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Linköping University Electronic Press
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Electronic Press and its procedures for publication and for

assurance of document integrity, please refer to
its WWW home page: http://www.ep.liu.se/

or by conventional mail to the address stated above.



Abstract

We wish to improve modeling in first-order logic (FOL) by using

object-oriented tools. To this end, we describe Object-Oriented

First-Order Logic (OOFOL), which is a simple extension of FOL.

It does not surpass the expressive power of FOL, but it provides

object-oriented tools to the knowledge engineer. In OOFOL, ob-

jects are theories that are connected via interface vocabularies

to other objects, classes are used to provide a reusable logical

template, and inheritance is used to adapt classes to specialized

tasks. We show that this logic has a simple semantics provided

by FOL. A variant of the logic that allows links between the ob-

jects to be unidirectional is also examined. We call this variant

Directed Object-Oriented First-Order Logic (Directed OOFOL).

We show that such a system can be given semantics using Cir-

cumscription.

Our new tools facilitate the object-oriented design of theo-

ries. We demonstrate this through a few applications taken from

model-based reasoning, theories of action and cognitive robotics.

These examples also demonstrate the use of the object-oriented

methodology and tools for the construction of first-order theo-

ries. We conclude with proposed specialized inference algorithms

for these logics.
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1 Introduction

This paper is about modeling in First-Order Logic (FOL) and the tools
needed for it. FOL provides a richness of representation, but does not nec-
essarily make change and reuse easy. The difficulty of building and reusing
first-order theories is visible in the obstacles encountered in such areas as
Commonsense Reasoning, Knowledge Reuse and Formal Verification. On
the other hand, the Object-Oriented paradigm has proved to be successful
at facilitating software engineering, database engineering and knowledge
engineering. (e.g., [28, 36, 5, 30, 26]).

In this paper, we propose adding object-oriented tools to FOL. We show
that our extension does not increase the expressive power of FOL by giv-
ing it a simple semantics using FOL. A second extension that also allows
for directionality of influence is shown to be semantically characterizable
using Circumscription. In these logics, classes are theories equipped with
interfaces, objects are copies of their classes with links to other objects, and
inheritance is used to define classes that specialize their parents. We show
the existence of efficient inference algorithms for both logics.

We show that the extensions we provide are suitable and sufficient for
several application areas. We do so by building example theories for phys-
ical systems (following the model-based reasoning approach), hierarchical
domain models, theories of action and modeling agents.

The combination of object-oriented ideas and logical knowledge repre-
sentation is not new. Frame systems (e.g., KRYPTON/KL-ONE [5]), Con-
text Systems (e.g., CycL [30]), Object-Oriented Prolog dialects (e.g., Pro-
log++ [39]) and logics describing object-oriented programs and databases
(e.g., [25, 28, 32]) are examples. Still, frame systems do not have the theo-
retical framework or tools to support object-oriented design in FOL. Most
remarkably, frame systems either have no semantic difference between a
FOL axiom associated with one frame’s ABox or another frame’s ABox
(e.g., Ontolingua [20, 14]), or there is such a difference, but the semantics
is complicated (context-supported CycL). Our work is applicable to these
systems.

We expand on this comparison at end of this paper. Before that, Sec-
tions 2, 3, 4 and 5 describe the motivation and structures of our approach,
the syntax and semantics, several applications, and entailment methods, re-
spectively. Throughout this paper, we treat logic as an engineering tool
and view it through the eyes of an engineer. This approach influences our
design decisions, as will be evident.

2 An Object-Oriented Approach to Logic

The intuition behind our approach to Object-Oriented logic is that a the-
ory can be presented as a collection of theories communicating with one
another via interface vocabularies. From this point of view, a theory is a
graph of smaller theories (the graph is possibly directed). If the interface
vocabularies are small, there is a significant performance improvement over
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ordinary FOL theories because of the algorithms that can be applied. Also,
the directionality of such interfaces allows us to restrict inconsistencies
from influencing other parts of the theory. Modifications in the internals
of these theories have only local impact, an impact that is circumscribed by
the interface vocabularies.

A Cup Object
Links
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yPSfrag replacements L = {has handle, faces up,
faces down, has liquid, broken
location, in, on, room218}

A = {faces up⇒ ¬faces down
faces down⇒ ¬has liquid
broken⇒ ¬has liquid
¬broken⇒ ∃p.location = in(p)
∨location = on(p)}

Figure 1: A Cup object.

We describe the structure of objects through a simple example. The
Cup object, depicted in Figure 1, describes some of the characteristics of
a typical cup. As with other objects, it has a vocabulary, a set of axioms,
an interface vocabulary and a set of links to other objects. In its simple
form (non-directional), a link specifies an equality between two interface-
vocabulary symbols in two respective objects.

A Cup Object
Interface Interface

A Liquid Object

PSfrag replacements

L = ...

A = ...

L = {location,
...}

A = {in cup⇒
location =
cup pos,

...}

has liquid in cup

location cup pos

inin

Figure 2: Connecting Cup and Liquid objects.

In Figure 2 two linked objects are presented. Some of the interface
symbols of the Cup object are linked to the interface symbols of the Liq-
uid object. The link specifies that has liquid in the object Cup has the
same semantics as in cup in the object Liquid. The same goes with the
pairs location, cup pos and in, in. From a first-order logic perspective
it is as if we added the equality/equivalence axioms Cup.has liquid ≡
Liquid.in cup, Cup.location = Liquid.cup pos and ∀x(Cup.in(x) =
Liquid.in(x)).1

From an automated reasoning perspective, describing a theory as a set
of objects allows the following style of reasoning: All objects generate
consequences in parallel, sending results to those other objects interested in
them. These results are then incorporated into the theorem-proving process

1All of this machinery can be seen as a special case of similar techniques used in context
theories such as [17]. More on that in Section 6.
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of the receiving objects. Axioms sent from object to object are restricted to
the communication vocabulary, but the language is full FOL. For example,
look again at Figure 2 on the preceding page. If an object Liquid has a link
to the Cup1 object that includes has liquid, location, in (on the side of
Cup1), then a sentence like has liquid ⇒ ∃p location = in(p) will be
translated and sent to Liquid in the form in cup⇒ ∃x cup pos = in(x).

The use of fixed interfaces allows the encapsulation of the internals
of objects. This way, we can add or replace internal axioms with higher-
grain axioms, describing the type of liquid, the heat, the degrees of tilt of
the cup or the material of which the cup is made. Since we can expect
the interface to remain the same, we can verify the change by examining
changes to results in the interface, paying less attention to other internal
results (possibly applying the techniques of [24]).

To allow reuse of theories and following object-oriented design tradi-
tion, we define a class to be a “template” of objects. A class can be thought
of as an object without specified links. Alternatively, an object is simply a
copy of its class with links to other objects. We allow different uses of two
objects of the same class in the same theory (linked to possibly different
objects).

The Covered_Cup Class

PSfrag replacements
LCovered Cup = LCup ∪ {cover on, has liquid

′}

ACovered Cup = (ACup)[has liquid/has liquid′]∪

{has liquid′ ⇒ has liquid,
faces down ∧ ¬cover on⇒ ¬has liquid
broken⇒ ¬has liquid}
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Figure 3: A subclass of the Cup class.

Inheritance is yet another object-oriented tool used in many KR sys-
tems. It is sometimes reasoned about using nonmonotonic reasoning sys-
tems (e.g., [33, 37, 42]). In contrast, we implement inheritance of a class
from its parent class outside the logic, as we are interested in it as an engi-
neering tool.

Figure 3 describes Covered Cup, a subclass of Cup; the inherited part
is underlined. A subclass inherits all the axioms and vocabulary of its super-
class, but may add symbols to the vocabulary and the interface vocabulary
and may also add axioms. To enable the subsumption of axioms, we allow
symbols used in the superclass to be replaced by new symbols (i.e., the sub-
sumption of axioms is done by subsuming symbols2). In our example, the
symbol has liquid is substituted by has liquid′ in all ofACup to allow for
a new definition for has liquid.

This kind of inheritance is similar to inheritance in Object-Oriented
programming languages, where the interface of the subclass must include

2This enables the reuse of superclass results in the subclass.
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the interface of the superclass, but may implement some of the internals
differently. This definition allows the specialization of a class by adding
more detail in its subclasses.

3 Object-Oriented FOL

In what follows, we use some notations that are common in object-oriented
programming languages, namely, Obj.c (or N.c) to refer to the symbol c in
the object Obj (with the name N ). For simplicity of exposition, we shall
not define classes and objects recursively (i.e., classes whose theories are
themselves OOFOL theories). A recursive definition may sometimes be
useful, but it requires only a simple technical step and makes our notations
significantly more dense. Thus, this definition is omitted, but we note that
all the results that follow hold for this more general case.

First, we define our language: classes and objects, interfaces, links and
theories. Unless otherwise mentioned, all languages mentioned are full
first-order.

A Class C is a tuple 〈LC ,AC , IC〉 corresponding to an FOL vocabu-
lary (LC ), a set of FOL axioms (AC ) in this language, and IC ⊂ LC , the
interface vocabulary of C .

An OOFOL Theory T is a set of statements

Object(C,N,L),

(defining an object) where C is a class reference (a class description as
above, or a reference to such a description), N is a unique name for the
object (typically a string of symbols) and L is a linking relation L =
{(Pi, Ni, Qi)}i≤n that specifies the links between this object and other ob-
jects in the theory. Here Pi is a symbol in the interface vocabulary of C ,Ni
is a name of another object in T , and Qi is an interface symbol of this other
object. This way, an object is simply “declared” to be in the theory. We
assume that no statement in T refers to a name Ni (in the linking relation)
for which no corresponding object exists in T .

3.1 FOL Semantics

Unlike object-oriented approaches to logic that use context (see Section 6),
we take advantage of the limited expressivity of our language (we cannot
quantify over objects) and the limited interaction among our objects to give
a simple FOL semantics to OOFOL theories.

We define the semantics by making objects have mutually exclusive
vocabularies and viewing the links as equality/equivalence assertions. For
an OOFOL theory T , define L(T ) = {N.P | Object(C,N,L) ∈ T, P ∈
LC}. This language gives a unique vocabulary for each object in T . We
apply a simple translation into this vocabulary (replacing P by N.P in the
axioms of the object N for each symbol P in its vocabulary) and add the
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equality/equivalence assertions:

T̃ = {(AC)[P/N.P |P∈LC] | Object(C,N,L) ∈ T} ∪
{∀−→x (N.P (−→x ) ≡ N ′.P ′(−→x )) |Object(C,N,L) ∈ T, L(P,N ′, P ′)}

(1)

where “≡” means “=” if P, P ′ are function symbols, and −→x may be of
arity 0 (if P, P ′ are propositional or constant symbols).

An OOFOL structure in the language L(T ) is structure of L(T ) as an
FOL language.

Definition 3.1 (FOL Semantics for OOFOL) Let T be an OOFOL the-
ory and let M be an OOFOL structure of L(T ). A formula ϕ ∈ L is
satisfied inM, writtenM |= ϕ, iffM satisfies ϕ in the FOL sense.
M is a model of T , writtenM |= T iffM |= T̃ (in the FOL sense).

In other words, the semantics of an OOFOL theory as an undirected
graph of connected theories has the links state equality/equivalence among
symbols and otherwise has the theory behave like an FOL theory.

EXAMPLE If T is the OOFOL theory containing the two connected
objects from Figure 2, then

T = {Object(Cup,Cup1, {(has liquid,Liquid1, in cup),
(location,Liquid1, cup pos), (in,Liquid1, in)}),

Object(Liquid,Liquid1, {})}

The equality/equivalence sentences that we add in defining T̃ and T ’s se-
mantics are:

Cup1.has liquid ≡ Liquid1.in cup
Cup1.location = Liquid1.cup pos
∀x(Cup1.in(x) = Liquid1.in(x)).

Notice that the definition of Liquid1 above did not include any links, be-
cause the links were already specified for Cup1.

3.2 Directional Semantics

The previous section gave semantics that is sufficient to represent an object-
oriented system that has no direction associated with the links in the objects
graph. From a procedural perspective, this approach corresponds to allow-
ing influence to flow in both directions of a link. In Figure 2, if we proved
Cup1.has liquid, then we can infer Liquid1.in cup and vice versa.

Sometimes, we would like to have the influence go in only one direc-
tion. For example, we may want to allow different accuracies of reason-
ing in two connected objects O1, O2. Accuracy here means that although
something of interest to O1 may come up in O2, we prefer to have O1 ig-
nore it. Abstractions and approximations are examples of such differences
in accuracy. This ability to ignore influence is of particular importance in
time-dependent tasks.
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To give directional semantics to OOFOL theories, we convert the equiv-
alence/equality axioms that we added in Section 3.1 into defaults. This is
done simply by adding abnormality predicates in front of each link equal-
ity/equivalence. We later Circumscribe these abnormalities. The circum-
scription will be done for each pair of linked objects separately. Thus, we
write the corresponding formula to (1) for each pair separately:

Ã(O1, O2) = {(ACi)[P/Ni.P |P∈LCi ] | i = 1, 2}∪

{∀−→x (AbN1.P1,N2.P2(
−→x )⇒ N1.P1(−→x ) ≡ N2.P2(−→x )) |L2(P2, N1, P1)}

(2)

where Oi = Object(Ci, Ni, Li).
We use Circumscription [33] for our semantics. Circumscription is a

method for nonmonotonic reasoning in which, given a set of axioms T , the
extensions of some predicate symbols

−→
P are minimized while some other

symbols
−→
Q are allowed to vary their semantics. This is achieved by replac-

ing T with the second-order formula (or FOL schema) Circ[T ;
−→
P ;
−→
Q ]:

T (
−→
P ,
−→
Q ) ∧ ∀−→p ,−→q [T (−→p ,−→q ) ∧ −→p ≤

−→
P ⇒ −→p =

−→
P ].

In the following semantics, to have influence flow in only one direction,
we circumscribe the abnormality predicates AbO1,O2 (the set of all abnor-
mality predicates in Ã(O1, O2)) in the axioms of the object-pair, Ã(O1, O2).
We allow only the symbols of O2 to vary, thus allowing influence to flow
from O1 to O2, but not vice versa.

Definition 3.2 (Directional Semantics) We say thatM is a Directed OOFOL
model of an OOFOL theory T , written M |=D T , iff

M |=
∧

O1,O2∈T

Circ[Ã(O1, O2);AbO1,O2 ;L(O2)]

We define M |=D ϕ and T |=D ϕ, for a formula ϕ ∈ L(T ), as usual.
Roughly speaking, in this definition, the links of O2 serve as inputs

and the links of O1 serve as outputs. This distinction is made precise by
allowing the circumscription to vary only L(O2), holding L(O1).

Interface Interface

PSfrag replacements

A B

L1 = {A}

A1 = ∅

L2 = {B}

A2 = {B}

N1 =“O” N2 =“O∗”

O1 O2

L
2
=

{
(B
,“

O
”,
A
)}

Figure 4: Influence flows from O1 to O2.

EXAMPLE Look at Figure 4. We are going to show that influence
between the objects O1 and O2 flows only in the arrow’s direction. As



7

before, the link L2(B, ”O”, A) roughly says “link myB to O’sA”. Proving
O2.B does not allow us to prove O1.A. Formally,

Circ[B ∧ (¬ab⇒ (B ⇐⇒ A)); ab;B] 6|= A.

This is because the only models (in the propositional language {A,B})
that satisfy B ∧ (¬ab ⇒ (B ⇐⇒ A)) are M1 = {¬A,B, ab},M2 =
{A,B,¬ab}, M3 = {A,B, ab}. M1,M2 are not comparable by the pref-
erence relation of our circumscription because they differ on A (which is
held constant in our circumscription). M2 is preferred to M3 and thus we
have two minimal models of our circumscription, one of which does not
satisfy A.

3.3 Inheritance

Unlike nonmonotonic inheritance (as in [38, 25]), inheritance in our system
is treated outside the logic, having the engineer specify its exact use. We
wish to allow three differences between a class and its parent: (1) the child’s
vocabulary and interface vocabulary are expansions of the parent’s; (2) the
child class inherits all the axioms of the parent, subject to the replacement
of non-logical symbols (in all of the axioms in the same way) with some of
the new symbols in the child’s language; and (3) the child class may have
additional axioms.

Formally, for a set of axioms A and non-logical symbols c, c′, A[c/c′]
is the set of axioms A with every occurrence of the symbol c replaced by
an occurrence of the symbol c′. A[c1/c′1,...,cn/c′n] is similarly defined. A class
C = 〈L,A, I〉 is a subclass ofC ′ = 〈L′,A′, I ′〉 ifL′ ⊆ L,A′[c1/c′1,...,cn/c′n]

⊆

A (n ≥ 0) and I ′ ⊆ I . A detailed example is provided in Section 4.1.

4 Applications

The previous section provided the basic tools suggested by the object-
oriented paradigm: classes, objects, interface and inheritance. In this sec-
tion we show that the tools we provided are suitable for object-oriented
design in FOL. The examples that we provide demonstrate the way object-
oriented design can be used in building first-order theories.

4.1 Model-Based Reasoning

Below, we give a fragment of a theory describing the functionality of a car.
We use qualitative proportionalities (see [15]) to represent the relationships
among different variables of the car (in our case, these are monotonically
increasing and monotonically decreasing functions). Figure 5 on the fol-
lowing page describes some of the classes for this domain and the theory
fragment.

The notation class C1 : C2 indicates that C1 is a subclass of C2.
For example, we have some knowledge about ordinary brakes systems,
but we also have some specialized knowledge about anti-lock lock brakes
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class Qualitative Proportionalities {
axioms: ∀xy(x > y ⇒ rel pos(x) > rel pos(y))

∀xy(x > y ⇒ rel neg(x) < rel neg(y)) }

class Brakes : Qualitative Proportionalities {
interface: apply force(x)
axioms: ∀xy(pedal pressure(x)∧ oil pressure(y)⇒

apply force(rel pos(x) ∗ rel pos(y)))
pedal pressure(0)⇒ apply force(0), oil pressure(70) }

class ABS : Brakes {
interface: apply force(x), abs(x)
axioms: ∀x(old apply force(x) ∧ x ≥ ABS step⇒ apply force(abs(x)))
inherit: [apply force/old apply force] }

class Tires : Qualitative Proportionalities {
interface: bad traction(wheel), apply force(x), engine force(x), brake force(x)
axioms: ∀xy(brake force(x) ∧ engine force(y)⇒

apply force(rel pos(y)− rel pos(x)))
∀wheel(¬balanced(wheel) ∨ old(wheel)⇒ bad traction(wheel))
∀wheel(balanced(wheel) ∧ new(wheel))
∀x(new(x) ⇐⇒ ¬old(x)) }

class Car : Qualitative Proportionalities {
interface: tire force(x), bad traction(wheel)
axioms: ∃w.bad traction(w) ∧ tire traction(t)⇒ t < Good,

∀t(∀w.¬bad traction(w)) ∧ tire traction(t) ⇒ t = Good
∀fts(tire force(f) ∧ tire traction(t) ∧ speed(s)⇒

stop time(rel neg(s) ∗ rel pos(f) ∗ rel neg(t))) }

T















Object(ABS,Brakes1, {}).
Object(Tires,Tires1, {(brakes force,Brakes1, apply force)}).
Object(Car,Car1, {(tire force,Tires1, apply force),
(bad traction, Tires1, bad traction)}).

Figure 5: Some of the classes in the CAR theory and a theory fragment
using these classes.

apply_force bad_traction
tire_force

theory
theorytheory

brake_force

Car1Brakes1 Tires1
apply_force

bad_traction

Figure 6: Diagrammatic structure of the CAR theory fragment.

systems (ABS). The class ABS is a subclass of Brakes in which we in-
herit all the axioms of Brakes, replacing the symbol apply force with
old apply force (in those inherited axioms). In this subclass, we also
add one more axiom and add an interface symbol abs. The object named
Brakes1 is declared of class ABS, but is used as an instance of class
Brakes. The theory including the three objects Brakes1, Tires1 and Car1
is semantically/diagrammatically depicted in Figure 6.

Using this theory, we can prove that increasing the pressure on the
brakes will make the car stop faster, if we keep the rest constant (e.g., not
increase the pressure on the accelerator). Notice that we chose undirected
semantics (FOL semantics) because influence may flow in both directions
between the objects: A tire explosion may influence the force applied on
the brakes.
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4.2 Hierarchical Reasoning

Elevator Domain + People Interaction

Basic/Small Movements

High-Level Robot Moves

High-level Action

Domain-Specific action

Figure 7: A hierarchical decomposition.

Suppose that a robot is given the assignment of navigating from one
office to another. Since the robot’s moves are miniscule and are supposed
to be run and monitored in real-time, reasoning about the entire plan can be
extremely expensive. Adding the requirement that the robot should reason
about the behavior of other objects/agents (e.g., the elevator, doors, etc)
makes brute-force reasoning intractable and knowledge modeling difficult.

With Directed OOFOL one can represent and reason about several lay-
ers of abstraction concurrently (similar to Brooks’ Subsumption architec-
ture [6]), leading to the desired behavior at the low-level sensors/actuators.
To reason about high-level actions, the robot does not need to reason about
the different ways these actions may be realized by lower layers. Figure
7 describes the theory. A more detailed description of a use of a similar
theory is given in [2].

4.3 Action Theories: PMON and Multiple Agents

The temporal logic PMON [40, 23] uses the features and fluents language
L(FL) and has a theory divided into several subtheories: ΓOBS (obser-
vations), ΓSCD (schedule of events), ΓUNA (unique names axioms), ΓT
(axiomatization of time) and ΓNCG (no-change axiom).

OBS

SCD

UNA T NCGOCC

Figure 8: PMON in Directed OOFOL.

Different axioms are allowed in each category. We refer the reader
to [23] for a relatively recent work on the subject. [23] showed that the
semantics of PMON can be defined by ΓNCG∧ΓOBS∧ΓSCD∧ΓUNA∧ΓT∧
Circ[ΓSCD(Occlude);Occlude; ].



10

OBS

SCD

UNA T NCGOCC OBS

SCD

UNA T NCGOCC OBS

SCD

UNA T NCGOCC

OBS

SCD

UNA T NCGOCC

OBS

SCD

UNA T NCGOCC OBS

SCD

UNA T NCGOCC OBS

SCD

UNA T NCGOCC

Recharge

Robot1 Robot2 Robot3

Robot1’ Robot2’ Robot3’

Figure 9: Multiple Agents.

Thus, we can represent PMON using the Directed OOFOL theory dis-
played schematically in Figure 8. In this figure, OCC is an object including
the axiom ∀x.Occlude(x). The rest of the objects represent their respective
theories.

When we want to reason about several agents, decomposing the domain
according to the different agents and their interactions can yield a signifi-
cant gain in modeling effort and reasoning efficiency.

For example, assume that there are three robots that need to perform
independent tasks but should interact every hour to recharge their batteries.
We can create a class Robot that includes the action theory for that robot
and a class Recharge that includes the action theory for the multiple robots
involved. Each object Rob1, Rob2, Rob3, Rob1’, Rob2’, Rob3’ is of class
Robot. An action schedule can be given to each of the robots, and the
results of executing these schedules are fed into the Recharge object (of
class Recharge). The results of the recharging process are then fed into the
separate schedules, and the robots may continue in their separate tasks. The
complete picture is depicted in Figure 9.

5 Algorithms

Algorithms for inference in OOFOL and Directional OOFOL may reduce
the theories to the appropriate semantics and perform inference on the re-
sult. We are more interested in algorithms that can take advantage of the
special structure of our theories. We present such an algorithm (each se-
mantics with its own variant) for the special case of totally-ordered theories.
The general case can be reduced to this one using the methods of [3].

5.1 Totally Ordered Theories

We say that an OOFOL theory T is totally ordered if the objects in T can
be sorted into a chain 〈Obj1, ..., Objn〉 such that every object Obji in the
chain is directionally linked (or simply linked in the FOL-semantics case)
to its predecessor Obji−1 and there are no other links (i.e., no “loops”).
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For totally ordered theories, we can give equivalent semantics to our Di-
rectional Semantics using Prioritized Circumscription. Define flat(T )

def
=

∪Oi,Oj∈T (Ã(Oi, Oj)).

Theorem 5.1 (Equivalent Directional Semantics) Let T = {Obji}i≤n be
a totally ordered OOFOL theory. M is a model of T iff it is a model of

∧

i≤n

Circ[flat(T );Abi;Abi+1, ..., Abn,L(Obji+1), ...,L(Objn)]

where Abi = AbOi,Oi+1 .

PROOF See Appendix A.1.
Note that the formula above can be written as a single Prioritized Cir-

cumscription formula after the symbols inL(Obji+1), ...,L(Objn) are elim-
inated from the varied part [8].

5.2 Message-Passing

Applying our original intuition from Section 2, the following algorithm
performs inference in one object, passes results to the appropriate objects
and repeats the process in subsequent objects. Various inference methods
can be used to prove a given query in a given object, but for simplicity we
assume forward reasoning and a totally ordered theory T . We describe the
different variances needed for each of the semantics after describing the
algorithm.

For two objects Obj = Object(C,N,L), Obj ′ = Object(C ′, N ′, L′),
let LObj,Obj′ be the language that includes the set of “linking symbols” of
Obj,Obj′, {P | L′(Q,N,P ) for some Q} with equality. For every sen-
tence ϕ in LObj,Obj′, we say that the translation of ϕ from Obj to Obj ′ is
the sentence resulting from following L′ in replacing every symbol N.P in
ϕ by N ′.Q such that L′(Q,N,P ). L= is the first-order language with the
relation “=” and no other relation, function or constant symbols. Figure
10 describes our message-passing algorithm. Theorem 5.2 validates our
approach for the FOL semantics.

Theorem 5.2 (Completeness and Soundness for OOFOL) Let T be a to-
tally ordered OOFOL theory, {Obji}i≤n. Let ϕ ∈ L(Objn) be a sentence.
T |= ϕ if and only if the MESSAGE-PASSING algorithm outputs YES on ϕ
given T .

PROOF Follows immediately from a similar theorem in [3].

Theorems 5.3 and 5.5 validate our approach to the Directional Seman-
tics.

Theorem 5.3 Let T be a totally ordered OOFOL theory, {Obji}i≤m, with
Obji = 〈Ci, Ni, Li〉. Let n ≤ m, ϕ ∈ L(Objn) be a sentence and E =
{ψ∈L= | ∃i>n Obji |= ψ}. If T |=D ϕ and the circumscriptions involved
in the semantics of T are smooth3, then there is a ≤ n and a sequence of

3See [27] for the definition.
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PROCEDURE MESSAGE-PASSING
Given a totally ordered OOFOL theory T = {Obji}i≤m and a query Q whose
symbols are from L(Objn) (for some n ≤ m),

1. Concurrently perform consequence finding for each of the objectsObji ∈
T with i ≤ m.

2. For each i ≤ n, when we prove a formula ϕ ∈ LObji,Obji+1 , add the
translation of ϕ from Obji to Obji+1 to the set of axioms of Obji+1.

3. For each n < i ≤ m, when we prove Obji |= ϕ, for ϕ ∈ L=, add ϕ to
the set of axioms of Objn.

4. If we provedQ in Objn, return YES.

Figure 10: An algorithm for proving Q from a (Directed) OOFOL theory
T by message-passing.

sentences ϕa, . . . , ϕn such that En ∪ {ϕn} |= ϕ, Obja |= ϕa and every
a ≤ ∀i < n ϕi ∈ LObji,Obji+1 such that Obji+1 |= ϕ′i ⇒ ϕi+1, where ϕ′i
is the translation of ϕi from Obji to Obji+1.

PROOF See Appendix A.2.

Corollary 5.4 (Completeness for Directional Semantics) Let T be a to-
tally ordered OOFOL theory, {Obji}i≤m, and ϕ ∈ L(Objn) be a sentence
(n ≤ m). If T |=D ϕ, then MESSAGE-PASSING will output YES.

For soundness, we need to assume that influence does not “try” to flow
back (i.e., ifOi+1 |= ϕ′ for some ϕ ∈ LOi,Oi+1 , then T \{Oj | j ≤ i} |= ϕ).

Theorem 5.5 (Soundness for Directional Semantics) Assume that there
are ϕk, ..., ϕl such that k ≤ l and Ok |= ϕk and k ≤ ∀i < l, ϕi ∈ LOi,Oi+1
and Oi |= ϕ′i ⇒ ϕi+1, where ϕ′i is the translation of ϕi from Oi to Oi+1.
Then, T |= ϕl.

PROOF Since there is no attempt for influence back, we know by
lemma A.4 that T |= ∀x.¬ab(x) for all the abnormality predicates ab in
our system. We get that the soundness follows from that of entailment in
FOL.

The ways the two semantics use MESSAGE-PASSING differ in two
ways: (1) for FOL Semantics we can ask queries only from the last ob-
ject in the sequence, Objm; and (2) MESSAGE-PASSING is not sound
for Directional Semantics if influence “tries” to flow back, in the sense de-
scribed above. This is because when there is such influence, the semantics
sanctions that it may block influence flow forward (i.e., some of the ab’s
become TRUE), while there is no such block in our algorithm (we always
transfer axioms forward).

It is illuminating to notice the close relationship between our assump-
tion above and the soundness of inference. If we weaken the assumption
to merely state that T is consistent with ∀x.¬ab(x), we immediately find
a counter example to soundness. Take O1 |= P and O2 |= ¬P ′ ∨ ¬Q′,
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where P, P ′ are linked by abP and Q,Q′ are linked by abQ. Our algo-
rithm will pass P from O1 to O2, and we will conclude ¬Q′ in O2. On
the other hand, according to our directional semantics, ¬Q′ does not fol-
low from T = {O1, O2}, since there is a minimal modelM of T in which
M |= P ∧Q ∧ ¬P ′ ∧Q′.

5.3 Branches and Cycles

To generalize over the totally ordered case, one approach is to rewrite ev-
ery structure into a reduced totally ordered OOFOL theory by aggregating
groups of objects into single objects (a different approach is described in
[3]).

Assume that we have an arbitrary OOFOL theory T = 〈Obji〉i∈I and
we wish to prove T |= ϕ, where ϕ ∈ L(Obji) for some i ∈ I . All we
need to do is to unify objects such that we are left with a new theory T ′ that
is totally ordered. Unfortunately, this unification typically results in an in-
creased bandwidth for some of the links among the new objects. Currently,
there is no clear way for sidestepping this caveat.

To see how this happens, see Figure 11. Here we see that, to use the
MESSAGE-PASSING method to prove O4.p ∨ O4.q, we cannot simply
pass messages from O1 to O2, O3 to O4; rather, we have to unify O2, O3
into O′2 (on the right side of the figure).

O1 pvq

qp
O1 pvq

qp

p q

O4

p q

p q

pvq!

O2’
qpq

p q

pvq?

p q

p q

O2 O3

O4

p

PSfrag replacements
∅

∅

∅

∅∅

Figure 11: An example of joining nodes.

One may think that we can generalize MESSAGE-PASSING to work
for a circular Directed OOFOL theory by simply continuing to transfer for-
mulas from one object to the next until we prove our goal. Unfortunately,
there are instances in which MESSAGE-PASSING is not complete for such
theories.

6 Other Object-Oriented KR Systems

The seemingly closest approach to ours is the work on object-oriented Pro-
log (O-O Prolog) (e.g., [41] and [39]). Obviously, full FOL expressivity is
different from Horn clauses with the Closed World Assumption. More in-
terestingly, Prolog and FOL raise different challenges for object-oriented
approaches. O-O Prolog structures are built using a programming per-
spective, whereas OOFOL structures are built emphasizing a representation
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perspective. Also, the program flow in O-O Prolog is identical to the pro-
gram flow in ordinary Prolog. In contrast, the object-oriented structures in
OOFOL present guidelines for theorem proving flow which do not exist in
FOL. The object structure gives heuristic information to the theorem prover
on how to aggregate computation and what information should flow from
object to object. Such information is not used in O-O Prologs.

Another close approach is Frame Systems. Currently, there is no ade-
quate object-oriented approach for full FOL in Frame systems. KRYPTON
/ KL-ONE [5], one of the early Frame systems, had an A-Box part that al-
lowed arbitrary FOL sentences to be stated. This structure was completely
flat and had nothing of the object structure that we gave to our OOFOL.
Ontolingua [20, 14] which is one of the most expressive Frame systems to
date, allows different sentences to be associated with each frame. Unlike
OOFOL, there is no difference between a sentence put in one frame and
the same sentence put in a different frame in Ontolingua [13]. In particular,
there is no “scope” in which the axiom is active/inactive. The situation is
similar in other frame systems such as [9] (for a recent survey see [16]).
Frame systems also traditionally use only a restricted form of the axiom
inheritance used in this paper (for the A-Box part of these systems). Over-
riding is achieved (if at all) using nonmonotonic techniques.

The field of description logics (e.g., [4, 11]) grew out of the interest in
generalizing frame systems and giving them clear semantics and tractable
algorithms. Subsets of FOL that are computationally tractable are discussed
in the context of describing objects. In contrast, our approach to describing
objects is not restricted to relations that include this object and those related
to it. We follow the object-oriented approach devised by programming lan-
guages in which objects serve as landmarks around which one builds the
application/theory. This results in a different approach to object-oriented
design than that applied in description logics, together with unlimited first-
order logic expressivity.

Compared to the approaches for formalizing context (e.g., McCarthy’s
[34], CycL [30, 22, 21, 29] and QLC [7]), our logic allows only prescribed
connections between the different objects (contexts usually have no restric-
tions), and instead of appealing to modalities for representing the different
theories (or other special-purpose semantics as in [18, 17, 19] (using local-
models semantics for the undirected case and proof-theoretic semantics for
the directed case)), we use a simple FOL semantics for the undirected case
and Circumscriptive/Preferential semantics for the directional case. Our
semantics also has one universe of elements, whereas contexts are usually
considered to have distinct domains of elements. For OOFOL we devised
much more efficient general-purpose algorithms than those available for
context systems (see [30, 3]).

In sum, no other approach to date describes the application of object-
oriented design in first-order logic. In addition, to date there is no other
approach to logic that supplies the tools needed for object-oriented design
without abandoning the original first-order logic semantics.

Other knowledge-representation language that have contributed some
intuitions to this work and are related to object-oriented designs are [25,
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26, 28, 32].

7 Conclusions

Object-Oriented Design is a proven method in software engineering. Its
benefits range from ease of change and composition, aggregation of re-
lated information into the same place, information encapsulation and hid-
ing. These benefits make software construction a much less tedious process,
allowing software to be larger and more robust.

We presented an object-oriented approach to First-Order Logic. We
showed that our approach can be captured by a simple FOL semantics
in the undirected case and a simple circumscriptive semantics in the di-
rectional case. These semantics are especially simple compared to previ-
ous approaches to decomposing logical theories into small fragments. We
demonstrated several applications of our logics and showed how object-
oriented design can be facilitated by the tools we provided. Finally, we
proposed efficient inference algorithms for both logics.

Compared to unstructured FOL, the object-oriented constructs encour-
age the knowledge engineer to aggregate knowledge for a particular use in
one place, hiding most of the details of the implementation from the out-
side world by the provision of minimal interfaces. These interfaces limit
the impact of internal-object changes on the rest of the theory. To allow for
knowledge reuse, information integration and better knowledge engineer-
ing, FOL needs to be used with a structured methodology. In this work we
demonstrated one such methodology and provided the tools needed for its
application.

An application of this work to situation calculus [35] appears in [1].
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A Proofs

A.1 Equivalent Semantics for Directional OOFOL

The proof relies on the following lemma. It says that we can weaken the
circumscribed theory or the set of varied constant symbols without losing
models.

Lemma A.1 Let A be a FOL theory and P,Z,Z ′ be vectors of non-logical
symbols, and assume P has only predicates. For a structure M , if M |=
Circ[A;P ;Z,Z ′], then M |= Circ[A;P ;Z].
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PROOF Let M |= Circ[A;P ;Z,Z ′]. Then M is a ≤P ;Z,Z
′
-minimal

model satisfying A (M ≤P ;Z,Z
′
M ′ ⇐⇒ (|M | = |M ′| ∧ ∀C /∈ P ∪ Z ∪

Z ′, CM = CM
′
∧ PM ⊆ PM

′
)). If M ′ <P,Z;Z

′
M such that M ′ |= A,

then |M ′| = |M |, PM ( PM
′

and for every constant symbol C not in
P,Z,Z ′, CM = CM

′
. Thus, in particular, for every constant symbol C not

in P,Z , CM = CM
′
. Therefore M ′ <P,Z M and we have contradiction to

M being ≤P ;Z,Z
′
-minimal model satisfying A.

The converse is not true, as it entails monotonicity of circumscription.
For our specific case, though, we can get a version of the opposite direction.
Let A(Obj) = Ã(Obj,Obj) and L(Obj) = L(A(Obj)).

Our theorem can be restated as follows.

Theorem A.2 Let T be a totally ordered OOFOL theory. M is a model of

∧

i≤n

Circ[Ã(Oi, Oi+1);Abi;L(Oi+1)]

if and only if it is a model of

∧
i≤nCirc[flat(T );Abi;Abi+1, ..., Abn,L(Oi+1), ...,L(On)].

PROOF The backward direction follows directly from lemma A.1
and noticing that

Circ[flat(T );Abi;L(Oi+1)]≡Circ[Ã(Oi, Oi+1);Abi;L(Oi+1)]∧flat(T )

(See formula (3.2) in [31]).
For the forward direction, assume that

M |=
∧
j≤nCirc[Ã(Oj , Oj+1);Abj ;L(Oj+1)], and

M 6|= Circ[flat(T );Abi;Abi+1, ..., Abn,L(Oi+1), ...,L(On)]

for some i ≤ n. Let i be the first (smallest) such index. For brevity, let
us write Z for Abi+1, ..., Abn,L(Obji+1), ...,L(Objn). M |= flat(T ),
because flat(T ) =

⋃
i Ã(Oi, Oi+1). Thus, there is a model M ′ <Abi;Z M

such that M ′ |= flat(T ).
Take M ′′ such that |M ′′| = |M | (i.e., they have the same universe),

the interpretation of all the symbols of L(T ) other than L(Oi+1), Abi is
identical to M and the interpretation of L(Oi+1), Abi is as in M ′ (this is
sound since |M ′| = |M | by the conditions of M ′ ≤Abi;Z M ).

M ′′ <Abi;Abi+1,L(Oi+1) M , because |M | = |M ′′|, CM = CM
′′

for ev-
ery constant symbol C not in L(Oi+1) (since this is how we set the interpre-
tation for these symbols in M ′′) and AbM

′′

i ( AbMi (since M ′ <Abi;Z M ).
To see that M ′′ |= Ã(Oi, Oi+1), notice that M ′′ is identical to M ′ on
L(Ã(Oi, Oi+1)).

Thus, M is not a model of Circ[Ã(Oi, Oi+1);Abi;L(Oi+1)], contra-
dicting our assumption.
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A.2 Completeness Proof for Directional OOFOL

To prove the completeness theorem for MESSAGE-PASSING (Theorem
5.3), we need several lemmas.

Lemma A.3 Let O1, O2 be two objects and M a model of Ã(O1, O2).
Assume that for every sentence φ ∈ LO1,O2 ,M |= φ iffM |= φ′, where φ′

is the translation of φ from O1 to O2. Then, there is a model N such that
for all ab ∈ AbO1,O2 , N |= ∀x.¬ab(x) and N ≤AbO1,O2 ;L(O2)M.

PROOF Assume that L has a single sort, that the only link between
O1, O2 is a single predicate P1, P2 of O1, O2, respectively, whose param-
eter is a single variable (we generalize over all of these assumptions at the
end of the proof).

Let ||M|| denote the cardinality (finite or infinite) of the universe of
M and, for a predicate P , let |P |M denote the cardinality of {x | x ∈
|M | PM(x)}.

If |P1|M = |P2|
M and |P c1 |

M = |P c2 |
M (P c(x) ⇐⇒ ¬P (x)),

take f to be a bijection from |M| to itself such that f is a 1-1 and onto
mapping of the elements of PM1 on those of PM2 . Let N have the same
universe and the same interpretation of L(O1) as M. For every relation
R in L(O2), let RN (x1, ..., xk) ⇐⇒ RM(f(x1), ..., f(xk)). Finally, let
∀x ∈ |N |.¬abN (x). This model is easily seen to be the required one.

Otherwise, |P1|M 6= |P2|M or |P c1 |
M 6= |P c2 |

M. If there is a model
M′ of O2 such that |M| = |M′| and the cardinalities of P2, P c2 match
those of P1, P c1 as above, then we take N as in the previous case, setting
RN (x1, ..., xk) ⇐⇒ RM

′
(f(x1), ..., f(xk)), when f is a bijection as

above between |M| and |M′| that is 1-1 and onto from |PM1 | to |PM
′

2 |.
Finally, let ∀x ∈ |N |.¬abN (x). This model is again easily seen to be the
required one.

Otherwise, let κ, κ′, κ′′ stand for the cardinalities of |M|, (P1)M and
(P c1 )

M, respectively.
Assume that all of κ, κ′, κ′′ are finite. Then, since there is no model

M′ as above, there is a formula ξκ in L(O2) that stands for “there are
κ many elements”, for each of κ, κ′, κ′′. Then, O2 |= ξκ ⇒ (¬ξκ′(P2) ∨
¬ξκ′′(P

c
2 )). This formula is exactly such a φ′ for which φ (theO1-version of

φ′) satisfies O1 6|= φ (becauseM is a counter example of φ). Contradicting
our assumption that inM every sentence φ ∈ LO1,O2 is equivalent to φ′.

If κ is infinite, then that means that every infinite model of O2 satisfies
ψ = ¬ξκ′(P2)∨¬ξκ′(P

c
2 ), where ξ′κ in L(O2) stands for “there are κ′ many

elements such that ...” If all the finite models of O2 satisfy ¬ψ then this is
a contradiction to the fact that FOL cannot express “there are finitely-many
elements” (by the Löwenheim-Skolem Theorem (see p.141 in [12])). Thus,
there are finite cardinalities ν, ν ′, ν ′′ such that O2 |= ξ>ν ⇒ (¬ξ>ν′(P2) ∨
¬ξν′′(P

c
2 )). But this is again a formula φ′ for which φ satisfies O1 6|= φ (M

is a counter example to φ). This is a contradiction to our assumption that in
M every sentence φ ∈ LO1,O2 is equivalent to φ′.

To generalize over the assumptions we made at the beginning of our
proof, we need to first be able to extend the arity of the parameters of P1, P2
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to n. This can be done using a new sort of elements that are vectors of such
arity. Having the goal being stated in that sort and then “translated” to and
from it to the different layers gives us the required reduction. To add more
links (ab’s between other nonlogical symbols), it is simple to consider the
links as extending the arity of the single formula P1. Finally, to add constant
symbols and functions, notice that they are all representable using relations
in the language.

The following seemingly innocent lemma is central to our theory as it
assures that every ab that can not be proved FALSE has a provable reason. It
is also particularly difficult to prove because for an arbitrary circumscribed
formula it may be the case that ab has no explicit definition coming out of
the circumscription.

Lemma A.4 If Circ[Ã(O1, O2);AbO1,O2 ;L(O2)] 6|= ∀x¬ab(x) for some
ab ∈ AbO1,O2 , then there is φ ∈ LO1,O2 such that O1 6|= φ and O2 |= φ′,
where φ′ is the translation of φ from O1 to O2.

Furthermore, if O′1 is the result of adding all such φ’s to the axioms of
O1, then Circ[Ã(O′1, O2);AbO1,O2 ;L(O2)] |= ∀x¬ab(x).

PROOF Assume that for every φ ∈ LO1,O2 , O2 |= φ
′ =⇒ O1 |= φ.

Let us take a model M of the circumscription in which ab(a) is true for
some assignment a. We show that there is a model that is preferred overM
(thus reaching a contradiction).

If, for every sentence φ ∈ LO1,O2 , M |= φ iff M |= φ′ (φ′ trans-
lated as above), then Lemma A.3 guarantees the existence of a model N of
Ã(O1, O2) such that N ≤AbO1,O2 ;L(O2)M. Contradiction.

Take Φ = {φ ∈ LO1,O2 | M |= φ}. If Φ′ (the translation of Φ from
O1 to O2) is consistent with O2, then there is a modelM′ in which every
sentence φ ∈ LO1,O2 satisfies M′ |= φ iffM′ |= φ′. Take such a model
M′ so that it also has the same universe asM, the same interpretation for
L(O1) and M′ |= ∀x.ab(x) (this is possible because the interpretations
for L(O1) and L(O2) are independent given ∀x.ab(x), and if there is no
such model, then we found a sentence φ such that O1 6|= φ and O2 |=
φ′ (similar argument to the one given in the proof of Lemma A.3)). M′

satisfies the conditions of Lemma A.3, and thus there is a model N that
satisfies ∀x.¬ab(x), keeps the same interpretation for L(O1) and has the
same universe of elements asM. Contradiction.

If Φ′ is inconsistent with A(O2), then there is a finite subset of it, Φ̂′,
that is inconsistent with A(O2) (by compactness of FOL). Let φ′ =

∧
Φ̂′.

Then, O2 |= ¬φ′, and ¬φ is the formula promised by our lemma.
For the second part of the lemma, letO ′1 be the result of adding all those

φ to O1. By the first part, we get that Circ[Ã(O′1, O2);AbO′1,O2 ;L(O2)] |=
∀x¬ab(x) because otherwise, there is φ that O ′1 does not entail (which
means O1 does not entail it) but which O2 does entail, contradicting the
way we built O′1.

The following is Craig’s Interpolation Theorem. It is key to any sepa-
ration used in this paper.
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Theorem A.5 ([10]) If α ` β, then there is a formula γ involving only
symbols common to both α and β, such that α ` γ and γ ` β.

The following lemma is a single step in our completeness proof.

Lemma A.6 Let T = {O1, O2} be a totally ordered OOFOL theory, and
ϕ be a sentence in L(O2). If T |= ϕ, then O2 |= ϕ, or there is a sentence
ψ ∈ LO1,O2 such that O1 |= ψ and O2 |= ψ′ ⇒ ϕ.

PROOF Assume T |= ϕ. Then,Circ[Ã(O1, O2);AbO1,O2 ;L(O2)] |=
ϕ. If O2 |= ϕ then we are done. Otherwise, there is a model M of O2 such
that M |= ¬ϕ.

Assume first that the circumscription entails ∀x.¬ab(x). We use Craig’s
Interpolation Theorem (Theorem A.5). Letα=A(O1) and β=(Ã(O1, O2)\
A(O1) ∪ {∀x.¬ab(x) | ab ∈ AbO1,O2}) ⇒ ϕ. Since α |= β, there is
a formula ψ in the language LO1,O2 (which is the intersection of the two
languages L(α),L(β)), such that α |= ψ and ψ |= β. By the deduction
theorem for FOL, we get that O1 |= ψ and ψ′ ∧ A(O2) |= ϕ, where ψ′ is
the translation of ψ from O1 to O2.

Now we deal with the case that ∀x.¬ab(x) is not provable. Take Φ to
be the set of all φ guaranteed by lemma A.4. Add Φ, the to O1 to create
O′1. Using the first part, we know that there is a sentence ψ as required for
O′1, O2. Thus, {ψ} ∪ A(O2) |= ϕ.

TakeΨ to be the set of sentences proved by O1 in the language LO1,O2 .
Ψ ∪ Φ′ |= ψ because A(O1) ∪ Φ′ |= ψ and, by Craig’s Interpolation
Theorem, there is α in the language LO1,O2 such that O1 |= α and α |=
Φ′ ⇒ ψ, and necessarily Ψ |= α (the last sentence conclusion was stated
for the finite Φ′. For an infinite case, the compactness of FOL reduces our
conclusion to the one given above).

TakeΨ′ to be the translation of Ψ from O1 to O2. Then, Ψ′∪A(O2) |=
ϕ. Take ψ′ to be the finite subset of Ψ′ needed for the proof of ϕ. The
corresponding ψ ⊂ Ψ is the formula needed for our lemma.

The following lemma says that there is no inference back (from objects
further in sequence to those before them). LetL= be the language including
no constant/function/relation symbols.

Lemma A.7 Let T = {Oi}i≤m. Assume that all the circumscriptions done
for T in Definition 3.2 have smooth preference relations (i.e., every model is
either minimal or has a minimal model that is preferred over it). If T |= ϕ,
ϕ ∈ L(Ok), then

T \ {Oj |j ≥ k} ∪ {ψ|ψ ∈ L= T |= ψ} |= ϕ

PROOF Assume T ′ = T \{Oj | j > i} and T ′ 6|= ϕ. Then, there is a
minimal modelM |= T ′ such thatM 6|= ϕ (M |= ¬ϕ). Since T |= ϕ,M
is not minimal according to one of the circumscriptions, with P minimized
varying Q.

Since we assume that ≤P ;Q is smooth, there isM′ minimal such that
M′ ≤P ;Q M. But P,Q are not in the language L(Oi), because this is a
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circumscription of some j > i. Thus,M′ andM agree on all the symbols
of L(Oi), andM′ |= ¬ϕ. Contradiction.

The proof of the theorem follows.
PROOF Assume first that n = m. We prove the theorem by induction on
the number of objects in the theory. For the cases n = 1, 2 we have Lemma
A.6 above. Assume that the theorem is proved for all sizes smaller than n,
and we will prove it for n.

Assume T |= ϕ. Lemma A.6 deals with the case that ϕ is entailed by
Circ[Ã(On−1, On);AbOn−1,On ;L(On)] .

For the case this formula does not entail ϕ, assume that the last circum-
scription entails ∀x.¬ab(x). Then,

(
∧
i<n−1 Circ[Ã(Oi, Oi+1);AbOi,Oi+1 ;L(Oi+1)])∧

Circ[Ã(On−1, On);AbOn−1 ,On ;L(On)] |= ϕ

LetΦab = {∀x.¬ab(x) | ab ∈ AbOn−1,On}. The above conjunctive formula
is equivalent to

(
∧
i<n−1 Circ[Ã(Oi, Oi+1);AbOi,Oi+1 ;L(Oi+1)])∧

(Ã(On−1, On) ∪ Φab) |= ϕ

Let T ′ = {Oi}i<n−1∪{O′n−1}, whereO′n−1 is the union of Ã(On−1, On)
and Φab. By the induction hypothesis, there is the required chain of formu-
las ϕa, ..., ϕn−2 in the system T ′. In particular, T |= ϕn−2 and

{ϕ′n−2} ∪ Ã(On−1, On) ∪ Φab |= ϕ

Using Craig’s Interpolation Theorem, there is ψ in LOn−1,On such that
ϕ′n−2 ∧ A(On−1) |= ψ and ψ′ ∧ A(On) |= ϕ. Putting ϕn−1 = ψ gives us
the required induction step.

Now we deal with the case that ∀x.¬ab(x) is not provable for some
ab ∈ AbOn−1,On . Take Φ to be the set of all φ guaranteed by Lemma A.4.
Add Φ to On−1 to create O′n−1. Using the first part, we know that there is
a sequence of sentences as required for the changed system T ′ (replacing
On−1 by O′n−1).

Take ϕ′n−1 to be the sentence that is guaranteed for O ′n−1, On. Thus,
{ϕ′n−1}∪A(O2) |= ϕ. TakeΨ to be the set of sentences proved byOn−1 in
the language LOn−1,On . Ψ ∪ Φ′ |= ϕ′n−1 because A(On−1) ∪ Φ′ |= ϕ′n−1
(by Craig’s Interpolation Theorem, there is α in the language LOn−1,On
such that On−1 |= α and α |= Φ′ ⇒ ϕ′n−1, and necessarily Ψ |= α).

Take Ψ′ to be the translation of Ψ from On−1 to On. Then, Ψ′ ∪
A(On) |= ϕn. Take ϕ′n−1 to be the finite subset of Ψ′ needed for the
proof of ϕ. The corresponding ϕn−1 ⊂ Ψ is the required formula for our
induction step.

Lemma A.7 reduces the case of n 6= m to the previous case (n = m).
We only need to notice that {ψ ∈ L= | T |= ψ} = {ψ ∈ L= | ∃i Obji |=
ψ}.
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