each
partition.

17

(2) Let A = U;<,, Ai be a partitioned FOL theory and G(V, E,l) be a tree
that is properly labeled for A. Then, there is a total order, <4, on A’s
predicate symbols such that if a clause C' is a consequence of A-ordered
resolution of A with order <4, then C is a consequence of running MP
on this partitioning using unrestricted resolution in each partition.

(8) Let A = Uj<p, Ai be a partitioned propositional theory and G(V, E) be a
tree that is properly labeled for A. Then, there is an index, I, on A’s literal
instances such that if a clause C' is a consequence of lock resolution of A
with index I, then C is a consequence of running MP on this partitioning
using unrestricted resolution in each partition.

PROOF See Appendix A.5.

Theorem 3.8 does not hold for neither A-ordered resolution or lock resolution
in the FOL case, if we do not include all the function and constant symbols
on the links in G. Let C, = P(B,z),C] = P(C,y),Cy = —~P(z, D), have the
partitions A; = {C1,C1}, Ay = {C5}, and have k = 2 (i.e., messages go from
A; to Ap). Lock resolution would always allow resolving Cy,Cy and C7, Cs.
MP will have the intersection language include only P, so the only message
sent to Ay from A; is FbP(b,z). This will make A5 resolve only one sentence
against Cy instead of two.

Finally, [Amir and Mcllraith, 2000] discussed the relationship and limitations
of MP, the length of interpolants required for proofs in MP. Our results above
(variable ordering can be simulated by MP (Theorem 3.7)) combined with
that discussion show some potential limitations to using variable ordering
strategies for resolution in general. If the interpolants needed for the proof
with MP are large, variable ordering (as in directional resolution) may lead
us to spend significantly more time than we could have spent had we not
used that order (or any other order). In fact, in the propositional case it is
an open question whether or not the size of the smallest interpolant can be
polynomially bounded by the size of the two formulae a, 8. A positive answer
to this question would imply an important consequence in complexity theory,
namely that NP N coNP C P/poly [Boppana and Sipser, 1990].

4 Minimizing Node Coupling Using Polarity

MP and RES-MP use the communication language to determine relevant in-
ference steps between formulae in connected partitions. This section improves
the efficiency of MP and RES-MP by exploiting the polarity of predicates in
our partitions to further constrain the communication language between par-
titions. This leads to a reduction in the number of messages that are passed
between adjacent partitions, and thus a reduction in the search space size of the

18

global reasoning problem. Our results are predicated on Lyndon’s Interpola-
tion Theorem [Lyndon, 1959], an extension to Craig’s Theorem [Craig, 1957].

Theorem 4.1 (Lyndon’s Interpolation Theorem) Let o, be sentences
such that o = (3. Then there exists a sentence v such that o = v and v+ §3,
and that every relation symbol that appears positively [negatively] in v appears
positively [negatively] in both « and B. v is referred to as the interpolant of «
and 5.

This theorem guarantees that MP need only send clauses with literals that
may be used in subsequent inference steps. For example, let {A;, A2} be a
partitioned theory, G = (V ={1,2}, E={(1,2)}, 1) be a graph, and @ €
L(A5), be a query. If MP concluded P from A;, and P does not show positively
in Ay = @ (i-e., P does not show negatively in A, and does not show positively
in @), then there is no need to send the message P from A; to As.

Procedure POLARIZE (Figure 9) takes as input a partitioned theory, associ-
ated tree G = (V, E, 1), and a query Q. It returns a new graph G' = (V, E,l)
that is minimal with respect to our interpretation of Lyndon’s Interpolation
Theorem. The labels of the graph now include predicate/propositional symbols
with associated polarities (the same symbol may appear both positively and
negatively on an edge label). All function and object symbols that appeared
in [also appear in [’ for the respective edges.

PROCEDURE POLARIZE({A;}i<n, G, Q)

{A;}i<n a partitioning of the theory A, G = (V,E,l) a tree and @ a query
formula in £L(Ag) (k < n).

(1) For every 4,5 € V, set I'(%,7) to be the set of object and function symbols
that appear in [(%, j), if there are any.

(2) Rewrite {A;}i<, such that all negations appear in front of literals (i.e., in
negation normal form).

(3) Determine < as in Definition 2.1.

(4) For all (4,5) € E such that 7 < j, for every predicate symbol P € [(3, j),

(a) Let V1, V5 be the two sets of vertices in V separated by i in G, with
j eV

(b) If [-]P appears in V] then,
if [-]P appears in @ or =[-]P appears in A, for some m € V5, then
add [=]P to I'(i, 7).

(5) Return G' = (V, E,l").

Fig. 9. Constraining the communication language of {A;};<, by exploiting polarity.

Theorem 4.2 (Soundness and Completeness of POLARIZE + MP)

19

Let A be a partitioned theory {A;}i<n of arbitrary propositional or first-order
formulae, G a tree that is properly labeled with respect to A, and Q € L(Ay),
k <n, a query. Let G' be the result of running POLARIZE({A;}i<n, G, Q).
Let L; = L(1(3,7)) for j such that (i,7) € E and j < i (there is only one such
7), and let {R;}i<p, be reasoning procedures associated with partitions {A;}i<n.
If every ®; is complete for L;-generation then A = ¢ iff MP({A;}i<n, G',Q)
outputs YES.

Procedure POLARIZE can be combined with MP in a more dynamic fashion,
yielding further restriction on the communication language. For example, step
(4b) may determine {'(4, j) such that we may need to send PV @ from A; to
A; when running M P on this theory and query. It may do so by adding P
(positively) to I'(z,j) because =P appears in A,, for some r € V5. However, if
we determine those polarities on the vocabulary of the links dynamically, and
r 4 j then r is not on the path to the goal partition, so we may still not have
to send this message from A; to A;. Ounly if later there is another partition,
A, that is on the path to the goal such that =P appears in it (e.g., after A,
sent a message with =P that arrived to A;), then we will allow this message
to be sent from A; to A,.

Darwiche [Darwiche, 1996] proposed a weaker use of polarity in graph-based
algorithms for propositional SAT-search. His proposal is equivalent to first
finding those propositional symbols that appear with a unique polarity through-
out the theory and then assigning them the appropriate truth value. In con-
trast, our proposed exploitation of polarity is useful for both propositional and
first-order theories, it is more effective in constraining inference steps, and is
applicable to a broader class of message-passing algorithms problems. In par-
ticular, our method is useful in cases where symbols appear with different
polarities in different partitions.

5 Minimizing Local Inference

To maximize the effectiveness of structure-based theorem proving, we must
minimize local inference within each node of our tree-structured problem rep-
resentation, while preserving global soundness and completeness. First-order
and propositional consequence finding algorithms have been developed that
limit deduction steps to those leading to interesting consequences, skipping
deduction steps that do not. Restricting reasoning to L-consequence finding
in the output communication language of a partition is not sufficient since
L-consequence finding can be achieved in some cases by general consequence
finding followed by filtering for consequences in £. We require algorithms that
exploit £ to minimize the number of deduction steps being performed.

20

In the propositional case, the most popular algorithms for performing focused
consequence finding are certain £-(prime) implicate finders. (See [Marquis, 2000]
for an excellent survey.) SOL-resolution (skipping ordered linear resolution)
[Inoue, 1992] and SFK-resolution (skip-filtered, kernel resolution) [del Val, 1999
are two first-order resolution-based L-consequence finders. SFK-resolution is
complete for first-order L£-consequence finding, and it reduces to Directional
Resolution (see Section 3.4) in the propositional case. In contrast, SOL-resolution
is not complete for first-order £-consequence finding, but is complete for first-
order incremental L-consequence finding. Given new input ®, an incremental
L-consequence finder finds the consequences of A U ® that were not entailed
by ® alone. Defining completeness for incremental L-consequence finding is
analogous to Definition 2.6.

In the rest of this section, we propose strategies that exploit our graphical mod-
els and specialized consequence finding algorithms to improve the efficiency of
reasoning. Following the results in previous sections, using SFK-resolution as a
reasoner within partitions will preserve the soundness and completeness of the
global problem while reducing the number of inference steps. SFK-resolution
can be used by all of the procedures below. Unless otherwise noted, the algo-
rithms we describe are limited to propositional theories because first-order con-
sequence finders may fail to terminate, even for decidable cases of FOL. (A re-
stricted class of first-order formulae for which we do not encounter this problem
is monadic logic without function symbols [Marquis, 2000,Ayeb et al., 1993]).
Consequently the proposed use of these particular algorithms is limited to the
propositional case unless otherwise noted.

The first strategy is compilation of the theories in individual partitions into
theories comprised solely of the minimal consequences of all the communi-
cation languages associated with an individual partition, L.omm,. Figure 10
presents COMPILE({A;}i<n, G), an algorithm that takes as input a parti-
tioned theory {A;}i<, and associated tree G, that is properly labeled, and
outputs a compiled partitioned theory {A;}zgn Each new partition is com-
posed of the logical consequences of partition A; that are in the language
L omm,;, all the communication languages associated with A;. Since all mes-
sages received and sent by the partition are drawn from L smm,, the compiled
theory is adequate. Theorem 5.1 proves that MP is sound and complete with
the compiled theory. Observe that this compilation is query independent, as
long as the query can be expressed in the language of an existing partition.
Prime implicate finders have commonly been used for knowledge compilation,
particularly in propositional cases. SFK-resolution can be used as the sound
and complete L-consequence finder in Step 2 of COMPILE.

Theorem 5.1 (Soundness and Completeness of COMPILE + MP) Let

A be a partitioned theory {A;}i<n of arbitrary propositional formulae, G a tree
that is properly labeled with respect to A, and Q € L(Ax), k <n, a query. Let

21

A’ be the output of COMPILE(A, G), with Ay, substituted for A,. Let {®;}i<n
be the L;-consequence finders associated with partitions {A;}zgn If every %
is complete for L;-consequence finding then A = Q iff MP({A:}icn, G, Q)
outputs YES.

PROOF See Appendix A.6. m

Knowledge compilation can often create a large theory. Each partition pro-
duced by COMPILE({A;}i<n, G) will be of worst case size of O(2F(£comm:))
clauses. Since our assumption is that partitions are produced to minimize
communication between partitions, | L(Lomm,) | should be much smaller than
| L(A;)|. As a consequence, we might expect the compiled theory to be smaller
than the original theory, though this is not guaranteed (for example, see
[Schrag and Crawford, 1996]). Under the further assumption that the theo-
ries in partitions are fairly static, the cost of compilation will be amortized
over many queries. There are other compilation methods proposed by del Val
and others that may provide a more parsimonious compilation than prime
implicates. We leave this to future work.

PROCEDURE COMPILE({A;}i<y, G)
{A;}i<n a partitioning of the theory A, G = (V, E,l) a tree with proper labeling
for A. For each partition A;, For i =1,... ,n,

(2) Using a sound and complete L-consequence finder,
perform L opmm;-consequence finding on each partition A;,
placing the output in a new partition .A;.

Fig. 10. A partition-based theory compilation algorithm.

Proposition 5.2 Let A = U;<,, A; be a partitioned theory with associated
tree G that is properly labeled for A. Let L omm, = L(Ugjer (i, 5)))- For all
© € Li C Leomm; € L(A), A E ¢ iff A, = ¢, where {A;}i<,, are the compiled
partitions output by COMPILE({A;}i<n, G).

We may use our compiled theories in several different strategies for batch-style
and concurrent theorem proving, as well as in our previous message-passing
algorithms. Figure 11 presents an algorithm for batch-style structure-based
theorem proving. BATCH-MP takes as input a (possibly compiled) partitioned
theory, associated tree GG that is properly labeled, and query (). For each par-
tition in order, it exploits focused L-consequence finding to compute all the
relevant consequences of that theory. It passes the conclusions towards the
partition with the query. This algorithm is very similar to the bucket elimina-
tion algorithm of [Dechter and Rish, 1994]. BATCH-MP preserves soundness
and completeness of the global problem, while exploiting focused search within

22

each partition.

PROCEDURE BATCH-MP ({Az}zgna G, Q)

{Ai}i<n a (compiled) partitioning of the theory A, G = (V,E,l) a properly
labeled tree describing the connections between the partitions, @) a query in

L(Ag) (k < n).

(1) If {A;}i<n, is a compiled theory, replace partition A with the partition Ay
from the uncompiled theory.

(2) Determine < as in Definition 2.1.
(3) Let £; = L(I(4,7)) for j such that (i,j) € E and j <7?.

(4) Following < in a decreasing order, for every (i,j) € E such that j < %,
Run the £;-consequence finder on A; until it has exhausted its consequences,
and add the consequences in £; to A;.

(5) If Q is proven® in Ay, return YES.

2 There is only one such j.
> Derive a subsuming formula or initially add —=Q to Ay and derive inconsistency.

Fig. 11. A batch-style message-passing algorithm.

Theorem 5.3 (Soundness and Completeness of BATCH-MP) Let A be
a set of clauses in propositional logic. Let {R;}i<n be the L;-consequence finders
associated with partitions {A;}i<n in step 4 of BATCH-MP ({A;}i<n,G,Q).
If every ®; is complete for L;-consequence finding then A = Q iff applying
BATCH-MP({A;}i<n,G,Q) outputs YES.

PROOF See Appendix A.7. m

Our final algorithm, CONCURRENT-MP, (Figure 12), takes as input a (pos-
sibly compiled) partitioned theory, associated tree G that is properly labeled,
and query (). It exploits incremental £-consequence finding in the output com-
munication language of each partition to compute the relevant incremental
consequences of that theory, and then passes them towards the partition with
the query. Once again, SFK-resolution can be used as the sound and complete
L-consequence generator for the preprocessing (Step 4). In the case where the
theory is compiled into propositional prime implicates, the consequences in £;
may simply be picked out of the existing consequences in A;. SOL-resolution
can be used as the sound and complete incremental £-consequence finder (Step
6a). CONCURRENT-MP preserves soundness and completeness of the global
problem in the propositional case, while exploiting focused search within each
partition.

Theorem 5.4 (Soundness and Completeness of CONCURRENT-MP)
Let A be a set of clauses in propositional logic. Let {R;}i<n be the L;-consequence

23

PROCEDURE CONCURRENT-MP ({A;}i<n, G, Q)

{Ai}i<n a (compiled) partitioning of the theory A, G = (V, E,l) a properly
labeled tree describing the connections between the partitions, @ a query in

L(Ar) (k < n).
(1) Determine < as in Definition 2.1.
(2) Let £; = L(I(4,7)) for j such that (i,j) € E and j <7?.

(3) If {Ai}i<n, is a compiled theory, then replace partition A with the partition
Ay, from the uncompiled theory.

(4) For every i < n, run the £;-consequence finder on partition A; until it has
exhausted its consequences.

(5) For every (i,j) € E such that j < % add the L;-prime implicates to
partition A;.

(6) Concurrently,

(a) For every (i,j) € E such that j < % perform incremental £;-
consequence finding for each of the partition A4; and add the the con-
sequences in £; to A;.

(b) If Q is proven® in Ay, return YES.

3 There is only one such j.
> Derive a subsuming formula or initially add =Q to A and derive inconsistency.

Fig. 12. A concurrent message-passing algorithm.

finders associated with partitions {A;}i<, in step 4 of CONCURRENT-MP
and let {R}}i<n be the incremental L;-consequence finders associated with par-
titions {A;}i<n in step 6 of CONCURRENT-MP({A;}i<n,G,Q). If every %;
is complete for L;-consequence finding, and every R, is complete for incre-
mental L;-consequence finding then A = Q iff applying CONCURRENT-
MP({A;}i<n,G,Q) outputs YES.

PROOF See Appendix A.8. m

6 Related Work

A number of Al reasoning systems exploit some type of structure to improve
the efficiency of reasoning. While our exploitation of graph-based techniques
is similar to that used in Bayes Nets (e.g., [Jensen et al., 1990]) our work is
distinguished in that we reason with logical rather than probabilistic theo-
ries, where notions of structure and independence take on different roles in
reasoning. Our work is most significantly distinguished from work on CSPs

24

(e.g., [Dechter and Pearl, 1988]) and more recently, logical reasoning (e.g.,
[Darwiche, 1996,Rish and Dechter, 2000]) in that we reason with explicitly
partitioned theories using message passing algorithms and our algorithms ap-
ply to FOL as well as propositional theories.

In the area of FOL theorem proving, our work is related to research on parallel
theorem proving ([Bonacina and Hsiang, 1994,Denzinger and Dahn, 1998] are
surveys of this literature) and to research on combining logical systems (e.g.,
[Nelson and Oppen, 1979,Baader and Schulz, 1998 Baader and Schulz, 1992],
[Shostak, 1984 Ringeissen, 1996, Tinelli and Harandi, 1996]), Most parallel the-
orem prover implementations are guided by lookahead and subgoals to decom-
pose the search space dynamically [Conry et al., 1990,Cowen and Wyatt, 1993],
[Ertel, 1992,Sutcliffe, 1992,Bonacina and Hsiang, 1996,Suttner, 1997], or allow
messages to be sent between different provers working in parallel, using heuris-
tics to decide on which messages are relevant to each prover (e.g., the work
of [Denzinger and Fuchs, 1999]). These approaches typically look at decom-
positions into very few sub-problems. In addition, the first approach typically
requires complete independence of the sub-spaces or the search is repeated on
much of the space by several reasoners. In the second approach there is no
clear methodology for deciding what messages should be sent and from which
partition to which.

The work on combining logical systems focuses on combinations of signature-
disjoint theories (allowing the queries to include symbols from all signatures)
and decision procedures suitable for those theories. Recent work introduced
shared function symbols between two theories (e.g., [Ringeissen, 1996]), but
no algorithm allows sharing of relation symbols. All approaches either nonde-
terministically instantiate the (newly created) variables connecting the the-
ories (e.g., [Tinelli and Harandi, 1996]), or restrict the theories to be convex
(disjunctions are intuitionistic) and have information flowing back and forth
between the theories. In contrast, we focus on the structure of interactions
between theories with signatures that share symbols and the efficiency of rea-
soning with consequence finders and theorem provers. We do not have any
restrictions on the language besides finiteness.

Work on formalizing and reasoning with contezt (see [Akman and Surav, 1996]
for a survey) can be related to theorem proving with structured theories by
viewing the contextual theories as interacting sets of theories. Unfortunately,
to introduce explicit contexts, a language that is more expressive than FOL
is needed. Consequently, a number of researchers have focused on context for
propositional logic, while much of the reasoning work has focused on proof
checking (e.g., GETFOL [Giunchiglia, 1994,Giunchiglia and Traverso, 1995]).

Finally, as noted previously, our use of focused consequence finding for theo-
rem proving with structure theories is related to work by Inoue [Inoue, 1992]

25

and more recently by del Val [del Val, 1999] on vocabulary-based focused con-
sequence finding, and to work by Kautz and Selman [Kautz and Selman, 1996]
on computing the Least Horn Upper Bound (LUB) of a theory using prime im-
plicate generators. Lin [Lin, 2000] also reintroduces related algorithms in the
context of computing strongest necessary and weakest sufficient conditions.
Our ideas may also combine well with those of [Stickel, 1985] who proposed
taking a subtheory and compiling it into rules that can be used with the rest
of the theory.

7 Summary

In this paper we used graph-based techniques, together with Craig’s and Lyn-
don’s interpolation theorems, to improve the efficiency of theorem proving
with structured theories. Our approach was to capture the structure inherent
in a logical theory, by partitioning the theory into subtheories, minimally con-
nected by the nonlogical symbols they share. We proposed sound and com-
plete message-passing algorithms over these partitioned theories that focus
and minimize logical inference. We specialized these algorithms to resolution
theorem proving, comparing our results to other resolution strategies. Most of
the algorithms we proposed are applicable to FOL and all are applicable to
propositional logic.

Partitioning limits interaction between subtheories, reducing the number of
possible inferences. Further, focused consequence finders limit inference within
a partition to only those steps necessary for message-passing to adjacent par-
titions. We adapted message-passing algorithms to resolution and some of its
restriction strategies for the case of first-order resolution, and for batch and
concurrent theorem proving. We reduced the reasoning done within each indi-
vidual partition by exploiting existing algorithms for focused incremental and
general consequence finding. Finally, we proposed an algorithm that compiles
each subtheory into a subtheory in a reduced sublanguage.

We provided an algorithm that restricts the interaction between subtheories
by exploiting the polarity of literals. We showed how to use polarity to limit
the number of interactions that we allow between partitions and the number
of inferences done within each partition separately. This restriction prevents
interactions between sentences that may have been resolved together other-
wise.

We have proven the soundness and completeness of all of these algorithms. The

results presented in this paper contribute towards addressing the problem of
reasoning efficiently with large or multiple structured commonsense theories.

26

A Proofs

A.1 Theorem 2.4: FORWARD-M-P (MP) is Sound and Complete

First, notice that soundness is immediate because the only rules used in deriv-
ing consequences are those used in our chosen consequence-finding procedure
(of which rules are sound). In all that follows, we assume A is finite. The
infinite case follows by the compactness of FOL.

Lemma A.1 Let A = A; U Ay be a partitioned theory. Let ¢ € L(Ap). If
A @, then Ay = ¢ or there is a sentence ¢ € L(A;) N L(As) such that
.Al}_T/J G,’I'I,d.AQ}_Q/J:>g0

Proof of Lemma A.1. We use Craig’s interpolation theorem (Theorem 2.5),
taking @ = A; and f = Ay = ¢. Since o 8 (by the deduction theorem for
FOL), there is a formula ¢ € L(a) N L(B) such that o F ¢ and ¢ F 5. By
the deduction theorem for FOL, we get that A; F ¢ and ¥ A Ay F . Since
¥ € L(A;) N L(A3) by the way we constructed «, 3, we are done. ®

Proof of Theorem 2.4. we prove the theorem by induction on the number
of partitions in the logical theory. For |[V| = 1 (a single partition), A = A,
and the proof is immediate, as 9% is refutation complete (every reasoner that
is complete for L-generation for some L is refutation complete) and we added
=@ to A;. Assume that we proved the theorem for |V| < n — 1 and we prove
the theorem for |V| = n.

In G, k has ¢ neighbors, i1, ..., i.. (k,i1) € E separates two parts of the tree G:
G (includes 1) and G (includes k). Let By, By be the subtheories of A that
correspond to (G, 9, respectively.

Notice that @@ € L(Bs). By Lemma A.1, either By F @ or there is ¢ €
L(B1) N L(By) such that By - ¢ and By F ¢ = Q. If By - @, then we are
done, by the induction hypothesis applied to the partitioning {A; | i € V4}
(V% includes the vertices of Go) and G (notice that <’ used for Gy, Q) agrees
with < used for G).

Otherwise, let 1 be a sentence as above. Uy, jyem,jzk 1(i1,7) 2 L(Bx U A;ip) N
L(B;\ A;,) because the set of edges (i1, j) separates two subgraphs correspond-
ing to the theories B; \ A;, and B,UA;,, and G is properly labeled for our par-
titioning. Thus, since ¢ € L(B1) we get that ¢ € L(Ai, UUg, jyer,jzr 1(i1,7))-
By the induction hypothesis for G, B;, at some point there will be a set
of consequences of A; that entail ¢ (after some formulae were sent to it
from the other partitions in Gy, B;). Since G is properly labeled for A, G,

27

W € L(I(k,i1)). Since %; is complete for L(I(k,i1))-generation, at some point
the set C' of consequences of A;, that are in £(I(k,7)) will entail .

At this point, our algorithm will have sent the sentences in C' to A, because
C C L(I(k,i1)). Since By F ¢ = @, then By - C = Q. By the induction
hypothesis applied to G2, By (C = Q € L(Ak Uik U(k,7))) at some point
C = @ will be entailed from consequences of Ay, (after some message passing).
Thus, at some point we will find consequences of A, that entail). This
completes the induction step. m

A.2 Theorem 3.2: RESOLUTION-M-P (RES-MP) is Sound and Complete

Theorem A.2 ([Lee, 1967]) For every non-tautologous clause D following
from a given clause set A, a clause C is derivable by the resolution rule such
that D is obtained from C by instantiation and addition of further literals (i.e.,
C C-subsumes D).

Proof of Theorem 3.2. Soundness and completeness of the algorithm fol-
low from that of FMP, if we show that RES-SEND (Implementation 4) adds
enough sentences (implying completeness) to A; that are implied by ¢ (thus
sound) in the restricted language L(I(z,j)).

If we add all sentences ¢ that are submitted to RES-SEND to A; without any
translation, then our soundness and completeness result for FMP applies (this
is the case where we add all the constant and function symbols to all I(4, j)).

We use Theorem 3.1 to prove that we add enough sentences to A;. Let @5 be
a quantified formula that is the result of applying algorithm U to ¢. Then, 9
results from a clause C generated in step 4 of algorithm U (respectively, Step 3
in RES-SEND). In algorithm U, for each variable z, the markings “z < «;” in
C are converted to a new variable that is existentially quantified immediately
to the right of the quantification of the variables y1,...,y,. o is a result of
ordering the quantifiers in a consistent manner to this rule (this process is
done in steps 5-6 of algorithm U).

Step 4 of RES-SEND performs the same kind of replacement that algorithm U
performs, but uses new function symbols instead of new quantified variables.
Since each new quantified variable in 5 is to the right of the variables on which
it depends, and our new function uses exactly those variables as arguments,
then Step 4 generates a clause C’' from C that entails ¢y. Thus, the clauses
added to A; by RES-SEND entail all the clauses generated by unskolemizing ¢
using U. From Theorem 3.1, these clauses entail all the sentences in L£(I(i, 7))
that are implied by .

28

To see that the result is still sound, notice that the set of clauses that we add
to A; has the same consequences as ¢ in L(I(7, 7)) (i.e., if we add those clauses
to A; we get a conservative extension of A;). =

A.8 Lemma 3.6: Resolving on P is Lp-Generation Complete

This proof uses the notion of semantic trees. For an exposition the reader is
referred to [Chang and Lee, 1973]. We bring only the basic definitions needed
for the proof here.

The atom set of a set of formulae, A is the set of all atoms in A.

Definition A.3 Given a set S of clauses, let A be the atom set of S. A
semantic tree for S is a (downward) tree T, where each link is attached with
a finite set of atoms or negations of atoms from A in such a way that

(1) For each node N, there are only finitely many immediate links Ly, ..., Ly,
from N. Let QQ; be the conjunction of all the literals in the set attached
to L;;i=1,...,n. Then, Q1 V ...V Q, s a valid propositional formula.

(2) For each node N, let I(N) be the union of all the sets attached to the
links of the branch of T down to and including N. Then, I(N) does not
contain any complementary pair.

Definition A.4 Let A = {A, Ay, ...} be the atom set of a set S of clauses.
A semantic tree for S is said to be complete if and only if for every leaf node
N of the semantic tree, I(N) contains either A; or —A;, fori=1,2,....

Roughly speaking, a complete semantic tree corresponds to all possible Her-
brand interpretations.

Definition A.5 A node N is a failure node if I(N) falsifies some ground
instance of a clause in S, but I(N') does not falsify any ground instance of
a clause in S for every ancestor node N' of N. A semantic tree is said to be
closed iff every branch of T terminates at a failure node. A node N of a closed
semantic tree is called an inference node if all the immediate descendant nodes
of N are failure nodes.

The following is a version of Herbrand’s Theorem [Herbrand, 1930] stated
using semantic trees.

Theorem A.6 (Herbrand’s Theorem (ver.1)) A set S of clauses is un-
satisfiable if and only if corresponding to every complete semantic tree of S,
there is a finite closed semantic tree.

29

We will also make use of the classic mention of Herbrand’s Theorem.

Theorem A.7 (Herbrand’s Theorem (ver.2)) A set S of clauses is un-
satisfiable if and only if there is a finite unsatisfiable set S" of ground instances
of clauses of S.

Finally, we also make use of the following lifting lemma (see [Chang and Lee, 1973]
p.84).

Lemma A.8 (Lifting Lemma) If Ci,C} are instances of Ci,Cy, respec-
tively, and if C' is a resolvent of C|,C, then there is a resolvent C of C1,Co
such that C' is an instance of C.

Proof of Lemma 3.6. Take a formula ¢ € Lp such that A £ ¢. We show
that for A’ = Cx(A), A = ¢.

AU {—p} is unsatisfiable, by our assumption. Let A be a finite unsatisfiable
set of ground instances of AU {—p}, as guaranteed by Theorem A.7. Let T
be a complete semantic tree of Ag such that the instances of P are the lowest
steps in the tree. Since A, is unsatisfiable, then by Theorem A.6 there is a
finite closed semantic tree, T, corresponding to it. This tree is a semantic
closed tree for AU {—¢p} as well.

We show that this tree corresponds to a resolution deduction of {} from AU
{—¢} and modify the tree to achieve a resolution of {} from A’'U {—¢}. First,
notice that 7" has at least one inference node (a node under which both nodes
are failure nodes), or otherwise we get an infinite branch in it.

Every inference node in T corresponds to a resolution step of two clauses that
are falsified by this node’s children. Let N be an inference node in T'. Let Ny, No
be the failure nodes immediately below V. Since N;, N are failure nodes, there
must be two ground instances C7, C) of clauses Ci, Cs, respectively, such that
C1, CY are false in I(N7), I(N,), respectively, but both C}, C} are not falsified
by I(N). Let m be the ground atom that appears positively in I(V;) and
negatively in I(Ns). Then, without loss of generality, C] must contain —m,
and C! must contain m. Resolving C], Cf upon m we obtain the resolvent

C" = (CI\{-m}) U (C3\ {m}).

C'" must be false in I(N) since both (C7] \ {—m}), (C5\ {m}) are false in I(NV).
By the lifting lemma there is a resolvent, C', of C;, Cy such that C’ is a ground
instance of C'. Let 7" be the closed semantic tree for AU{—¢}U{C} obtained
from T by deleting any node or link that is below the first node where the
resolvent (' is falsified. Clearly, 7" C T'. If we continue this process iteratively,
we eventually collapse the tree to a singleton, which is the empty set. This
process then corresponds to a resolution proof of {}.

30

Coming back to our original semantic closed tree, 7', we continue the process
above iteratively until we remove from 7" all the inference nodes that resolve
on P (we make sure to remove only those that resolve on P). This process
results in a new closed semantic tree, 7™, for the theory including some of the
resolvents of AU {—¢} on P together with A. Since ¢ does not include P, ¢
did not participate in any of the resolutions. Also, 7™ is closed before we get
to nodes that are falsified by P. Thus, deleting the set of clauses that include
a literal with P, we still have an inconsistent set of clauses. The new set of
clauses is included in A’ U {—¢}. Thus, T* corresponds to a proof of {} from
A" U {=p}, which concludes our proof. m

A.4 Theorem 8.7: MP Can Simulate Variable Ordering (Most Times)

Proof of Theorem 3.7. 1. Let {p;}i<, be the set of propositional sym-
bols of A, enumerated by the order <4. For all i < n let A; = {¢ €
A | highest_literal(p) = p;}. Let the graph G have vertices V = {1,...,n},
edges £ = {(i,5— 1) | i < n} and labels l(i,i — 1) = {p1, ..., pi—1}-

For partition .4; we take the reasoner %, that resolves sentences only on p;. By
Lemma 3.6 we know that R, is £,,-generation complete. Also, for each i < n,
Ly, = L(I(i,i — 1)). This can be seen by induction on i. When i = n, L(A;)
includes propositions in {p1, ..., p; }, and A; does not change as it never receives
any messages. For i < n, A; initially includes propositions in {p, ..., p;}, and
the messages A; receives from 4;,; are also in this language, by induction.
This proves that £, = L(I(i,i—1)) and the set of reasoners %, is generation-
set complete for A, G.

To see that MP does not perform more resolutions than directional resolution
of A with order <4, we only need to notice that every partition corresponds to
a bucket in the directional resolution algorithm. Thus, each partition performs
exactly those resolutions done by the corresponding bucket in the directional
resolution algorithm.

2. Let {P,;};<p, be the set of predicate symbols of A, enumerated by the order
<4. For all i < nlet A; = {¢ € A | highest_predicate(p) = P;}. Let the
graph G have vertices V = {1,...,n}, edges E = {(i,i — 1) | i < n} and labels
1(i,i—1) ={P1,...., Pi_1, f1, s fss €15 s €t }- (f1, .-, [are the function symbols
in £(A) and ¢y, ..., ¢; are the constant symbols in £(A)).

For partition A; we take the reasoner ®p, that resolves sentences only on
P;. By Lemma 3.6 we know that ®p, is Lp-generation complete. Also, for
each i < n, Lp, = L(I(i,7 — 1)). This can be seen by induction on i. When
i = n, L(A;) includes predicates in {P, ..., P;}, and A; does not change as it

31

never receives any messages. For ¢ < n, A; initially includes propositions in
{Pi, ..., P;}, and the messages A; receives from A4;,; are also in this language,
by induction. This proves that Lp, = L(I(i,7 — 1)) and the set of reasoners
Rp, is generation-set complete for A4, G.

To see that MP does not perform more resolutions than A-ordered resolution
of A with order <4, we only need to notice that every partition resolves only
on the top predicate in each clause. This is the case because in every clause
in partition .4; the highest predicate possible is P;, and the reasoner resolves
only on instances of P;. Thus, each partition performs only resolutions that
are allowed by A-ordered resolution.

3. Let {{P}},<i;}i<n be the set of predicate symbols of A, aggregated to sets
of predicates according to the index I (i.e., I(P}) = i). For all i < n let
A; = {p € A | I(highest_predicate(p)) = i}. Let the graph G have ver-
tices V. = {1,...,n}, edges £ = {(i,i — 1) | i < n} and labels I(i,i — 1) =
{PL, . PZ5 fiy s foycy e} (fi, -, fs are the function symbols in £(A)
and ci, ..., ¢; are the constant symbols in £(.A)).

For partition A; we take the reasoner Rp, that resolves sentences only on
P}, .., P.. Let P* stand for P{, ..., P.. By Lemma 3.6 (applied recursively to
the set of predicates P?), we know that Rp: is Lpi-generation complete. Also,
for each i < n, Lpi = L(I(¢,7 — 1)). This can be seen by induction on i. When
i = n, L£(A;) includes predicates in {P',...,P‘}, and A; does not change as it
never receives any messages. For ¢ < n, A; initially includes propositions in
{P!,...,P"}, and the messages A; receives from A;; are also in this language,
by induction. This proves that Lpi = L£(I(7,7— 1)) and the set of reasoners Rp:
is generation-set complete for A, G.

To see that MP does not perform more resolutions than lock resolution of
A with index I, we only need to notice that every partition resolves only
on predicates with highest index in each clause. This is the case because in
every clause in partition 4; the highest predicates possible are in P*, and the
reasoner resolves only on instances of P*. Thus, each partition performs only
resolutions that are allowed by lock resolution. m

A.5 Theorem 3.8: Variable Ordering Can Simulate MP (Propositional, Some-
times)

Proof of Theorem 3.8. 1. Let {A;},<, be a partitioning of the theory A, let
G = (V, E,l) be a graph and let k < n. Let < be the partial order derived in
step 1 of MP. Let L(i) = Ugi,j)eE,i<; L(3,7) (this is the vocabulary mentioned
in the partition itself together with the vocabulary mentioned on the links to

32

that partition).

For every p € L(A), let P(p) be the <-smallest partition, 4, such that p € L().
For every p € L(.A) there is exactly one such partition because otherwise there
are at least two that are not connected via another node, contradicting the
fact that G is properly labeled (proper labeling guarantees that if a symbol
appears in two partitions then it appears on the edges on the path between
those partitions).

Define <, an order between symbols, by p <o ¢ iff P(p) < P(q). Define <4 to
be a total order that agrees with <,. <4 is clearly a partial order, as it obeys
reflexivity, transitivity and is strict (thus asymmetric). We show that <4 is an
order as required. Let {p; };<,, be an enumeration of the propositional symbols
of A according to < 4. Notice that if directional resolution with <, resolved
two clauses upon p;, then p; is the highest symbol in both clauses.

Let C'1, Cs be two clauses resolved on p in the directional resolution using the
order < 4. Let 41,79 be such that C} in partition 7; and C5 in partition 7.

Assume that MP cannot resolve the two clauses. That means that they are
in different partitions and that at least one of the clauses, say C5, should be
sent to another partition, .4;, with j < 4, in order for the two clauses to be
resolved (j is the <-largest partition such that j < i; and j < is).

Since Cy was not sent to partition 7, its vocabulary is not in the label of one
of the edges on the path between i and p in G (by the definition of MP, we
would have sent that clause if it was expressed by the labels on each of the
edges on that path).

Let ¢ be a symbol that appears in Cy but is not on one of the edges in the
path between partitions i, and j. p is the <4-largest symbol for both C; and
C5, meaning that p appears on the path between iy, iy (thus it also appears on
the path between iy, j, which is a subset of the path between i1, i5) and that
g <a p (because ¢ does not appear on that path (thus, it is not p) and p is
the <4-largest in Cj).

Since ¢ is not in L(j) (otherwise it would be on the path between iy, 5) and
P(p) < j (otherwise the path between j, iy would not include p) P(p) < j <
P(q) implying that p <4 ¢. This contradicts the previous observation that
q <4 p- Thus, ¢ appears on the path between iy, j and Cy would have to be
sent to partition j. The same holds for C;. Thus, MP will resolve the two
clauses.

2. The proof for A-ordering is identical to the one above, except that we treat
the predicate symbols instead of the propositional symbols.

33

3. Let {A;}i<n, G = (V, E, 1), k, < and L(3) be as for the proof of part 1.

For every predicate p € L(A), let P(p) be the <-smallest partition, ¢, such
that p € L(i). For every p € L(A) there is exactly one such partition because
otherwise there are at least two that are not connected via another node,
contradicting the fact that G is properly labeled (proper labeling guarantees
that if a symbol appears in two partitions then it appears on the edges on the
path between those partitions). For every atom a, P(a) = P(p), if p is the
predicate symbol of a.

Define >, a relation between atoms, by a; >q ag iff P(a;) < P(ag). Define
>4 to be a total order that agrees with >y. > 4 is clearly a partial order, as it
obeys reflexivity, transitivity and is strict (thus asymmetric). Let {p;}i<m be
an enumeration of the predicate symbols of A according to > 4. Define I to
be an index of the literals in A that agrees with this enumeration and has the
same index for an atom and its negation.

We show that I is an index as required. Notice that if lock resolution with I
resolved two clauses upon p;, then p; is the lowest literal in both clauses.

Let C1, C5 be two clauses that lock resolution can resolve together on predicate
p. Let 41,179 be such that C'; in partition ¢; and Cs in partition is.

Assume that MP cannot resolve the two clauses. That means that they are
in different partitions and that at least one of the clauses, say C5, should be
sent to another partition, 4;, with j < 45, in order for the two clauses to be
resolved (j is the <-largest partition such that j < i; and j < is).

Since Cy was not sent to partition j, its vocabulary is not in the label of one
of the edges on the path between i and p in G (by the definition of MP, we
would have sent that clause if it was expressed by the labels on each of the
edges on that path).

Let ¢ be a predicate symbol that appears in Cy but is not on one of the edges
in the path between partitions i5 and j. p is the > 4-smallest symbol for both
C; and C,, meaning that p appears on the path between iy,45 (thus it also
appears on the path between s, j, which is a subset of the path between i1, 75)
and that ¢ >4 p (because ¢ does not appear on that path (thus, it is not p)
and p is the > 4-largest in Cy).

Since ¢ is not in L(j) (otherwise it would be on the path between iy, 5) and
P(p) < j (otherwise the path between j, iy would not include p) P(p) < j <
P(q) implying that p >4 ¢. This contradicts the previous observation that
q >4 p- Thus, ¢ appears on the path between iy, 7 and C5 would have to be
sent to partition j. The same holds for C. Thus, MP will resolve the two
clauses. m

34

A.6 Theorem 5.1: COMPILE with MP is Sound and Complete

Soundness is immediate. The only rules used to derive consequences are those

in the sound consequence-finding procedure. The completeness follows from

the completeness of MP in Theorem 2.4. A |= Q iff MP ({4, }i<n, G, Q) outputs

yes. Thus, by completeness if MP({A; }i<n, G, Q) outputs yes, then MP({A; };<n, G, Q)
outputs yes. Assume COMPILE+MP is incomplete, then there are 2 cases.

Case 1: Let 9 be an arbitrary formula to be added by MP Step (2)(b) to A4;,
A_, respectively. Le., ¥ € £; = L(I(,5)) for j such that (5,5) € E and i < j.
Assuming incompleteness, then for some A;,3p € L(I(i,p)), (i,p) € E.p is a
consequence of A; A 1, but ¢ is not an L.ymm,-consequence of A; A 9. Le.,
it is not a consequence of the compiled partition A;-. Since ¥, ¢ € Leomm;
and COMPILE uses a consequence finder that is complete for £-consequence
finding, computing all the consequences of L.omm,;, we have a contradiction.

Case 2: Let 9 be an arbitrary formula to be added to Ay, A'k, respectively.
Le., v € L; = L(I(k,j)) for j such that (k,j) € E and k£ < j. Assuming
incompleteness, then for some A, 3o € L(I(k, j)).¢ is a consequence of A, A1),
but ¢ is not an Lpmm,-consequence of Ay A). But A, = .A;c, so we have a
contradiction. m

A.7 Theorem 5.3: BATCH-MP is Sound and Complete

Following from Theorem 5.1, the proof holds for both a compiled and uncom-
piled theory.

Soundness is immediate. The only rules used to derive consequences are those
in the sound consequence-finding procedure. The completeness follows from
the induction proof of the completeness of MP in Theorem 2.4. The induction
is over the number of partitions in A. It suffices to show that for every A;, j <
i, that BATCH-MP adds the complete £;-consequences of A; to A;. In the
base case, when there is one partition, the procedure is trivially complete. In
all other cases, since each of the reasoners, R; is complete for £;-consequence
finding, and since consequence finding in £; is exhaustive and all resulting
consequences are passed to A;, 7 < %, then the BATCH-MP procedure is
complete. m

35

A.8 Theorem 5.4: CONCURRENT-MP is Sound and Complete

Following from Theorem 5.1, the proof holds for both a compiled and uncom-
piled theory.

Soundness is immediate. The only rules used to derive consequences are those
in the sound consequence-finding procedures. The completeness follows from
the induction proof of the completeness of MP in Theorem 2.4. The induc-
tion is over the number of partitions in A. It suffices to show that for every
Aj,j < i, that CONCURRENT-MP terminates when it proves) in Step
(6)(b), or it adds the complete L;-consequences of A; to A; and fails to prove
Q. In the base case, when there is one partition, the procedure is trivially
complete. In all other cases, since each of the reasoners, &; is complete for £;-
consequence finding, and by definition the £;-prime implicates entail all the
L;-consequences, then all £;-consequences of A; will be added to .4, in Steps
(4) and (5). Further since every %; is complete for incremental £;-consequence
finding, then Step (6)(a) will add all the £; consequences of A; A ¢ to A;,
where ¢ is the complete L,-consequences of each Ay, j < h. =

References

[Akman and Surav, 1996] Akman, V. and Surav, M. (1996). Steps toward
formalizing context. AI Magazine, 17(3):55-72.

[Amir, 2001] Amir, E. (2001). Efficient approximation for triangulation of minimum
treewidth. In Proc. Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI ’01), pages 7-15. Morgan Kaufmann.

[Amir and Mcllraith, 2000] Amir, E. and Mcllraith, S. (2000). Paritition-based
logical reasoning. In Principles of Knowledge Representation and Reasoning:
Proc. Seventh Int’l Conference (KR ’2000), pages 389-400. Morgan Kaufmann.

[Amir and Mcllraith, 2001] Amir, E. and Mcllraith, S. (2001). Partition-based
logical reasoning for first-order and propositional theories. Submitted for
publication.

[Anderson and Bledsoe, 1970] Anderson, R. and Bledsoe, W. W. (1970). A
linear format for resolution with merging and a new technique for establishing
completeness. Journal of the ACM, 17:525-534.

[Ayeb et al., 1993] Ayeb, B. E., Marquis, P., and Rusinowitch, M. (1993). Preferring
diagnoses by abduction. IEEE Transactions on SMC, 23(3):792-808.

[Baader and Schulz, 1992] Baader, F. and Schulz, K. U. (1992). Unification in
the union of disjoint equational theories: Combining decision procedures. In

36

Proceedings of the 11th International conference on automated deduction, volume
607 of LNAI pages 50-65. Springer-Verlag.

[Baader and Schulz, 1998] Baader, F. and Schulz, K. U. (1998). Combination of
constraint solvers for free and quasi-free structures. Theoretical Computer Science,

192(1):107-161.

[Bledsoe and Ballantyne, 1978] Bledsoe, W. W. and Ballantyne, A. M. (1978).
Unskolemizing. Technical Report Memo ATP-41, Mathematics Department,
University of Texas, Austin.

[Bonacina and Hsiang, 1994] Bonacina, M. P. and Hsiang, J. (1994). Parallelization
of deduction strategies: an analytical study. Journal of Automated Reasoning,
13:1-33.

[Bonacina and Hsiang, 1996] Bonacina, M. P. and Hsiang, J. (1996). On the
representation of dynamic search spaces in theorem proving. In Yang, C.-S.,
editor, Proceedings of the International Computer Symposium, pages 85-94.

[Boppana and Sipser, 1990] Boppana, R. B. and Sipser, M. (1990). The complexity
of finite functions. In van Leeuwen, J., editor, Handbook of Theoretical Computer
Science, volume 1: Algorithms and Complexity. Elsevier/MIT Press.

[Boyer, 1971] Boyer, R. S. (1971). Locking: a restriction of resolution. PhD thesis,
Mathematics Department, University of Texas, Austin.

[Chadha and Plaisted, 1993] Chadha, R. and Plaisted, D. A. (1993). Finding logical
consequences using unskolemization. In Proceedings of the 7th International
Symposium on Methodologies for Intelligent Systems (ISMIS’93), volume 689 of
Lecture Notes in Al pages 255-264. Springer-Verlag.

[Chang and Lee, 1973] Chang, C.-L. and Lee, R. C.-T. (1973). Symbolic Logic and
Mechanical Theorem Proving. Academic Press.

[Cohen et al., 1998] Cohen, P., Schrag, R., Jones, E., Pease, A., Lin, A., Starr, B.,
Gunning, D., and Burke, M. (1998). The darpa high-performance knowledge bases
project. AI Magazine, 19(4):25-49.

[Conry et al., 1990] Conry, S. E., McIntosh, D. J., and Meyer, R. A. (1990). DARES:
a distributed automated reasoning system. In Proc. National Conference on
Artificial Intelligence (AAAI ’90), pages 78-85. AAAI Press/MIT Press.

[Cowen and Wyatt, 1993] Cowen, R. and Wyatt, K. (1993). BREAKUP: A
preprocessing algorithm for satisfiability testing of CNF formulas. Notre Dame
Journal of Formal Logic, 34(4):602-606.

[Cox and Pietrzykowski, 1984] Cox, P. and Pietrzykowski, T. (1984). A complete
nonredundant algorithm for reversed skolemization. theoretical computer science,
28:239-261.

[Craig, 1957] Craig, W. (1957). Linear reasoning. a new form of the herbrand-
gentzen theorem. Journal of Symbolic Logic, 22:250-268.

37

[Darwiche, 1996] Darwiche, A. (1996). Utilizing knowledge-based semantics in
graph-based algorithms. In Proc. National Conference on Artificial Intelligence
(AAAT ’96), pages 607-613. Morgan Kaufmann.

[Davis and Putnam, 1960] Davis, M. and Putnam, H. (1960). A computing
procedure for quantification theory. Journal of the ACM, 7:201-215.

[Dechter and Pearl, 1988] Dechter, R. and Pearl, J. (1988). Tree Clustering Schemes
for Constraint Processing. In Proc. National Conference on Artificial Intelligence
(AAAI ’88).

[Dechter and Rish, 1994] Dechter, R. and Rish, I. (1994). Directional resolution:
The davis-putnam procedure, revisited. In Principles of Knowledge
Representation and Reasoning: Proc. Fourth International Conference (KR ’94),
pages 134-145. Morgan Kaufmann.

[del Val, 1999] del Val, A. (1999). A new method for consequence finding and
compilation in restricted language. In Proc. National Conference on Artificial
Intelligence (AAAI ’99), pages 259-264. AAAI Press/MIT Press.

[Denzinger and Dahn, 1998] Denzinger, J. and Dahn, I. (1998). Cooperating
theorem provers. In Bibel, W. and Schmitt, P., editors, Automated Deduction.
A basis for applications., volume 2, chapter 14, pages 383-416. Kluwer.

[Denzinger and Fuchs, 1999] Denzinger, J. and Fuchs, D. (1999). Cooperation of
heterogeneous provers. In Thomas, D., editor, Proc. Sizteenth International
Joint Conference on Artificial Intelligence (IJCAI ’99), pages 10-15. Morgan
Kaufmann.

[Eisinger and Ohlbach, 1993] Eisinger, N. and Ohlbach, H. J. (1993). Deduction
systems based on resolution. In Gabbay, D., Hogger, C., and J.A.Robinson,
editors, Handbook of Logic in Artificial Intelligence and Logic Programming,
Volume 1: Logical Foundations. Oxford University Press.

[Ertel, 1992] Ertel, W. (1992). OR-parallel theorem proving with random
competition. In Proc. LPAR’92, volume 624 of LNAI pages 226-237.

[Fikes and Farquhar, 1999] Fikes, R. and Farquhar, A. (1999). Large-scale
repositories of highly expressive reusable knowledge. IEEE Intelligent Systems,
14(2).

[Genesereth and Nilsson, 1987] Genesereth, M. R. and Nilsson, N. J. (1987). Logical
Foundations of Artificial Intelligence. Morgan Kaufmann Publishers Inc.

[Giunchiglia and Traverso, 1995] Giunchiglia, E. and Traverso, P. (1995). A multi-
context architecture for formalizing complex reasoning. International Journal of
Intelligent Systems, 10:501-539. Also, IRST Tech. Report #9307-26.

[Giunchiglia, 1994] Giunchiglia, F. (1994). GETFOL manual - GETFOL version
2.0. Technical Report DIST-TR-92-0010, DIST - University of Genoa. Available
at http://ftp.mrg.dist.unige.it/pub/mrg-ftp/92-0010.ps.gz.

38

[Herbrand, 1930] Herbrand, J. (1930). Recherches sur la théorie de la démonstration.
Travauz de la Société des Sciences et de Lettres de Varsovie, Classe III Sci. Math.
Phys., 33.

[Inoue, 1992] Inoue, K. (1992). Linear resolution for consequence finding. Artificial
Intelligence, 56(2-3):301-353.

[Jensen et al., 1990] Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. (1990).
Bayesian updating in recursive graphical models by local computation.
Computational Statistics Quarterly, 4:269-282.

[Kautz and Selman, 1996] Kautz, H. and Selman, B. (1996). Knowledge compilation
and theory approximation. Journal of the ACM, 43(2):193-224.

[Kowalski and Hayes, 1969] Kowalski, R. A. and Hayes, P. J. (1969). Semantic trees
in automatic theorem-proving. Machine Intelligence, 4:87-101.

[Lee, 1967] Lee, R. C.-T. (1967). A Completeness Theorem and a Computer Program
for Finding Theorems Derivable from Given Axioms. PhD thesis, University of
California, Berkeley.

[Lenat, 1995] Lenat, D. B. (1995). Cyc: A large-scale investment in knowledge
infrastructure. Communications of the ACM, 38(11):33-38.

[Lin, 2000] Lin, F. (2000). On strongest necessary and weakest sufficient conditions.
In Principles of Knowledge Representation and Reasoning: Proc. Seventh Int’l
Conference (KR ’2000), pages 167-175.

[Lloyd and Topor, 1985] Lloyd, J. W. and Topor, R. W. (1985). A basis for
deductive database systems. Journal of Logic Programming, 2:93-109.

[Loveland, 1969] Loveland, D. W. (1969). A simplified format for the model
elimination procedure. Journal of the ACM, 16(3):349-363. Reprinted in:
[Siekmann and Wrightson, 1983].

[Loveland, 1970] Loveland, D. W. (1970). A linear format for resolution. In Proc.
IRIA symposium on automatic demonstration, volume 125 of Lecture notes in
mathematics, pages 147-162. Springer-Verlag.

[Loveland, 1978] Loveland, D. W. (1978). Automated theorem proving: a logical
basis. Fundamental studies in computer science. North-Holland.

[Luckham, 1970] Luckham, D. (1970). Refinement theorem in resolution theory. In
Proc. IRIA symposium on automatic demonstration, volume 125 of Lecture notes
in mathematics, pages 163-190. Springer-Verlag.

[Luckham and Nilsson, 1971] Luckham, D. and Nilsson, N. (1971). Extracting
information from resolution proof trees. Artificial Intelligence, 2:27-54.

[Lyndon, 1959] Lyndon, R. C. (1959). An interpolation theorem in the predicate
calculus. Pacific Journal of Mathematics, 9(1):129-142.

39

[Marquis, 2000] Marquis, P. (2000). Consequence finding algorithms. In Moral,
S. and Kohlas, J., editors, Algorithms for Defeasible and Uncertain Reasoning,
volume 5 of Handbook on Deafeasible Reasoning and Uncertainty Management
Systems, pages 41-145. Kluwer Academic Publishers.

[Minicozzi and Reiter, 1972] Minicozzi, E. and Reiter, R. (1972). A note on linear
resolution strategies in consequence-finding. Artificial Intelligence, 3:175-180.

[Nelson and Oppen, 1979] Nelson, G. and Oppen, D. C. (1979). Simplification by
cooperating decision procedures. ACM Trans. on Programming Languages and
Systems, 1(2):245-257.

[Reiter, 1971] Reiter, R. (1971). Two results on ordering for resolution with merging
and linear format. In Journal of the ACM, volume 18, pages 630-646.

[Reynolds, 1965] Reynolds, J. C. (1965). Unpublished seminar note, stanford
university, stanford, ca. Referenced in [Slagle, 1967].

[Ringeissen, 1996] Ringeissen, C. (1996). Cooperation of decision procedures for
the satisfiability problem. In Baader, F. and Schulz, K., editors, Frontiers
of Combining Systems: Proceedings of the 1st International Workshop, Munich
(Germany), Applied Logic, pages 121-140. Kluwer Academic Publishers.

[Rish and Dechter, 2000] Rish, I. and Dechter, R. (2000). Resolution versus search:
two strategies for SAT. Journal of Automated Reasoning, 24(1-2):225-275.

[Robinson, 1965] Robinson, J. A. (1965). A machine-oriented logic based on the
resolution principle. Journal of the ACM, 12(1):23-41.

[Schrag and Crawford, 1996] Schrag, R. and Crawford, J. M. (1996). Implicates and
prime implicates in random 3sat. Artificial Intelligence, 81:199-222.

[Shostak, 1984] Shostak, R. E. (1984). Deciding combinations of theories. Journal
of the ACM, 31:1-12.

[Siekmann and Wrightson, 1983] Siekmann, J. and Wrightson, G., editors (1983).
Automation of Reasoning: Classical Papers in Computational Logic 1967-1970,
volume 2. Springer-Verlag.

[Slagle, 1967] Slagle, J. R. (1967). Automatic theorem proving with renamable and
semantic resolution. Journal of the ACM, 14(4):687-697.

[Slagle, 1970] Slagle, J. R. (1970). Interpolation theorems for resolution in lower
predicate calculus. Journal of the ACM, 17(3):535-542.

[Slagle et al., 1969] Slagle, J. R., Chang, C.-L., and Lee, R. C. T. (1969).
Completeness theorems for semantic resolution in consequence-finding. In
Proc. First International Joint Conference on Artificial Intelligence (IJCAI ’69),
pages 281-285.

[Stickel, 1985] Stickel, M. E. (1985). Automated deduction by theory resolution.
Journal of Automated Reasoning, 1:333—-355.

40

[Stickel, 1988] Stickel, M. E. (1988). A Prolog technology theorem prover. In Lusk,
E. and Overbeek, R., editors, Proc. 9" International Conference on Automated
Deduction, pages 752—753. Springer LNCS, New York.

[Sutcliffe, 1992] Sutcliffe, G. C. J. (1992). A heterogeneous parallel deduction
system. FGCS’92 Workshop on Automated Deduction: Logic Programming and
Parallel Computing Approaches.

[Suttner, 1997] Suttner, C. B. (1997). SPTHEO. Journal of Automated Reasoning,
18:253-258.

[Tinelli and Harandi, 1996] Tinelli, C. and Harandi, M. T. (1996). A new
correctness proof of the Nelson—-Oppen combination procedure. In Baader, F.
and Schulz, K., editors, Frontiers of Combining Systems: Proceedings of the
1st International Workshop, Munich (Germany), Applied Logic, pages 103-120.
Kluwer Academic Publishers.

[Wos et al., 1965] Wos, L., Robinson, G. A., and Carson, D. F. (1965). Efficiency
and completeness of the set of support strategy in theorem proving. Journal of
the ACM, 12(4):536-541.

[Yates et al., 1970] Yates, R. A., Raphael, B., and Hart, T. P. (1970). Resolution
graphs. Artificial Intelligence, 1:257-289.

41

