
Appears in Proceedings of 17th Int’l Joint Conference on Artificial Intelligence (IJCAI ’01).

Theorem Proving with Structured Theories

Sheila McIlraith∗ and Eyal Amir
Department of Computer Science,

Gates Building, Wing 2A
Stanford University, Stanford, CA 94305-9020, USA
{sheila.mcilraith,eyal.amir}@cs.stanford.edu

Abstract

Motivated by the problem of query answering over
multiple structured commonsense theories, we ex-
ploit graph-based techniques to improve the ef-
ficiency of theorem proving for structured theo-
ries. Theories are organized into subtheories that
are minimally connected by the literals they share.
We present message-passing algorithms that reason
over these theories using consequence finding, spe-
cializing our algorithms for the case of first-order
resolution, and for batch and concurrent theorem
proving. We provide an algorithm that restricts the
interaction between subtheories by exploiting the
polarity of literals. We attempt to minimize the
reasoning within each individual partition by ex-
ploiting existing algorithms for focused incremen-
tal and general consequence finding. Finally, we
propose an algorithm that compiles each subtheory
into one in a reduced sublanguage. We have proven
the soundness and completeness of all of these al-
gorithms.

1 Introduction
Theorem provers are becoming increasingly prevalent as
query-answering machinery for reasoning over single or mul-
tiple large commonsense knowledge bases (KBs) [3]. Com-
monsense KBs, as exemplified by Cycorp’s Cyc and the High
Performance Knowledge Base (HPKB) systems developed by
Stanford’s Knowledge Systems Lab and by SRI often com-
prise tens/hundreds of thousands of logical axioms, embody-
ing loosely coupled content in a variety of different subject
domains. Unlike mathematical theories (the original domain
of automated theorem provers), commonsense theories are of-
ten highly structured and with large signatures, lending them-
selves to graph-based techniques for improving the efficiency
of reasoning.

Graph-based algorithms are commonly used as a means
of exploiting structure to improve the efficiency of reason-
ing in Bayes Nets (e.g., [18]), Constraint Satisfaction Prob-
lems (CSPs) (e.g., [12]) and most recently in logical reason-
ing (e.g., [11; 3; 25]). In all cases, the basic approach is to
∗ Knowledge Systems Laboratory (KSL)

convert a graphical representation of the problem into a tree-
structured representation, where each node in the tree repre-
sents a tightly-connected subproblem, and the arcs represent
the loose coupling between subproblems. Inference is done
locally at each node and the necessary information is propa-
gated between nodes to provide a global solution. Inference
thus proves to be linear in the tree structure, and often worst-
case exponential within the individual nodes.

We leverage these ideas to perform more efficient sound
and complete theorem proving over theories in first-order
logic (FOL) and propositional logic. In this paper we as-
sume that we are given a first-order or propositional theory
that is partitioned into subtheories that are minimally cou-
pled, sharing minimal vocabulary. Sometimes this partition-
ing is provided by the user because the problem requires rea-
soning over multiple KBs. Other times, a partitioning is in-
duced automatically to improve the efficiency of reasoning.
(Some automated techniques for performing this partitioning
are discussed in [3; 2].) This partitioning can be depicted as
a graph in which each node represents a particular partition
or subtheory and each arc represents shared vocabulary be-
tween subtheories. Theorem proving is performed locally in
each subtheory, and relevant information propagated to en-
sure sound and complete entailment in the global theory. To
maximize the effectiveness of structure-based theorem prov-
ing we must 1) minimize the coupling between nodes of the
tree to reduce information being passed, and 2) minimize lo-
cal inference within each node, while, in both cases, preserv-
ing global soundness and completeness.

In this paper we present message-passing algorithms that
reason over partitioned theories, minimizing the number of
messages sent between partitions and the local inference
within partitions. We first extend the applicability of a
message-passing algorithm presented in [3] to a larger class
of local reasoning procedures. In Section 3 we modify this
algorithm to use first-order resolution as the local reasoning
procedure. In Section 4 we exploit Lyndon’s Interpolation
Theorem to provide an algorithm that reduces the size of the
communication languages connecting partitions by consider-
ing the polarity of literals. Finally, in Section 5 we attempt
to minimize the reasoning within each partition using algo-
rithms for focused and incremental consequence finding. We
also provide an algorithm for compiling partitioned proposi-
tional theories into theories in a reduced sublanguage. We

have proven the soundness and completeness of all of these
algorithms with respect to reasoning procedures that are com-
plete for consequence finding in a specified sublanguage.
Proofs omitted from this paper can be found at [22].

2 Partition-Based Logical Reasoning
In this section we describe the basic framework adopted in
this paper. We extend it with new soundness and complete-
ness results that will enable us to minimize local inference.

Following [3], we say that {Ai}i≤n is a partitioning of
a logical theory A if A =

⋃
iAi. Each individual Ai is

a set of axioms called a partition, L(Ai) is its signature
(the set of non-logical symbols), and L(Ai) is its language
(the set of formulae built with L(Ai)). The partitions may
share literals and axioms. A partitioning of a theory in-
duces a graphical representation, G = (V,E, l), which we
call the theory’s intersection graph. Each node of the in-
tersection graph, i, represents an individual partition, Ai,
(V = {1, ..., n}), two nodes i, j are linked by an edge if
L(Ai) and L(Aj) have a non-logical symbol in common
(E = {(i, j) | L(Ai) ∩ L(Aj) 6= ∅}), and the edges are
labeled with the set of symbols that the associated partitions
share (l(i, j) = L(Ai) ∩ L(Aj)). We refer to l(i, j) as the
communication language between partitions Ai and Aj . We
ensure that the intersection graph is connected by adding a
minimal number of edges toE with empty labels, l(i, j) = ∅.
Figure 1 illustrates a propositional theory A in clausal form
(left-hand side) and its partitioning displayed as an intersec-
tion graph (right-hand side). (Figures 1, 2 and 3 first appeared
in [3].)

PSfrag replacements

(1) ¬ok pump ∨ ¬on pump
∨water

(2) ¬man fill ∨water
(3) ¬man fill ∨ ¬on pump
(4)man fill ∨ on pump

(5) ¬water∨¬ok boiler
∨¬on boiler∨steam

(6)water ∨ ¬steam
(7) ok boiler ∨ ¬steam
(8) on boiler ∨ ¬steam

(9) ¬steam∨¬coffee∨hot drink
(10) coffee ∨ teabag
(11) ¬steam∨¬teabag∨hot drink

A

A1

A2

A3

¬ok pump ∨ ¬on pump ∨water

¬man fill ∨water

¬man fill ∨ ¬on pump

man fill ∨ on pump

¬water ∨ ¬ok boiler

∨¬on boiler ∨ steam

water ∨ ¬steam

ok boiler ∨ ¬steam

on boiler ∨ ¬steam

¬steam ∨ ¬coffee ∨ hot drink

coffee ∨ teabag

¬steam ∨ ¬teabag ∨ hot drink

water

steam

Figure 1: Partitioned theoryA intersection graph G.

Figure 2 displays FORWARD-M-P (FMP), a message-
passing algorithm for partition-based logical reasoning. It
takes as input a partitioned theory, A, an associated graph
structure G = (V,E, l), and a query formula Q in L(Ak),
and returns YES if the query was entailed by A. The al-
gorithm uses procedures that generate consequences (conse-
quence finders) as the local reasoning mechanism within each
partition or graphical node. It passes a concluded formula to
an adjacent node if the formula’s signature is in the commu-
nication language l of the adjacent node, and that node is on

the path to the node containing the query.
Recall, consequence finding (as opposed to proof finding)

was defined by Lee [19] to be the problem of finding all non-
tautological logical consequences of a theory or sentences
that subsume them. A prime implicate generator is a popu-
lar example of a consequence finder 1.

To determine the direction in which messages should be
sent in the graph G, step 1 in FMP computes a strict partial
order over nodes in the graph using the partitioning together
with a query,Q.

Definition 2.1 (≺) Given partitioned theory A =
⋃
i≤nAi,

associated graph G = (V,E, l) and query Q ∈ L(Ak), let
dist(i, j) (i, j ∈ V) be the length of the shortest path between
nodes i, j in G. Then i ≺ j iff dist(i, k) < dist(j, k).

PROCEDURE FORWARD-M-P (FMP)({Ai}i≤n, G, Q)

{Ai}i≤n a partitioning of the theory A, G = (V, E, l) a graph
describing the connections between the partitions, Q a query in
L(Ak) (k ≤ n).

1. Determine ≺ as in Definition 2.1.

2. Concurrently,

(a) Perform consequence finding for each of the partitions
Ai, i ≤ n.

(b) For every (i, j) ∈ E such that i ≺ j, for every conse-
quence ϕ of Aj found (or ϕ in Aj), if ϕ ∈ L(l(i, j)),
then add ϕ to the set of axioms of Ai.

(c) If Q is provena inAk , return YES.

aDerive a subsuming formula or initially add ¬Q to Ak and
derive inconsistency.

Figure 2: A forward message-passing algorithm.

Figure 3 illustrates an execution of the FMP algorithm us-
ing resolution as the consequence finder within a partition.
As can be seen from the example, the partitioning reduces the
number of possible inference steps by precluding the direct
resolution of axioms residing in different partitions. Indeed,
[3] showed that partition-based reasoning reduces the search
space significantly, as a function of the size of the communi-
cation language between partitions.

FMP is sound and complete if we guarantee some proper-
ties of the graphG and the consequence finders used for each
partition. The graphG is required to be a tree that is properly
labeled for A.

Definition 2.2 (Proper Labeling) A tree-structured repre-
sentation, G = (V,E, l), of a partitioned theory A =
{Ai}i≤n is said to have a proper labeling, if for all (i, j) ∈ E
and B1,B2, the two subtheories of A on the two sides of the
edge (i, j) in G, it is true that l(i, j) ⊇ L(B1) ∩ L(B2).

For example, every intersection graph that is a tree is prop-
erly labeled. A simple algorithm called BREAK-CYCLES

1Recall, an implicate is a clause entailed by a theory. It is prime
if it is minimal in some way. Definitions of prime vary including the
use of subsumption, syntactic minimality, or entailment.

Using FMP to prove hot drink

Part. Resolve Generating
A1 (2) , (4) on pump ∨ water (m1)

A1 (m1), (1) ok pump ∨ water (m2)

A1 (m2), (12) water (m3)

clause water passed from A1 toA2
A2 (m3) , (5) ok boiler ∧ on boiler ⊃ steam (m4)

A2 (m4) , (13) ¬on boiler ∨ steam (m5)

A2 (m5) , (14) steam (m6)

clause steam passed fromA2 to A3
A3 (9) , (10) ¬steam ∨ teabag ∨ hot drink (m7)

A3 (m7) , (11) ¬steam ∨ hot drink (m8)

A3 (m8) , (m6) hot drink (m9)

Figure 3: A proof of hot drink from A in Figure 1 after
asserting ok pump (12) in A1 and ok boiler (13), on boiler
(14) in A2.

that transforms an intersection graph that is not tree into a
properly labeled tree was presented in [3]. Note that the no-
tion of proper labeling is equivalent, in this context, to the
running intersection property used in Bayes Nets.

The consequence finders applied to each partition i are re-
quired to be complete for Li-generation for a sublanguage
Li ⊂ L(Ai) that depends on the graph G and the query Q.

Definition 2.3 (Completeness for L-Generation) Let A be
a set of axioms, L ⊆ L(A) a language, andR a consequence
finder. Let CR,L(A) be the consequences of A generated by
R that are in L. R is complete for L-generation if for all
ϕ ∈ L, if A |= ϕ, then CR,L(A) |= ϕ.

Theorem 2.4 (Soundness and Completeness) Let A be a
partitioned theory {Ai}i≤n of arbitrary propositional or
first-order formulae, G a tree that is properly labeled with
respect to A, and Q ∈ L(Ak), k ≤ n, a query. For all i ≤ n,
let Li = L(l(i, j)) for j such that (i, j) ∈ E and j ≺ i (there
is only one such j), and let {Ri}i≤n be reasoning procedures
associated with partitions {Ai}i≤n. If every Ri is complete
for Li-generation thenA |= Q iff FMP({Ai}i≤n, G, Q) out-
puts YES.

This soundness and completeness result improves upon a
soundness and completeness result in [3] by allowing conse-
quence finders that focus on consequences in the communi-
cation language between partitions. In certain cases, we can
restrict consequence finding in FMP even further by using
reasoners that are complete for L-consequence finding.

Definition 2.5 (Completeness for L-Consequence Finding)
Let A be a set of axioms, L ⊆ L(A) a language, and R
a consequence finder. R is complete for L-consequence
finding iff for every ϕ ∈ L that is not a tautology, A |= ϕ iff
there exists ψ ∈ L such that A `R ψ and ψ subsumes2ϕ.

2For clausal theories, we say that clause ψ subsumes ϕ if there
is a substitution θ such that ψθ ⊂ ϕ.

Observe that every reasoner that is complete for L-
consequence finding is also complete for L-generation, for
any language L that is closed under subsumption [14]. The
notion of a consequence finder restricting consequence gen-
eration to consequences in a designated sublanguage was
discussed by Inoue [17], and further developed by del Val
[14] and others. Most results on the completeness of con-
sequence finding exploit resolution-based reasoners, where
completeness results for L-consequence finding are gener-
ally restricted to a clausal language L. The FMP reasoners
in Theorem 2.4 must be complete for Li-generation in arbi-
trary FOL languages, Li. Corollary 2.6 refines Theorem 2.4
by restricting Ai and Li to propositional clausal languages
and requiring reasoners to be complete for Li-consequence
finding rather than Li-generation.

Corollary 2.6 (Soundness and Completeness) Let A be a
partitioned theory {Ai}i≤n of propositional clauses,G a tree
that is properly labeled with respect to A, and Q ∈ L(Ak),
k ≤ n, a query. Let Li = L(l(i, j)) for j such that (i, j) ∈ E
and j ≺ i (there is only one such j), and let {Ri}i≤n be
reasoning procedures associated with partitions {Ai}i≤n. If
everyRi is complete forLi-consequence finding thenA |= Q
iff FMP({Ai}i≤n, G, Q) outputs YES.

In Section 5 we provide examples of reasoners that are
complete for L-consequence finding and show how to exploit
them to focus reasoning within a partition.

3 Local Inference Using Resolution
In this section, we specialize FMP to resolution-based con-
sequence finders. Resolution [26] is one of the most widely
used reasoning methods for automated deduction, and more
specifically for consequence finding. It requires the input for-
mula to be in clausal form, i.e., a conjunction of disjunctions
of unquantified literals. The resolution rule is complete for
consequence finding (e.g., [19; 27]) and so is linear resolu-
tion and some of its variants (e.g., [23]).

We present algorithm RESOLUTION-M-P (RES-MP),
that uses resolution (or resolution strategies), in Figure 4.
The rest of this section is devoted to explaining four differ-
ent implementations for subroutine RES-SEND(ϕ, j, i), used
by this procedure to send appropriate messages between par-
titions: the first implementation is for clausal propositional
theories; the second is for clausal FOL theories, with associ-
ated graphG, that is a properly labeled trees and whose labels
include all the function and constant symbols of the language;
the third is also for clausal FOL theories, however it uses un-
skolemization and subsequent Skolemization to generate the
messages to be passed between partitions; the fourth is a re-
finement of the third for the same class of theories that avoids
unskolemization.

In the propositional case, subroutine RES-SEND(ϕ, j, i)
(Implementation 1) simply adds ϕ to Ai, as done in FMP.
If the resolution strategies being employed satisfy the condi-
tions of Corollary 2.6, then RES-MP is sound and complete.

In the FOL case, implementing RES-SEND requires more
care. To illustrate, consider the case where resolution gener-
ates the clause P (B, x) (B a constant symbol and x a vari-
able). It also implicitly proves that ∃b P (b, x). RES-MP

PROCEDURE RESOLUTION-M-P(RES-MP)({Ai}i≤n , G, Q)

{Ai}i≤n a partitioned theory, G = (V,E, l) a graph, Q a query
formula in the language of L(Ak) (k ≤ n).

1. Determine ≺ as in Definition 2.1.

2. Add the clausal form of ¬Q to Ak.

3. Concurrently,

(a) Perform resolution for each of the partitionsAi, i ≤ n.
(b) For every (i, j) ∈ E such that i ≺ j, if partition Aj

includes the clause ϕ (as input or resolvent) and the
predicates of ϕ are in L(l(i, j)), then perform RES-
SEND(ϕ, j, i).

(c) If Q is proven in Ak , return YES.

Figure 4: A resolution forward message-passing algorithm.

may need to send ∃b P (b, x) from one partition to another,
but it cannot send P (B, x) if B is not in the communication
language between partitions (for ground theories there is no
such problem (see [27])). In the first-order case, complete-
ness for consequence finding for a clausal first-order logic
language (e.g., Lee’s result for resolution) does not guaran-
tee completeness for L-generation for the corresponding full
FOL language, L. This problem is also reflected in a slightly
different statement of Craig’s interpolation theorem [10] that
applies for resolution [27].

A simple way of addressing this problem is to add all con-
stant and function symbols to the communication language
between every connected set of partitions. This has the advan-
tage of preserving soundness and completeness, and is sim-
ple to implement. In this case, subroutine RES-SEND(ϕ, j,
i) (Implementation 2) simply adds ϕ to Ai, as done in FMP.

In large systems that consist of many partitions, the addi-
tion of so many constant and function symbols to each of the
other partitions has the potential to be computationally inef-
ficient, leading to many unnecessary and irrelevant deduction
steps. Arguably, a more compelling way of addressing the
problems associated with resolution for first-order theories is
to infer the existential formula ∃b P (b, x) fromP (B, x), send
this formula to the proper partition and Skolemize it there.
For example, if ϕ = P (f(g(B)), x) is the clause that RES-
SEND gets, replacing it with ∃b P (b, x) eliminates unneces-
sary work of the receiving partition.

The process of conservatively replacing function and con-
stant symbols by existentially quantified variables is called
unskolemization or reverse Skolemization and is discussed in
[5; 9; 8]. [8] presents an algorithm U that is complete for our
purposes and generalizes and simplifies an algorithm of [9].
(Space precludes inclusion of the algorithm.)

Theorem 3.1 ([8]) Let V be a vocabulary and ϕ, ψ be for-
mulae such that ψ ∈ L(V) and ϕ ⇒ ψ. There exists F ∈
L(V) that is generated by algorithm U such that F ⇒ ψ.

Thus, for every resolution strategy that is complete for L-
consequence finding, unskolemizingϕ using procedure U for
V = l(i, j) and then Skolemizing the result gives us a com-
bined procedure for message generation that is complete for
Lj-generation. This procedure can then be used readily in

RES-MP (or in FMP), upholding the soundness and com-
pleteness to that supplied by Theorem 2.4. The subroutine
RES-SEND(ϕ, j, i) that implements this approach is pre-
sented in Figure 5. It replaces ϕ with a a set of formulae
in L(l(i, j)) that follows from ϕ. It then Skolemizes the re-
sulting formulae for inclusion in Ai.

PROCEDURE RES-SEND(ϕ, j, i) (Implementation 3)

ϕ a formula, j, i ≤ n.

1. Unskolemize ϕ into a set of formulae, Φ in L(l(i, j)), treat-
ing every symbol of L(ϕ) \ l(i, j) as a Skolem symbol.

2. For every ϕ2 ∈ Φ, if ϕ2 is not subsumed by a clause that is
in Ai, then add the Skolemized version of ϕ2 to the set of
axioms of Ai.

Figure 5: Subroutine RES-SEND using unskolemization.

Procedure U may generate more than one formula
for any given clause ϕ. For example, if ϕ =
P (x, f(x), u, g(u)), for l(i, j) = {P}, then we must gener-
ate both ∀x∃y∀u∃vP (x, y, u, v) and ∀u∃v∀x∃yP (x, y, u, v)
(ϕ entails both quantified formulae, and there is no one quan-
tified formula that entails both of them). In our case we can
avoid some of these quantified formulae by replacing the un-
skolemize and then Skolemize process of RES-SEND (Imple-
mentation 3) with a procedure that produces a set of formulae
directly (Implementation 4). It is presented in Figure 6.

PROCEDURE RES-SEND(ϕ, j, i) (Implementation 4)

ϕ a formula, j, i ≤ n.

1. Set S ← L(ϕ) \ l(i, j).

2. For every term instance, t = f(t1, ..., tk), in ϕ, if f ∈ S and
t is not a subexpression of another term t′ = f ′(t′1, ..., t

′
k′)

of ϕ with f ′ ∈ S, then replace t with “x← t” for some new
variable, x (if k = 0, t is a constant symbol).

3. Nondeterministicallya, for every pair of marked arguments
“x← α”, “y ← β”, in ϕ, if α, β are unifiable, then unify all
occurrences of x, y (i.e., unify αi, βi for all markings x ←
αi, y ← βi).

4. For every marked argument “x← α” in ϕ, do

(a) Collect all marked arguments with the same variable on
the left-hand side of the “←” sign. Suppose these are
x← α1, ..., x← αl.

(b) Let y1, ..., yr be all the variables occurring in
α1, ..., αl. For every i ≤ l, replace “x ← αi” with
f(y1, ..., yr) in ϕ, for a fresh function symbol f (if
r = 0, f is a fresh constant symbol).

5. Add ϕ to Ai.

aNondeterministically select the set of pairs for which to unify
all occurrences of x, y.

Figure 6: Subroutine RES-SEND without unskolemization.

Steps 2–3 of procedure RES-SEND(ϕ, j, i) (Implementa-
tion 4) correspond to similar steps in procedure U presented

in [8], simplifying where appropriate for our setup. Our
procedure differs from unskolemizing procedures in step 4,
where it stops short of replacing the Skolem functions and
constants with new existentially quantified variables. Instead,
it replaces them with new functions and constant symbols.
The nondeterminism of step 3 is used to add all the possible
combinations of unified terms, which is required to ensure
completeness.

For example, if ϕ = P (f(g(B)), x) and l(i, j) =
{P}, then RES-SEND adds P (A, x) to Ai, for a new
constant symbol, A. If ϕ = P (x, f(x), u, g(u)), for
l(i, j) = {P}, then RES-SEND adds P (x, h1(x), u, h2(u))
to Ai, for new function symbols h1, h2. Finally, if
ϕ = P (x, f(x), u, f(g(u))), then RES-SEND adds
P (x, f(x), u, h(u)) and P (h1(u), h2(u), u, h2(u)) toAi, for
h, h1, h2 new function symbols.

Theorem 3.2 (Soundness & Completeness of RES-MP)
Let A be the partitioned theory

⋃
i≤nAi of propositional

or first-order clauses, G a tree that is properly labeled with
respect to A, and Q ∈ L(Ak) k ≤ n, a sentence that is the
query. A |= Q iff applying RES-MP({Ai}i≤n, G, Q) (with
Implementation 4 of RES-SEND) outputs YES.

PROOF SKETCH Soundness and completeness of the algo-
rithm follow from that of FMP, if we show that RES-SEND
(Implementation 4) adds enough sentences (implying com-
pleteness) to Ai that are implied by ϕ (thus sound) in the
restricted language L(l(i, j)).

If we add all sentences ϕ that are submitted to RES-SEND
to Ai without any translation, then our soundness and com-
pleteness result for FMP applies (this is the case where we
add all the constant and function symbols to all l(i, j)).

We use Theorem 3.1 to prove that we add enough sentences
to Ai. Let ϕ2 be a quantified formula that is the result of ap-
plying algorithm U to ϕ. Then, ϕ2 results from a clause C
generated in step 4 of algorithm U (respectively, Step 3 in
RES-SEND). In algorithm U, for each variable x, the mark-
ings “x ← αi” in C are converted to a new variable that is
existentially quantified immediately to the right of the quan-
tification of the variables y1, ..., yr. ϕ2 is a result of ordering
the quantifiers in a consistent manner to this rule (this process
is done in steps 5–6 of algorithm U).

Step 4 of RES-SEND performs the same kind of replace-
ment that algorithm U performs, but uses new function sym-
bols instead of new quantified variables. Since each new
quantified variable in ϕ2 is to the right of the variables on
which it depends, and our new function uses exactly those
variables as arguments, then Step 4 generates a clause C ′

from C that entails ϕ2. Thus, the clauses added to Ai by
RES-SEND entail all the clauses generated by unskolemiz-
ing ϕ using U. From Theorem 3.1, these clauses entail all the
sentences in L(l(i, j)) that are implied by ϕ.

To see that the result is still sound, notice that the set of
clauses that we add to Ai has the same consequences as ϕ in
L(l(i, j)) (i.e., if we add those clauses toAj we get a conser-
vative extension of Aj).

Resolution strategies that can be readily used in RES-MP,
while preserving completeness, include linear resolution [23],

directional resolution [25] and lock resolution [7]. Strategies
such as set-of-support and semantic resolution can be used
with somewhat different treatments.

4 Minimizing Node Coupling Using Polarity
FMP and RES-MP use the communication language to deter-
mine relevant inference steps between formulae in connected
partitions. This section improves the efficiency of FMP and
RES-MP by exploiting the polarity of predicates in our par-
titions to further constrain the communication language be-
tween partitions. This leads to a reduction in the number
of messages that are passed between adjacent partitions, and
thus a reduction in the search space size of the global reason-
ing problem. Our results are predicated on Lyndon’s Interpo-
lation Theorem [20], an extension to Craig’s Theorem [10].

Theorem 4.1 (Lyndon’s Interpolation Theorem) Let α, β
be sentences such that α ` β. Then there exists a sentence γ
such that α ` γ and γ ` β, and that every relation symbol
that appears positively [negatively] in γ appears positively
[negatively] in both α and β. γ is referred to as the inter-
polant of α and β.

This theorem guarantees that FMP need only send clauses
with literals that may be used in subsequent inference steps.
For example, let {A1,A2} be a partitioned theory,G = (V =
{1, 2}, E= {(1, 2)}, l) be a graph, and Q ∈ L(A2), be a
query. If FMP concluded P from A1, and P does not show
positively inA2 ⇒ Q (i.e., P does not show negatively inA2
and does not show positively in Q), then there is no need to
send the message P fromA1 to A2.

Procedure POLARIZE (Figure 7) takes as input a parti-
tioned theory, associated tree G = (V,E, l), and a query
Q. It returns a new graph G′ = (V,E, l′) that is mini-
mal with respect to our interpretation of Lyndon’s Interpo-
lation Theorem. The labels of the graph now include pred-
icate/propositional symbols with associated polarities (the
same symbol may appear both positively and negatively on
an edge label). All function and object symbols that appeared
in l also appear in l′ for the respective edges.

Theorem 4.2 (Soundness and Completeness) Let A be a
partitioned theory {Ai}i≤n of arbitrary propositional or
first-order formulae, G a tree that is properly labeled with
respect to A, and Q ∈ L(Ak), k ≤ n, a query. Let G′

be the result of running POLARIZE({Ai}i≤n, G, Q). Let
Li = L(l(i, j)) for j such that (i, j) ∈ E and j ≺ i (there is
only one such j), and let {Ri}i≤n be reasoning procedures
associated with partitions {Ai}i≤n. If every Ri is complete
for Li-generation then A |= ϕ iff FMP({Ai}i≤n, G′,Q) out-
puts YES.

Darwiche [11] proposed a more restricted use of polarity
in graph-based algorithms for propositional SAT-search. His
proposal is equivalent to first finding those propositional sym-
bols that appear with a unique polarity throughout the theory
and then assigning them the appropriate truth value. In con-
trast, our proposed exploitation of polarity is useful for both
propositional and first-order theories, it is more effective in
constraining inference steps, and is applicable to a broader
class of message-passing algorithms problems. In particular,

PROCEDURE POLARIZE({Ai}i≤n, G, Q)

{Ai}i≤n a partitioning of the theory A, G = (V,E, l) a tree and
Q a query formula in L(Ak) (k ≤ n).

1. For every i, j ∈ V , set l′(i, j) to be the set of object and
function symbols that appear in l(i, j), if there are any.

2. Rewrite {Ai}i≤n such that all negations appear in front of
literals (i.e., in negation normal form).

3. Determine ≺ as in Definition 2.1.

4. For all (i, j) ∈ E such that i ≺ j, for every predicate symbol
P ∈ l(i, j),

(a) Let V1, V2 be the two sets of vertices in V separated by
i in G, with j ∈ V1.

(b) If [¬]P appears in V1 then,
if [¬]P appears in Q or ¬[¬]P appears in Am, for
some m ∈ V2, then add [¬]P to l′(i, j).

5. Return G′ = (V,E, l′).

Figure 7: Constraining the communication language of
{Ai}i≤n by exploiting polarity.

our method is useful in cases where symbols appear with dif-
ferent polarities in different partitions.

5 Minimizing Local Inference
To maximize the effectiveness of structure-based theorem
proving, we must minimize local inference within each node
of our tree-structured problem representation, while preserv-
ing global soundness and completeness. First-order and
propositional consequence finding algorithms have been de-
veloped that limit deduction steps to those leading to interest-
ing consequences, skipping deduction steps that do not.

In the propositional case, the most popular algorithms are
certainL-(prime) implicate finders. (See [21] for an excellent
survey.) SOL-resolution (skipping ordered linear resolution)
[17] and SFK-resolution (skip-filtered, kernel resolution) [14]
are two first-order resolution-based L-consequence finders.
SFK-resolution is complete for first-order L-consequence
finding, reducing to Directional Resolution in the proposi-
tional case [13]. In contrast, SOL-resolution is not complete
for first-order L-consequence finding, but is complete for
first-order incrementalL-consequence finding. Given new in-
put Φ, an incremental L-consequence finder finds the conse-
quences ofA∪Φ that were not entailed by Φ alone. Defining
completeness for incremental L-consequence finding is anal-
ogous to Definition 2.5.

In the rest of this section, we propose strategies that exploit
our graphical models and specialized consequence finding al-
gorithms to improve the efficiency of reasoning. Following
the results in previous sections, using SFK-resolution as a rea-
soner within partitions will preserve the soundness and com-
pleteness of the global problem while significantly reducing
the number of inference steps. SFK-resolution can be used
by all of the procedures below. Unless otherwise noted, the
algorithms we describe are limited to propositional theories
because first-order consequence finders may fail to terminate,
even for decidable cases of FOL.

The first strategy is compilation. Figure 8 provides an al-
gorithm, COMPILE({Ai}i≤n, G), that takes as input a parti-
tioned theory {Ai}i≤n and associated tree G, that is properly
labeled, and outputs a compiled partitioned theory {A

′

i}i≤n.
Each new partition is composed of the logical consequences
of partition Ai that are in the language Lcommi , all the com-
munication languages associated with Ai. Prime implicate
finders have commonly been used for knowledge compila-
tion, particularly in propositional cases. SFK-resolution can
be used as the sound and complete L-consequence finder in
Step 2 of COMPILE.

Knowledge compilation can often create a large theory.
Each partition produced by COMPILE({Ai}i≤n, G) will be
of worst case size of O(2|L(Lcommi)|) clauses. Since our as-
sumption is that partitions are produced to minimize commu-
nication between partitions, | L(Lcommi) | should be much
smaller than | L(Ai) |. As a consequence, we might expect
the compiled theory to be smaller than the original theory,
though this is not guaranteed. Under the further assumption
that the theories in partitions are fairly static, the cost of com-
pilation will be amortized over many queries. We discuss
further options for compilation, including the use of partial
compilation, in a longer paper.

PROCEDURE COMPILE({Ai}i≤n, G)

{Ai}i≤n a partitioning of the theory A, G = (V,E, l) a tree with
proper labeling for A. For each partition Ai, For i = 1, . . . , n,

1. Let Lcommi = L(
⋃
(i,j)∈E l(i, j))

2. Using a sound and complete L-consequence finder,
perform Lcommi -consequence finding on each partition Ai,
placing the output in a new partitionA

′

i.

Figure 8: A partition-based theory compilation algorithm.

Proposition 5.1 Let A =
⋃
i≤nAi be a partitioned theory

with associated tree G that is properly labeled for A. Let
Lcommi = L(

⋃
(i,j)∈E l(i, j))). For all ϕ ∈ Li ⊆ Lcommi ⊆

L(Ai), Ai |= ϕ iffA
′

i |= ϕ, where {A
′

i}i≤n are the compiled
partitions output by COMPILE({Ai}i≤n, G).

We may use our compiled theories in several different
strategies for batch-style and concurrent theorem proving, as
well as in our previous message-passing algorithms. Figure
9 presents an algorithm for batch-style structure-based the-
orem proving. BATCH-MP takes as input a (possibly com-
piled) partitioned theory, associated tree G that is properly
labeled, and query Q. For each partition in order, it exploits
focused L-consequence finding to compute all the relevant
consequences of that theory. It passes the conclusions to-
wards the partition with the query. This algorithm is very sim-
ilar to the bucket elimination algorithm of [13]. BATCH-MP
preserves soundness and completeness of the global problem,
while exploiting focused search within each partition.

Theorem 5.2 (Soundness and Completeness) Let A be a
set of clauses in propositional logic. Let {Ri}i≤n be the
Li-consequence finders associated with partitions {Ai}i≤n

PROCEDURE BATCH-MP ({Ai}i≤n, G, Q)

{Ai}i≤n a (compiled) partitioning of the theoryA,G = (V,E, l)
a properly labeled tree describing the connections between the par-
titions, Q a query in L(Ak) (k ≤ n).

1. If {Ai}i≤n , is a compiled theory, replace partition Ak with
the partition Ak from the uncompiled theory.

2. Determine ≺ as in Definition 2.1.

3. Let Li = L(l(i, j)) for j such that (i, j) ∈ E and j ≺ ia.

4. Following ≺ in a decreasing order, for every (i, j) ∈ E such
that j ≺ ia,
Run the Li-consequence finder on Ai until it has exhausted
its consequences, and add the consequences in Li to Aj .

5. If Q is provenb in Ak , return YES.

aThere is only one such j.
bDerive a subsuming formula or initially add ¬Q to Ak and

derive inconsistency.

Figure 9: A batch-style message-passing algorithm.

in step 4 of BATCH-MP ({Ai}i≤n,G,Q). If every Ri is com-
plete for Li-consequence finding then A |= Q iff applying
BATCH-MP({Ai}i≤n,G,Q) outputs YES.

Our final algorithm, CONCURRENT-MP, (Figure 10),
takes as input a (possibly compiled) partitioned theory, as-
sociated tree G that is properly labeled, and query Q. It
exploits incremental L-consequence finding in the output
communication language of each partition to compute the
relevant incremental consequences of that theory, and then
passes them towards the partition with the query. Once again,
SFK-resolution can be used as the sound and complete L-
consequence generator for the preprocessing (Step 4). In the
case where the theory is compiled into propositional prime
implicates, the consequences in Li may simply be picked out
of the existing consequences in Ai. SOL-resolution can be
used as the sound and complete incremental L-consequence
finder (Step 6a). CONCURRENT-MP preserves soundness
and completeness of the global problem in the propositional
case, while exploiting focused search within each partition.

Theorem 5.3 (Soundness and Completeness) Let A be a
set of clauses in propositional logic. Let {Ri}i≤n be the
Li-consequence finders associated with partitions {Ai}i≤n
in step 4 of CONCURRENT-MP({Ai}i≤n,G,Q) and let
{R′i}i≤n be the incremental Li-consequence finders associ-
ated with partitions {Ai}i≤n in step 6 of CONCURRENT-
MP({Ai}i≤n,G,Q). If every Ri is complete for Li-
consequence finding, and every R′i is complete for incre-
mental Li-consequence finding then A |= Q iff applying
CONCURRENT-MP({Ai}i≤n,G,Q) outputs YES.

6 Related Work
A number of AI reasoning systems exploit some type of struc-
ture to improve the efficiency of reasoning. While our ex-
ploitation of graph-based techniques is similar to that used in
Bayes Nets (e.g., [18]) our work is distinguished in that we

PROCEDURE CONCURRENT-MP ({Ai}i≤n, G, Q)

{Ai}i≤n a (compiled) partitioning of the theoryA,G = (V,E, l)
a properly labeled tree describing the connections between the par-
titions, Q a query in L(Ak) (k ≤ n).

1. Determine ≺ as in Definition 2.1.

2. Let Li = L(l(i, j)) for j such that (i, j) ∈ E and j ≺ ia.

3. If {Ai}i≤n, is a compiled theory, then replace partition Ak
with the partition Ak from the uncompiled theory.

4. For every i ≤ n, run the Li-consequence finder on partition
Ai until it has exhausted its consequences.

5. For every (i, j) ∈ E such that j ≺ ia, add the Li-prime
implicates to partition Aj .

6. Concurrently,

(a) For every (i, j) ∈ E such that j ≺ ia, perform incre-
mental Li-consequence finding for each of the partition
Ai and add the the consequences in Li to Aj .

(b) If Q is provenb inAk , return YES.

aThere is only one such j.
bDerive a subsuming formula or initially add ¬Q to Ak and

derive inconsistency.

Figure 10: A concurrent message-passing algorithm.

reason with logical rather than probabilistic theories, where
notions of structure and independence take on different roles
in reasoning. Our work is most significantly distinguished
from work on CSPs (e.g., [12]) and more recently, logical rea-
soning (e.g., [11; 25]) in that we reason with explicitly par-
titioned theories using message passing algorithms and our
algorithms apply to FOL as well as propositional theories.

In the area of FOL theorem proving, our work is related
to research on parallel theorem proving (see surveys in [6;
15]) and on combining logical systems (e.g., [24; 4]). Most
parallel theorem prover implementations are guided by looka-
head and subgoals to decompose the search space dynami-
cally or allow messages to be sent between different provers
working in parallel, using heuristics to decide on which mes-
sages are relevant to each prover. These approaches typically
look at decompositions into very few sub-problems. In addi-
tion, the first approach typically requires complete indepen-
dence of the sub-spaces or the search is repeated on much of
the space by several reasoners. In the second approach there
is no clear methodology for deciding what messages should
be sent and from which partition to which.

The work on combining logical systems focuses on combi-
nations of signature-disjoint theories (allowing the queries to
include symbols from all signatures) and decision procedures
suitable for those theories. All approaches either nondeter-
ministically instantiate the (newly created) variables connect-
ing the theories or restrict the theories to be convex (disjunc-
tions are intuitionistic) and have information flowing back
and forth between the theories. In contrast, we focus on
the structure of interactions between theories with signatures
that share symbols and the efficiency of reasoning with con-
sequence finders and theorem provers. We do not have any

restrictions on the language besides finiteness.
Work on formalizing and reasoning with context (see [1]

for a survey) can be related to theorem proving with struc-
tured theories by viewing the contextual theories as interact-
ing sets of theories. Unfortunately, to introduce explicit con-
texts, a language that is more expressive than FOL is needed.
Consequently, a number of researchers have focused on con-
text for propositional logic, while much of the reasoning work
has focused on proof checking (e.g., GETFOL [16]).

7 Summary
In this paper we exploited graph-based techniques to im-
prove the efficiency of theorem proving for structured the-
ories. Theories were organized into subtheories that were
minimally connected by the literals they share. We presented
message-passing algorithms that reason over these theories
using consequence finding, specializing our algorithms for
the case of first-order resolution, and for batch and concurrent
theorem proving. We provided an algorithm that restricts the
interaction between subtheories by exploiting the polarity of
literals. We attempted to minimize the reasoning within each
individual partition by exploiting existing algorithms for fo-
cused incremental and general consequence finding. Finally,
we proposed an algorithm that compiles each subtheory into
one in a reduced sublanguage. We have proven the soundness
and completeness of all of these algorithms. The results pre-
sented in this paper contribute towards addressing the prob-
lem of reasoning efficiently with large or multiple structured
commonsense theories.

Acknowledgements
We wish to thank the anonymous IJCAI reviewers for their
thorough review of this paper, and Alvaro del Val and Pierre
Marquis for helpful comments on the relationship between
our work and previous work on consequence finding. This
research was supported in part by DARPA grant N66001-
97-C-8554-P00004, NAVY grant N66001-00-C-8027, and by
DARPA grant N66001-00-C-8018 (RKF program).

References
[1] V. Akman and M. Surav. Steps toward formalizing context. AI

Magazine, 17(3):55–72, 1996.

[2] E. Amir. Efficient approximation for triangulation of mini-
mum treewidth. Manuscript submitted for publication. Avail-
able at http://www-formal.stanford.edu/eyal/papers/decomp-
uai2001.ps, 2001.

[3] E. Amir and S. McIlraith. Paritition-based logical reasoning.
In Proc. KR ’2000, pages 389–400. Morgan Kaufmann, 2000.

[4] F. Baader and K. U. Schulz. Combination of constraint solvers
for free and quasi-free structures. Theoretical Computer Sci-
ence, 192(1):107–161, 1998.

[5] W. W. Bledsoe and A. M. Ballantyne. Unskolemizing. Techni-
cal Report Memo ATP-41, Mathematics Department, Univer-
sity of Texas, Austin, 1978.

[6] M. P. Bonacina and J. Hsiang. Parallelization of deduction
strategies: an analytical study. Journal of Automated Reason-
ing, 13:1–33, 1994.

[7] R. S. Boyer. Locking: a restriction of resolution. PhD thesis,
Mathematics Department, University of Texas, Austin, 1971.

[8] R. Chadha and D. A. Plaisted. Finding logical consequences
using unskolemization. In Proceedings of ISMIS’93, volume
689 of LNAI, pages 255–264. Springer-Verlag, 1993.

[9] P. Cox and T. Pietrzykowski. A complete nonredundant algo-
rithm for reversed skolemization. Theoretical Computer Sci-
ence, 28:239–261, 1984.

[10] W. Craig. Linear reasoning. a new form of the Herbrand-
Gentzen theorem. J. of Symbolic Logic, 22:250–268, 1957.

[11] A. Darwiche. Utilizing knowledge-based semantics in graph-
based algorithms. In Proc. AAAI ’96, pages 607–613, 1996.

[12] R. Dechter and J. Pearl. Tree Clustering Schemes for Con-
straint Processing. In Proc. AAAI ’88, 1988.

[13] R. Dechter and I. Rish. Directional resolution: The Davis-
Putnam procedure, revisited. In Proc. KR ’94, pages 134–145.
Morgan Kaufmann, 1994.

[14] A. del Val. A new method for consequence finding and com-
pilation in restricted language. In Proc. AAAI ’99, pages 259–
264. AAAI Press/MIT Press, 1999.

[15] J. Denzinger and I. Dahn. Cooperating theorem provers. In
W. Bibel and P. Schmitt, editors, Automated Deduction. A ba-
sis for applications., volume 2, chapter 14, pages 383–416.
Kluwer, 1998.

[16] F. Giunchiglia. GETFOL manual - GETFOL version 2.0.
Technical Report DIST-TR-92-0010, DIST - University of
Genoa, 1994. Available at http://ftp.mrg.dist.unige.it/pub/mrg-
ftp/92-0010.ps.gz.

[17] K. Inoue. Linear resolution for consequence finding. Artificial
Intelligence, 56(2-3):301–353, Aug. 1992.

[18] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian
updating in recursive graphical models by local computation.
Computational Statistics Quarterly, 4:269–282, 1990.

[19] R. C.-T. Lee. A Completeness Theorem and a Computer Pro-
gram for Finding Theorems Derivable from Given Axioms.
PhD thesis, University of California, Berkeley, 1967.

[20] R. C. Lyndon. An interpolation theorem in the predicate cal-
culus. Pacific Journal of Mathematics, 9(1):129–142, 1959.

[21] P. Marquis. Consequence finding algorithms. In Algorithms
for Defeasible and Uncertain Reasoning, volume 5 of Hand-
book on Deafeasible Reasoning and Uncertainty Management
Systems, pages 41–145. Kluwer, 2000.

[22] S. McIlraith and E. Amir. Theorem proving with structured
theories (full report). Technical Report KSL-01-04, KSL,
Computer Science Dept., Stanford U., Apr. 2001.

[23] E. Minicozzi and R. Reiter. A note on linear resolution strate-
gies in consequence-finding. Artificial Intelligence, 3:175–
180, 1972.

[24] G. Nelson and D. C. Oppen. Simplification by cooperating
decision procedures. ACM Trans. on Programming Languages
and Systems, 1(2):245–257, Oct. 1979.

[25] I. Rish and R. Dechter. Resolution versus search: two strate-
gies for SAT. Journal of Automated Reasoning, 24(1-2):225–
275, 2000.

[26] J. A. Robinson. A machine-oriented logic based on the resolu-
tion principle. J. of the ACM, 12(1):23–41, 1965.

[27] J. R. Slagle. Interpolation theorems for resolution in lower
predicate calculus. J. of the ACM, 17(3):535–542, July 1970.

