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Abstract

We show that designing large situation calculus theories can
be simplified by using object-oriented techniques and tools
together with established solutions to the frame problem. Sit-
uation calculus (McCarthy & Hayes 1969) is one of the lead-
ing logical representations for action and change, but large
situation calculus theories are not easy to design and main-
tain, nor are they flexible for extension or reuse. However,
we wish to use it to represent large, complex domains.
To address this problem, we apply our proposed methodol-
ogy to situation calculus theories and analyze the composi-
tion of theories in this light. The object-oriented tools that
we use do not change the semantics of situation calculus, so
all the original situation calculus results apply in our setting
and vice versa. We get two additional results from this ap-
proach. First, we offer a new treatment of loosely interacting
agents that uses situation calculus without abandoning the re-
sult formalism. This treatment allows a theory-builder to con-
struct a theory without considering its potential inclusion in a
multiple-agents setup. Second, theories that we build in this
way admit specialized reasoning algorithms.

Introduction
Our work has two related motivations: making large situ-
ation calculus theories easier to design and maintain, and
giving a partitioned representation to situation calculus the-
ories. Situation calculus theories have a restricted form and
a clear ontology that together help modeling. However, us-
ing situation calculus in large, multi-domain settings is not
easy. It is hard to think of all the parts of a large theory in
advance, reuse is not simple, and modifications can have un-
intended consequences. Giving situation calculus theories
a partitioned representation allows us to use the algorithms
of (Amir & McIlraith 2000) and opens the way for merging
situation calculus theories into reactive frameworks such as
(Amir & Maynard-Reid 1999). This paper focuses on the
first motivation and addresses the second as a by-product.

We present one object-oriented reformulation of situation
calculus, following some traditional decompositions of the-
ories of action (Shanahan 1997). We create a class for situ-
ations and a class for actions (roughly speaking, classes are
theory fragments). Subclasses of situations (roughly, these
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are supersets of the class of situations) contain domain con-
straints. Subclasses of actions contain effect axioms. We
describe one theory constructed using objects of these and
other classes. The combined theory has semantics that is
equivalent to situation calculus, after translation to First-
Order Logic (FOL). We apply Reiter’s monotonic solution
to the frame problem (Reiter 1991) to this system of objects
and classes.

Object-oriented situation calculus theories can be com-
bined easily and are elaboration-tolerant in that sense. We
demonstrate this by combining domain theories and by giv-
ing a new treatment of agents in the situation calculus. Do-
main theories are connected by linking the corresponding
objects with only a small vocabulary, even when the frame
solution is used. This result extends to our proposed rep-
resentation of agents. Our treatment of agents allows each
agent’s theory to be written as a simple theory, with no re-
gard to the existence of other agents. Only new subtheories
in which the agents interact need to consider the explicit ex-
istence of agents. We do this without giving up the result
formalism (which is planning-friendly), as in (McCarthy &
Costello 1998), or the independence of the agents (which
allows efficient computation), as in (Reiter 1996), (Pinto
1998). We point out the applications and influence of the al-
gorithms of (Amir & McIlraith 2000) on these theories. We
conclude by proposing some guidelines for the knowledge
engineering of situation calculus theories.

Our running example is a simplification of the Daddy and
Junior scenario, taken from (McCarthy & Costello 1998).

Objects for Situations and Actions
Situation Calculus

Situation calculus (McCarthy & Hayes 1969) is a knowl-
edge representation formalism for representing temporal in-
formation. The language consists of four sorts: situations,
for situations in the world; actions, for events and actions;
fluents, for situation-dependent properties; and objects, for
simple other FOL objects.
s, a, f (or subscripted versions thereof) are variables for

situations, actions and fluents, respectively. All other vari-
ables are of sort “object”. The predicate Holds(f, s) as-
serts that a fluent f holds in the situation s (f(s) is used as
a shorthand for Holds(f, s) when such a shorthand causes
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no confusion). The function result(a, s) returns the situa-
tion that results from performing a in s (we use res(a, s) as
a shorthand). S0 is a situation constant. Figure 1 displays
Abw, a sample situation calculus theory for the blocks-world
domain. Capitalized symbols are constants. Free variables
in axioms are universally quantified with maximum scope.

on(A,B, S0) ∧ on(B,Table, S0) ∧ on(C, Table, S0)

on(x, y, s)⇒ above(x, y, s)

above(x, y, s) ∧ above(y, z, s)⇒ above(x, z, s)

clear(b, s) ⇐⇒ ∀b′¬on(b′, b, s)

handEmpty(s) ⇐⇒ ∀b¬inHand(b, s)

clear(b, s) ∧ handEmpty(s)⇒ inHand(b, res(pickUp(b), s)))

(y = Table ∨ clear(y, s)) ∧ inHand(x, s)⇒

on(x, y, res(putOn(x, y), s))

on(x, y, s)⇒ ¬inHand(x, s) ∧ ¬inHand(y, s)

inHand(x, s)⇒ ¬on(x, y, s) ∧ ¬on(y, x, s)

on(x, y, s) ∧ y 6= z ⇒ ¬on(x, z, s)

Figure 1: Blocks-world in the situation calculus: Abw.

Object-Oriented FOL
We wish to make the design of situation calculus theories
more structured. To this end, we adopt some object-oriented
design principles and tools. In the rest of this section, we
build an object-oriented situation calculus theory for the
blocks-world. At the same time, we provide a few meta-
logical tools and notations that are needed for this descrip-
tion, borrowing from (Amir 1999). Readers familiar with
applications of context (e.g., (Ghidini & Serafini 1998)) can
view the following as a special case having the semantics of
FOL, object-oriented tools, and no explicit contexts.

An object-oriented first-order logic (OOFOL) theory is
divided into subtheories associated with objects. A subthe-
ory associated with an object has its own first-order language
and axioms. We distinguish a subset of the vocabulary of
each object and call it the object’s interface. There are in-
terface links between objects. Each interface link specifies
equality/equivalence between symbols in two objects. Only
symbols from these interfaces may participate in the link.

A situation calculus theory can be broken into an object
(subtheory) associated with situations and an object asso-
ciated with actions (additional other objects are possible).
In the first, we put domain constraints (sentences that men-
tion no action term). In the second, we put effect axioms
(axioms of the form Holds(Φ, s) ⇒ Holds(Ψ, res(a, s))).
This decomposition for our blocks-world theory Abw is di-
agrammatically presented in Figure 2. Here, the symbols
on, inHand,Holds are on the link between the objects and
thus have the same semantics in both objects.

An OOFOL theory T is a set of object declarations (see
below). The semantics is given by a translation to FOL: We
replace every symbol in an axiom with the same symbol ap-
pended to the name of the object in which this axiom appears
(making symbols in different objects distinct). For example,
the symbol on used in a situation object S is translated to
S.on in all the axioms of S. Then, we add equality (or equiv-
alence) axioms of the form ∀−→x (S.P (−→x ) ≡ A.P ′(−→x )) for

L
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k

Interface Interface
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Figure 2: A situation object connected to an action object.

all linked symbols P, P ′ between objects S,A. The result of
this translations is denoted T̃ .

Definition 1 (FOL Semantics for OOFOL) M is a model
of T iffM |= T̃ .

Situation Calculus Classes

We can now represent a theory as a set of linked objects.
Presenting situation calculus theories in this form gives a
designer a bird’s-eye view of the theory and allows the com-
bination of several theories by linking them. We also wish
to reuse theories. For this, the notions of classes and inher-
itance1 become handy. A class is a template for its objects,
specified with no interface links, but otherwise identical to
them. This allows the application of identical axiom sets in
different positions in the theory by specifying the class to
which the object belongs.

Inheritance extends this reuse by allowing some exten-
sions to a copy of an existing class. For engineering pur-
poses, inheritance in our system is treated outside the logic
(unlike nonmonotonic inheritance, such as in (Morgenstern
1998)). In principle, a subclass (child) inherits all the ax-
ioms, vocabulary and interface vocabulary of its parent class.
We can make the subclass different from its parent by: (1)
adding to the inherited vocabulary and interface vocabulary;
(2) adding axioms; and (3) explicitly replacing some non-
logical symbols in all of the inherited axioms, with some
new symbols in the child’s language.

We use standard object-oriented methodology and define
a hierarchy of classes for the blocks-world situation calcu-
lus. Figure 3 display our classes. We explain its contents
together with the notation (most of the notation is similar to
that used in object-oriented programming languages).

There are two root classes: Situation and Action. Both
include interface declarations (to be inherited by subclasses)
and no axioms. The notation class1:class2 is used to declare
that class1 is a subclass of class2. Classes BWSit,BWAct
are subclasses of Situation,Action, respectively, specialized
for the blocks-world. They inherit the respective interfaces,
and add it to their explicitly declared interface. Since BWS0
is a subclass of BWSit, it includes all the interface and ax-
ioms of its superclass, adding some observations about a par-
ticular S0.

1Objects, classes and inheritance are meta-logical notions.
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class Situation {

interface: Holds }

class Action {

interface: res, Holds }

class BWSit : Situation {
interface: on, inHand
axioms: clear(b, s) ⇐⇒ ∀b′¬on(b′, b, s)

on(x, y, s)⇒ above(x, y, s)
above(x, y, s) ∧ above(y, z, s)⇒ above(x, z, s)
on(x, y, s)⇒ ¬inHand(x, s) ∧ ¬inHand(y, s)
inHand(x, s)⇒ ¬on(x, y, s) ∧ ¬on(y, x, s)
on(x, y, s) ∧ y 6= z ⇒ ¬on(x, z, s) }

class BWAct : Action {
interface: on, inHand, pickUp, putOn, Table
axioms: clear(b, s) ∧ handEmpty(s)⇒

inHand(b, res(pickUp(b), s)))
(y = Table ∨ clear(y, s)) ∧ inHand(x, s)⇒

on(x, y, res(putOn(x, y), s))
clear(b, s) ⇐⇒ ∀b′¬on(b′, b, s)
handEmpty(s) ⇐⇒ ∀b¬inHand(b, s) }

class BWS0 : BWSit {
interface: on, S0, A,B,C, Table
axioms: on(A,B, S0)∧on(B,Table, S0)∧on(C, Table, S0) }

Figure 3: Blocks-world situation calculus classes.

Modeling With One Object per Class

Using these classes, we create the theory Aob shown in
Figure 4. In this theory, S0obj is an object (instanti-
ation) of class BWS0, S is an object of class BWSit
and A is an object of class BWAct. The statement
Object(Cl,O, {(P,O′, Q), ...}) declares an object named
O of class Cl and specifies interface links with other ob-
jects: P in O is equal/equivalent to Q in O′ (e.g., O.P ≡
O′.Q). S0obj , S are linked on on,Holds; S,A are linked on
on, inHand,Holds; and A, S0obj are linked on Table.

Our modeling can be summarized by the following two
rules: (1) link all those symbols that should have the same
intended meaning in two objects; and (2) omit links of sym-
bols that follow from transitivity of equality (e.g., we omit
Holds, on from the link betweenA and S0obj).

Object(BWS0,S0obj , {(on,S, on), (Holds, S,Holds)}).
Object(BWSit,S, {(inHand,A, inHand),

(on,A, on), (Holds,A, Holds)}).

Object(BWAct,A, {(Table, S0obj , Table)}).

Figure 4: The OOFOL theoryAob

Figure 5 is a diagrammatic view of the structure of Aob
showing the three objects and the links between them.
Each link is labeled with the symbols that are pronounced
equal between the two objects (e.g., for the fluent on(x, y),
∀xyS.on(x, y) = A.on(x, y)). Almost all the examples we
will see have identical symbols on both ends of a link (e.g.,
on in S and on in A), so this convention is clear.

The OOFOL semantics (Definition 1) given to Aob is
equivalent to the semantics given to Abw from Figure 1.
The translation of Aob into Ãob is syntactic, adding equal-
ity/equivalence axioms between linked symbols.

Constraints
BlocksInitial

Positions Blocks
Moving
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Figure 5: Diagrammatic view of Aob

Proposition 2 (Semantics) Let ϕ ∈ L(Abw) and let ϕ′ be
its translation to L(Aob). Abw |= ϕ iff Aob |= ϕ′.

The translation of ϕ to L(Aob) is straightforward. Sym-
bols of ϕ that appear in more than one object have the
same semantics in all of them, so we can arbitrarily pick
one. For example, Abw |= ¬inHand(A,S0) iff Aob |=
¬S.inHand(S0obj .A, S0obj .S0).

Reasoning With Objects
(Amir & McIlraith 2000) provides message-passing algo-
rithms in the style of (Pearl 1988) for reasoning with the-
ories that are decomposed in this way. Roughly speaking,
if object S is connected to object A, sentence ϕ1 from L(S)
can be logically combined (after translation) with a sentence
ϕ2 from L(A) only if L(ϕ1) is included in the link.

More generally, given a graph of links and objects (as in
Figure 5) and a query, we first decide on an object that can
express the query in its vocabulary (if there is no such object,
we can create one and link it to the others). Then, we trans-
form the graph into a tree by running an algorithm called
BREAK-CYCLES (we iteratively select a minimal cycle in
the graph, remove a link and add its language to that of
the other links in the cycle) and then perform MESSAGE-
PASSING to prove the query, which roughly performs the
following: Continuously perform consequence generation in
each object. Send a proved formula (message) to another ob-
ject only if the formula is in the vocabulary of the link to that
object, and this other object is on the graph path to the object
containing the query.

(Amir & McIlraith 2000) shows that this kind of algo-
rithm is complete and sound for the semantics of Definition
1, and that it improves running time compared to standard
deduction methods. For the propositional case, if T is a the-
ory with n objects, each connected to d other objects in a
tree structure, with each link having l symbols and L(T )
hasm symbols, then the running time for an analogous algo-
rithm for SAT isO(n∗2d∗l∗fSAT (m/n)) (fSAT is the time
to compute SAT). This is an exponential time-improvement
compared to standard reasoning techniques if the links’ vo-
cabularies are small.

We can now explain our modeling decisions from a com-
putational perspective. To increase efficiency, we try to
minimize the vocabularies of the links without giving up
correctness of queries. This is why we omit the symbols
A,B,C, S0, res and several fluents from the links. Each
symbol shows only in one object (clear is defined by the
fluent on in both S,A). This is also the reason why we use
the transitivity of equality to omit symbols from the links.

For a given domain theory (e.g., our blocks-world theory),
Holds and fluents that appear in the action object typically
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appear on the link between the situation and action objects.
This seems to limit the computational improvement due to
such algorithms, and it seems to be an inherent property in
theory structures of the form presented in Figure 5 (one ob-
ject per class, connecting on Holds and fluents). There are
other structures that take advantage of an assumed tree of
situations to give better performance (e.g., multiple objects,
connected in a tree structure). We do not pursue these fur-
ther here. Instead, our computational effort focuses on larger
theories made of multiple domains, as described below.

The Frame Problem
The frame problem concerns the conclusion of non-effects of
actions from the known effects in a concise, correct, expres-
sive and elaboration-tolerant manner (see (Shanahan 1997)).

One of the simplest solutions generates explanation clo-
sure axioms (e.g., (Haas 1987), (Pednault 1989), (Schubert
1990)) from the effect axioms and the domain constraints.
When it is possible, we mechanically (outside the logic) add
axioms saying that if something has changed, then one of the
enumerated actions occurred. For example, one axiom that
is generated for explanation closure for inHand in Abw is
¬inHand(x, s) ∧ inHand(x, res(a, s)) ⇒ (clear(x, s) ∧
handEmpty(s) ∧ a = pickUp(x)).

(Reiter 1991) summarized the effort and showed how to
generate such axioms automatically if there are no state con-
straints, (Lin & Reiter 1994) extended this process for the
presence of state constraints, using deduction, and (McIl-
raith 2000) gave a closed-form solution in the presence of
some restricted state constraints. These solutions also add
other axiom sets, including unique names axioms (UNA) for
sort “actions”, preconditions for executing actions (summa-
rized by the predicate Poss(a, s)) and foundational axioms
for situations (here we call them Peano axioms for situa-
tions, although the time structure represented by situations
is a tree rather than a line).

The diagram in Figure 6 presents the theory result-
ing from appending this solution to Aob, together with
additional axioms for domain closure (DCA) and UNA
for objects (these are not needed for the solution, but
are sometimes assumed in domain theories). In this fig-
ure, Unaa,Unao&Dcao,Poss,Peano contain UNA for
actions, UNA and DCA for objects, preconditions for
execution and the Peano axioms, respectively. Our
Peano axioms for situations include the first-order induc-
tion axiom (∀f)(Holds(f, S0) ∧ (∀as)[Holds(f, s) ⇒
Holds(f, res(a, s))] ⇒ (∀s)Holds(f, s)) instead of the
second-order axiom of (Lin & Reiter 1994).

The objectAp contains effect and explanation closure ax-
ioms with the following provision. To allow the introduction
of the predicate Poss(a, s), we need to make the effect ax-
ioms of BWAct dependent on Poss(a, s). To do that, we
create a subclass BWPossAct (shown in Figure 7) and re-
place the objectA of the superclass with an objectAp of the
subclass. The declaration inherit: [Holds/Holdsold] is a
directive to our compiler to replace the symbol Holds with
Holdsold in all the axioms the class inherits from its super-
class (as discussed above). This and the additional axiom
adjusts our effect axioms to depend on Poss (see Figure 7).
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Figure 6: Frame-problem solution using objects.

class BWPossAct : BWAct {
interface: Poss

inherit : [Holds/Holdsold]

axioms : Poss(a, s)∧Holdsold(f, res(a, s))⇒Holds(f, res(a, s))

...[Explanation closure axioms]... }

Figure 7: Adding Poss and explanation closure to BWAct.

Combining Action Theories
Now, we examine the way domain theories can be joined.
Consider a domain theory regarding buying and selling
blocks. In this theory, buying a block decreases the amount
of money a robot has, but also places the purchased block in
the robot’s hand. Selling a block has the opposite effect.

We use two new fluents together with inHand: (1)
hasItem accounts for named items the robot possesses; and
(2) money is a function (fluent) that returns the amount of
money that the robot has. Figure 8 presents some of the new
classes. Figure 9 displays the diagram of the complete the-
ory with the frame solution.

class Has : Situation {
interface: hasItem,money, inHand

axioms: money(s) ≥ 0

inHand(b, s)⇒ HasItem(b, s) }

class BuySell : Action {
interface: hasItem,money, inHand

axioms: inHand(b, s) ∧money(s) = m⇒

¬hasItem(b, res(sell(b), s))∧

money(res(sell(b), s)) = m+ value(b, s) ... }

Figure 8: The domain of buying and selling blocks.

If the solution to the frame problem is not applied, we
can combine the two domain theories by letting objects of
corresponding positions in the two theories communicate.
The two domains share only S0, res,Holds and inHand.
To see the situation diagrammatically, look at Figure 9 and
consider only objects S, S′,A,A′, S0obj , S0′obj .

When we add the solution to the frame problem, there
are two complications. First, the graph becomes more con-
nected: UNAs potentially make all the objects dependent
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Figure 9: Connecting two domain theories.

on one another and explanation closure axioms add band-
width to the links. Second, if we already have the solution
for the separate domain theories, there are components that
will have to be recomputed. These concerns are particularly
important if we have a large number of connected domains.

Proposition 3 For a theory made of many domain theo-
ries, if no qualification constraints are involved in comput-
ing Poss, then there is a formulation of the frame solution
above (with or without UNA and DCA for objects) such that,

1. Any two domain theories that share fluents {fi}i∈I are
linked on exactly {fi}i∈I , S0, res,Holds and actions
{aj}j∈J from the first domain that appear in the expla-
nation closure for {fi}i∈I .

2. If we already have the frame solution for the separate
domain theories, only the explanation closure axioms for
{fi}i∈I need to be recomputed (we ignore computations
involved in solving the qualification problem (i.e., com-
puting axioms for Poss)).

3. Domain theories are (directly) linked iff they share fluents
or a removal of their links disconnects the graph.

PROOF SKETCH We use the structure depicted
in Figure 9 to explain the case for two domains.
Call the two domains 1 and 2. We need to for-
mulate Poss,Unaa,Unao&Dcao such that they do not
use any symbol that is in domain 2 and not in
{fi}i∈I , S0, res,Holds, {aj}j∈J . This is enough, because
Soobj , S,A are in the original domain axiomatization, for
which this is trivially true, and Peano uses only symbols
res,Holds, S0 and the partial order≺ on situations.

The axioms involving Poss are always in the vocabulary
of domain 1, following from our assumption that there are
no qualification constraints. Also, we do not need to include
DCA for actions, as there are no qualification constraints.

In each of Unaa,Una′a we use the formulation of UNAs
given in (McCarthy 1986). We define a total order, <, on
action prototypes (this can be extended to a total order on
actions, but we are not concerned with that here). Set an
action prototype, A2 from {aj}j∈J , to be the <-smallest in
domain 2. Set another action, A1 from domain 1, to be the
<-largest in domain 1. Adding the axiomA1 < A2 toUnaa
completes the needed specification for UNA.

Finally, UNA and DCA for objects can be formulated
to be domain-dependent and also situation dependent (e.g.,
adding block(x) as a precondition for axioms in domain 1).
This concludes part 1, as the arguments above can be easily
generalized to more than two domain theories.

For part 2, notice that DCA and UNA for objects and
UNA for actions do not need to be recomputed when we link
domain 2 to domain 1. When there are more than two do-
mains involved, an increasing order on added domains can
be used to guide axiomatizing< on actions so that there are
no inconsistencies (inconsistency may arise if we sanction
a < b < c < a). Notice that if two domains share object
symbols, then we must use a scheme that is similar to the
one used for actions (sharing objects but not object symbols
does not give rise to this problem).

For part 3, notice that all domain theories have the same
semantics toHolds, res, S0 (the graph of domain theories is
connected by our assumption). If two domain theories do not
share a fluent, then they do not share an action (we assume
that domains originally do not share actions, and they even-
tually need to share an action only as a result of explanation
closure). This means that symbols that should have match-
ing semantics in both domains already have matching se-
mantics by virtue of the graph being connected. Thus, such
domain pairs do not need to be directly connected.

Thus, adding the frame solution on top of the simple con-
nection between the two domains adds to the links only ac-
tions participating in explanation closure of shared fluents.
Figure 9 displays the complete theory of the blocks-world
and buy-sell domains (inHand is the only shared fluent).
This result enables building composite theories like the one
sketched in Figure 10 for a mobile robot that can perform
electronic transactions, make phone calls, etc. Applying the
reasoning algorithms described above to this theory results
in an improved inference time, as the connectivity of this
graph is kept low.

Combining Different Agents
We can represent different agents in the situation calculus
by giving them different objects in the theory, and by adding
an object to represent interactions. In the following, we as-
sume that the agents’ worlds do not interact, namely, that
they deal with different fluents altogether (including the flu-
ent time). We distinguish between actions that they perform
separately (e.g., moving a block in their respective domains)
and actions that influence the domains of both agents (e.g.,
money transfers between them). Those actions that influence
both agents, are dealt with in a new interaction subtheory. In
some cases we may choose to use the treatments of (Reiter
1996), (Pinto 1998) for this interaction subtheory, but in our
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Figure 10: High-level diagrammatic view of a theory com-
bining multiple domains

example we can do without them.
The approach we describe gives each agent a different

perspective/knowledge of the same situation. It uses a sin-
gle situations tree, but allows different perspectives on the
time of a situation. Figure 11 is a diagrammatic view of a
modification of Daddy and Junior (an example taken from
(McCarthy & Costello 1998)). Daddy is stacking blocks of
gold in New York, while Junior is stacking blocks of silver
in London. If Junior needs more money, he may ask Daddy
to send him some (requiring Daddy to sell a block). We omit
the treatment for the frame problem here for clarity, but the
approach used above works here too.

class MoneySend : Action {
interface: money, jointAction

axioms:

money(p1, s) = m1 ∧money(p2, s) = m2 ∧m1 >= m3⇒

money(p1, res(send(p1, m3, p2), s)) = m1−m3∧

money(p2, res(send(p1, m3, p2), s)) = m2 +m3

jointAction(a) ⇐⇒ (∃p1,m, p2)a = send(p1, m, p2) }

class MergeAgents : Situation {
interface: HoldsD,HoldsJ, time, jointAction

axioms:

legalJoint(s) ⇒ [Holds(f(D), s) ⇐⇒ HoldsD(f, s)]∧

[Holds(f(J), s) ⇐⇒ HoldsJ(f, s)]

legalJoint(s) ⇐⇒

[s = res(a, s′) ∧ jointAction(a) ∧ legalJoint(s′)]∨

[time(D, s) = time(J, s) ∧ legalJoint(prevJoin(s))]

legalJoint(s) ⇒ (∀p)time(s) = time(p, s)

prevJoin(res(a, s)) = lastJoin(s)

jointAction(a) ⇒ lastJoin(res(a, s)) = res(a, s)

¬jointAction(a) ⇒ lastJoin(res(a, s)) = lastJoin(s)

lastJoin(S0) = S0

prevJoin(S0) = S0 }

Figure 12: Merging perspectives on situations.

Figure 12 presents the necessary classes. MoneySend
is an action class similar to those we have already seen.
MergeAgents and the links to the object Agt of that class
define our approach for merging the agents’ theories (Figure
11), and we explain them below.

We care about time synchronization between the agents,
so we assume some account of time in the different domain
theories. We write f(p) for the fluent that results from f af-
ter adding a dependency on p. The axioms of MergeAgents
are explained as follows. First, if s is a legal joint situa-
tion (legalJoint(s)), then what holds in it (Holds) is ex-
actly what holds in the different perspectives of the different
agents (HoldsD,HoldsJ). If it is not a legal joint situa-
tion, we know nothing about it. Thus, the assumption that
our agents’ worlds do not interact is realized by giving each
agent a differentHolds predicate.

The rest of the axioms in MergeAgents define legal joint
situations. These axioms say that s is a legal joint situation
iff the agents’ perspectives of its history are consistent and
their time fluents are synchronized. The two perspectives
on history are consistent only if all joint actions (actions for
which jointAction holds) in history were done in a legally
joint situation. We do not care about actions done separately,
as they cannot influence an agent other than the one who ex-
ecuted them. In particular, notice that time does not progress
in one agent’s perspective of the world as a result of the other
agent executing an action.

For example, in Daddy’s world (SD) the following is
true after adding the explanation closure axioms for Daddy:
time(res(AJ .pickUp(AJ .A), S0)) = 0. This is not a le-
gal joint situation, because the agents’ times are not syn-
chronized. If we now add a wait action for Daddy and ap-
ply AD .wait(t) with the proper time, a legal joint situation
would result (in which they can perform send(D,m, J)).

Conditional Independence
Complete knowledge of the world of the links ofAJ renders
AJ independent of all other objects. Proof-theoretically,
proving something in the language of AJ depends only on
theorems proved in the language of its links to SJ and A′J
(theorems that may depend on further theorems proved else-
where). This follows from Craig’s interpolation theorem.

Theorem 4 ((Craig 1957)) If α ` β, then there is a formula
γ involving only symbols common to both α and β, such that
α ` γ and γ ` β.

From a modeling point of view, this kind of condi-
tional independence allows us to build an object consider-
ing only those objects that will interact with it. Am of class
MoneySend depends only onAgt of MergeAgents and Sm
of MultiHas (a class that was not detailed here), which in
turn care only about money and time. Daddy’s world is in-
dependent of Junior’s, given Agt. This allows the design of
theories by first considering their interfaces and only then
writing their details. The construction of every domain the-
ory can be done separately, caring only about those predicted
inputs from connected theories, which must be in the vocab-
ulary of the interfaces. In particular, we never care about
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Figure 11: Diagrammatic view of Daddy and Junior in object-oriented situation calculus

theories that are independent from us, given our neighbor-
ing objects/domains.

This conditional independence is also utilized in the so-
lutions to the frame problem. Explanation closure axioms
help us make sure that actions in one domain do not influ-
ence domains that are not directly connected to it. Money
transfers do not change the state of blocks on the table. This
analysis can computationally enhance methods for comput-
ing solutions to the frame problem.

Finally, rewriting of theories is somewhat easier with this
modeling technique. If a portion of the theory needs to be re-
vised, the ramifications of this revision are easier to observe
and predict. If the object structure is kept, then the influence
of intra-object modifications can be predicted by checking
the impact on the interface of the changed object/s.

Related Work
We focus our attention on object-oriented knowledge repre-
sentation, as this material is spread out on many disciplines
and the previous sections already included some references
to related situation calculus literature. Many object-oriented
knowledge representation systems are relevant to this work.
However, systems available up until OOFOL (Amir 1999)
either lack expressivity, lack object-oriented tools, extend
the expressivity beyond the simple FOL semantics, or are
not concerned with knowledge engineering at all.

The work on object-oriented Prolog (O-O Prolog) (e.g.,
(Shapiro & Takeuchi 1983)) provides limited expressiv-
ity and raises different challenges for object-oriented ap-
proaches than modeling in FOL. In contrast to FOL, O-O
Prolog structures are built using a programming perspective,
and the program flow in O-O Prolog is identical to the pro-
gram flow in ordinary Prolog. Object-oriented structures in
FOL supply heuristic information for theorem proving.

Another close object-oriented approach is Frame systems.
Currently, there is no adequate object-oriented approach for
full FOL in Frame systems. For example, Ontolingua (e.g.,

(Fikes, Farquhar, & Rice 1997)), one of the most expres-
sive Frame systems to date, allows different sentences to
be associated with each frame. However, it does not dif-
ferentiate between a sentence put in one frame and the same
sentence put in a different frame. The situation is similar
in other and earlier frame systems such as KRYPTON/KL-
ONE (Brachman, Fikes, & Levesque 1983),(for a recent
survey see (Fridman-Noy & Hafner 1997)). Logical sys-
tems examined in the related field of description logics (e.g.,
(Borgida 1996)) are concerned with tasks related to classifi-
cation in languages that is typically restricted (some systems
can express full FOL theories, but in an unnatural way after
translation).

Object-Oriented Databases are conceptually different
from our approach. Logics for Object-Oriented Databases
(e.g., (Kifer, Lausen, & Wu 1995)) try to give specific se-
mantics to object-oriented databases. They focus on specific
languages that allow us to reason about object membership
in a class, class inheritance and properties of objects. In our
work we do not try to reason about objects, but rather use the
object-oriented technology to design large logical theories.

Approaches to formalizing and using context (e.g., (Mc-
Carthy & Buvač 1998; Guha & Lenat 1990)) typically have a
significantly more expressive language, therefore requiring a
more elaborate semantics. Furthermore, no object-oriented
tools are supplied in any application of context known to the
author (but some of it is hinted in (Ghidini & Serafini 1998)).

Finally, Bayes Nets (Pearl 1988) and Object-Oriented
Bayes Nets (Koller & Pfeffer 1997) are closely related in
spirit to our development here. Some of the ideas presented
here came up while observing the work done in these fields.

Conclusions
In this paper we presented three results. First, we presented
object-oriented techniques and tools that make designing
large situation calculus theories simple. Conditional inde-
pendence, low-bandwidth links, information hiding and en-
capsulation (looking at one subject at a time) are powerful
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tools in designing large theories in general and situation cal-
culus theories in particular.

Second, we showed that it is possible to build situation
calculus theories separately and then associate them with
loosely interacting agents. The builder of a simple theory
does not need to predict its use in a multiple-agents setup.
Thus, agents can be treated in the situation calculus without
abandoning the result formalism. We made an implicit as-
sumption that the agents’ separate actions are independent
and had their joint actions explicitly stated as such.

Third, our theories can be designed with low-bandwidth
links between interacting domains. This leads to good per-
formance expectation for reasoning with these theories.

For simple theories, object-oriented structures are some-
times excessive. This situation is familiar from other fields
that use object-oriented techniques. However, it seems that
large theories are difficult to build and comprehend without
such structures. In this paper we adjusted this methodology
to the modeling of situation calculus theories. We hope that
the results we presented here will support the scaling up of
logical theory engineering.
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