Appearsin Proceedings of 8th Int’l Conference on Principles of Knowledge Representation and Reasoning (KR *2002).

Projection in Decomposed Situation Calculus

Eyal Amir
Computer Science Division
University of California at Berkeley
Soda Hall 387, Berkeley, CA 94720-1776, USA
eyal@cs.berkeley.edu

Abstract

We investigate the impact of decomposition on
projection in the situation calculus. We show
that performing projection with situation calcu-
lus theories can benefit from their decomposition
into parts associated with sub-domains. Partic-
ularly, we provide message-passing algorithms
that take advantage of the particular structure of
situation calculus theories to perform the task of
projection. These algorithms are shown to be
sound and complete for this task for different sce-
narios, including actions with non-deterministic
effects, partially specified initial situation and ob-
servations in situations later than the first one.
They can be used for distributed reasoning about
situation calculus theories or to speed up com-
putation, in those cases where they are efficient.
We characterize the kind of messages that must
be sent between partitions for each of our algo-
rithms and scenarios. This allows us to provide
computational complexity results for the pro-
posed algorithms under some assumptions. Our
results are important for analyzing and devising
planning, diagnosis and control algorithms for
large domains that are made of interacting parts.

1 Introduction

Situation calculus (McCarthy and Hayes, 1969) is one of
the leading logical formalizations for the representation of
actions and change. It is used to specify high-level pro-
grams for robots (e.g., (Levesque et al., 1997)) and to do
projection (e.g., (Reiter, 1992)), planning (e.g., (Green,
1969; Finzi et al., 2000)) and diagnosis (e.g., (Mcllraith,
1997)) in dynamic systems. It is particularly useful for
these tasks because its language is highly expressive and
many extensions can be represented within it with rela-

tive ease (see (Reiter, 2001)). It also allows us to for-
mally examine many other algorithms that reason about
dynamic systems, analyze them and generalize them (e.g.,
(Lin and Reiter, 1995; Santibaez, 1999)). In general, rea-
soning about dynamic systems is computationally expen-
sive (e.g., (Bylander, 1994; Baral et al., 2000)), whether
done using situation calculus or otherwise. However, in the
last 15 years some approaches that advocate decomposition
of problems have been developed with some success (e.g.,
(Pearl, 1988; Dechter and Pearl, 1989; Darwiche, 1998;
Amir and Mcllraith, 2000; Pfeffer, 2001)).

In this paper we investigate the applicability of decompo-
sition to projection in the situation calculus, projection be-
ing the prototypical reasoning problem for dynamic sys-
tems. We propose reasoning procedures for situation calcu-
lus theories that are composed of interacting sub-domains
(we refer to each situation calculus theory that is associ-
ated with these sub-domains as a partition). Our algorithms
use local computation for each partition and send messages
of restricted form and length between the partitions. We
prove the soundness and completeness of our algorithms,
and provide computational analysis of these algorithms un-
der different assumptions. Particularly, we provide a theo-
rem that relates the structure of a given sequence of actions
with the computational cost of projection of this sequence
with our algorithms.

Our characterization of the messages that must be sent be-
tween partitions is important because it allows us to de-
velop specialized reasoning procedures that look for these
formulae directly, resulting in an efficient way to perform
projection and planning in problems that are composed of
related parts. Our theorems are applicable to a wide range
of situation calculus theories, such as theories with non-
deterministic actions, observations, knowledge-producing
actions and other extensions developed for simple situation
calculus theories (see (Reiter, 2001)). Finally, the results
here are immediately applicable to the object-oriented situ-
ation calculus theories proposed in (Amir, 2000).

(Amir and Mcllraith, 2000) provided message-passing al-
gorithms for reasoning with logical theories that are made
of interacting subtheories in the style of (Pearl, 1988).
These algorithms are applicable in our setup, but for gen-
eral First-Order Logic (FOL) theories they may end up pro-
ducing arbitrarily many messages that may be very large.
Some of our algorithms here can be seen as a restriction
on the messages that these algorithms can be send between
partitions.

Some proofs are omitted here for lack of space. They ap-
pear in (Amir, 2002b).

2 Background: Decomposed Situation
Calculus

2.1 Situation Calculus

We review situation calculus briefly, and the reader is re-
ferred to (Reiter, 2001) for further background and details.

Situation calculus (McCarthy and Hayes, 1969) is a logical
formalism for representing temporal information. The lan-
guage consists of four sorts: situations, for situations in the
world; actions, for events and actions; fluents, for situation-
dependent properties; and objects, for simple other FOL
objects.

Unless otherwise mentioned, s, a, f (or subscripted ver-
sions thereof) are variables for situations, actions and flu-
ents, respectively. All other variables are of sort “object”.
The predicate Holds(f, s) asserts that a fluent f holds in
the situation s (f(s) is used as a shorthand for Holds(f, s)
when such a shorthand causes no confusion). The function
result(a, s) returns the situation that results from perform-
ing a in s (we use res(a, s) as a shorthand). S0 is a situ-
ation constant. Figure 1 displays Ap,,, a sample situation
calculus theory for the blocks-world domain. Capitalized
symbols are constants. Free variables in axioms are univer-
sally quantified with maximum scope.

on(A, B, S0) A on(B, Table, S0) A on(C, Table, S0)

on(z,y, s) = above(z,y, s)

above(z, y, s) A above(y, z, s) = above(z, z, 3)
clear(b, s) <= Vb'-on(¥',b,s)
handEmpty(s) <= Vb-inHand(b, s)

on(z,y, s) = ~inHand(z, s) A ~inHand(y, s)
inHand(z, s) = —on(z, y, s) A ~on(y, z, s)
on(z,y,s) Ay # z = -on(zx, z, s)

clear(b, s) A handEmpty(s) = inHand(b, res(pickUp(d), s)))
(y = TableV clear (y, s)) A inHand(z, s) =
on(z, y, res(putOn(z, y), s))

Figure 1: Blocks-world in the situation calculus: Ap,,.

In situation calculus theories, effect axioms are used to de-
rive the consequences of actions. In Figure 1, effect axioms
are given for the actions putOn(z,y), pickUp(b). state
constraints are sentences that mention no action term. This
ontology received a suitable set of foundational axioms, re-
garding its structure of time in (Lin and Reiter, 1994; Pinto,
1994) and others.

The frame problem concerns the conclusion of non-effects
of actions from the known effects in a concise, correct,
expressive and elaboration-tolerant manner (see (Shana-
han, 1997)). One of the solutions generates explanation
closure axioms (e.g., (Haas, 1987; Pednault, 1989; Schu-
bert, 1990)) from the effect axioms and the domain con-
straints. When it is possible, we mechanically (outside the
logic) add axioms saying that if something has changed,
then one of the enumerated actions occurred and their
proper preconditions held. For example, one axiom that
is generated for explanation closure for in Hand in Ay, is
—inHand(z,s) NinHand(z,res(a, s)) = (clear(z,s) A
handEmpty(s) A a = pickUp(z)).

(Reiter, 1991) summarized the effort and showed how to
generate such axioms automatically if there are no state
constraints, (Lin and Reiter, 1994) extended this process
for the presence of state constraints, using deduction, and
(Mcllraith, 2000) gave a closed-form solution in the pres-
ence of some restricted state constraints. These solutions
also add other axiom sets, including unique names axioms
(UNA) for sort “actions”, preconditions for executing ac-
tions (summarized by the predicate Poss(a, s)) and foun-
dational axioms for situations.

All of the results in the rest of this paper are stated for
situation calculus theories in which the frame problem is
solved using Reiter’s solution (see (Reiter, 2001)) prior to
reasoning. We assume that there are no state constraints
or that whatever state constraints there are were compiled
into that solution by the methods of (Lin and Reiter, 1994;
Pinto, 1999; Mcllraith, 2000).

2.2 Combining Action Theories

The way situation calculus can be joined using object-
oriented design tools was examined in (Amir, 2000). It
showed that domain theories that are represented using sit-
uation calculus can be joined without the need for signif-
icant recomputation of the solution to the frame problem.
We use the results mentioned in (Amir, 2000) while avoid-
ing the use of object-oriented notation, thus sidestepping
unnecessary definitions.

Consider a domain theory regarding buying and selling
items. In this theory, buying an item decreases the amount
of money a robot has, but also places the purchased item
in the robot’s hand. Selling a block has the opposite effect.

Figure 2 presents the new axioms. The blocks-world the-
ory and the buy-sell theory share only S0, res, Holds and
inHand. Figure 3 is a diagram of the situation.

money(S0) = 10

money(s) > 0
inHand(b, s) = Hasltem(d, s)

inHand(b, s) A value(b, s) = v A money(s) = m =
—hasltem(b, res(sell (b), s)) A money(res(sell(b), s)) = m+v
value(b, s) = v Amonegy(s) =mAm > v =
money(res(buy(b), s)) = m—v A inHand(b, res(buy(b), s))

Figure 2: The domain of buying and selling items, Ays.

Following (Amir and Mcllraith, 2000), we say that
{A;i}i<n is a partitioning of a logical theory A if A =
U, Ai. Each individual A; is a set of axioms called a par-
tition, L(A;) is its signature (the set of non-logical sym-
bols), and £(A;) is its language (the set of formulae built
with L(A;)). The partitions may share literals and axioms.

SC1: Move-Blocks Theory
on(z,y), above(z, y), clear (x), handEmpty, inHand(z)

inHand,res,Holds,S0

SCs: Buy/Sell Theory
money, value(z), hasltem(z), inHand(z)

Figure 3: Combining blocks world with purchase and sale.

We call the graph in Figure 3 the intersection graph of
the partitioned theory A, U Aps. More generally, ev-
ery partitioning of a theory induces a graphical represen-
tation, G = (V, E, 1), which we call the partitioning’s in-
tersection graph. Each node of the intersection graph, i,
represents an individual partition, A;, (V = {1,...,n}),
two nodes 4, j are linked by an edge if £(A;) and £(A;)
have a non-logical symbol in common (E = {(i,j) |
L(A;) N L(A;j) # 0}), and the edges are labeled with the
set of symbols that the associated partitions share (I(4, j) =
L(A;) N L(Aj)). We refer to [(4, j) as the communication
language between partitions A; and A;. We ensure that the
intersection graph is connected by adding a minimal num-
ber of edges to E with empty labels, (i,) = 0.

(Amir, 2000) showed that adding the explanation-closure
solution to the frame problem can be done in a way that
ensures that the graph does not become more connected.
Situation calculus theories that are made of such connected
subtheories (two subtheories or more) are called oo-sitcalc
theories. They can be built from component theories or be
the result of manual or automatic decomposition (Amir and

Mcllraith, 2000; Amir, 2001).

2.3 Message-Passing

Figure 4 displays MESSAGE-PASSING (MP), a message-
passing algorithm proposed in (Amir and Mcllraith, 2000)
for partition-based logical reasoning. It takes as input a
partitioned theory, A, an associated graph structure G =
(V,E,1), and a query formula @ in £(Ag), and returns
YES if the query was entailed by .A. The algorithm uses
procedures that generate consequences (consequence find-
ers) as the local reasoning mechanism within each partition
or graphical node. It passes a concluded formula to an ad-
jacent node if the formula’s signature is in the communica-
tion language [of the adjacent node, and that node is on the
path to the node containing the query.

The messages in this algorithm are sent in a single direc-
tion, the direction of the goal partition. To determine the
direction in which messages should be sent in the graph G,
step 1 in MP computes a strict partial order over nodes in
the graph using the partitioning together with a query, Q.

Definition 2.1 (<) Given partitioned theory A =
Ui<n Ai, associated graph G = (V,E,l) and query
Q € L(Ay), let dist(i,j) (4,5 € V) be the length of the
shortest path between nodes ¢,j in G. Then i < j iff
dist(i, k) < dist(j, k).

PROCEDURE MESSAGE-PASSING (MP)({A;}i<n, G, Q)
{Ai}i<n apartitioning of the theory A, G = (V, E,1) a graph
describing the connections between the partitions, Q a query in
L(Ax) (k < n).

1. Determine < as in Definition 2.1.

2. Concurrently,

(a) Perform consequence finding for each of the parti-
tions A;, 7 < n.

(b) For every (i,j) € E such that i < j, for ev-
ery consequence ¢ of A; found (or ¢ in A;), if
¢ € L(I(3,7)), then add ¢ to the set of axioms of

(c) If Qisproven® in A, return YES.

@Derive a subsuming formula or initially add —=@Q to A, and
derive inconsistency.

Figure 4: A forward message-passing algorithm (Mcllraith
and Amir, 2001).

It was shown in (Amir and Mcllraith, 2000; Mcllraith and
Amir, 2001) that this kind of algorithm is complete and
sound for partitioned theories, and that it sometimes im-
proves running time compared to standard deduction meth-
ods.

Completeness of the algorithm assumes that the graph G
used in the algorithm is properly labeled (in other fields
this is sometimes called satisfies the running intersection
property). The condition of proper labeling for a graph
G(V, E,I) was defined in (Mcllraith and Amir, 2001) to
say that G is a tree of partitions such that for all (i, j) € E
and By, B,, the two subtheories of A on the two sides of the
edge (i,7) inG, itistruethati(i, j) D L(B1)NL(B>). This
condition always holds if the intersection graph of a parti-
tioned theory is a tree, and there are algorithms for convert-
ing any graph into such a tree, e.g., BREAK-CYCLES(G)
in (Amir and Mcllraith, 2000). The width of a properly-
labeled tree is the size of the largest partition (size here
includes the number of fluents in the partition and on the
labels of the partition’s edges). The treewidth of SC is the
lowest width among all properly-labeled trees for SC.

MP is immediately applicable to both projection and plan-
ning in situation calculus if we partition those theories as
in the previous section. However, the number of messages
sent and their lengths can be too large. The rest of the pa-
per characterizes the messages that must be sent in similar
algorithms and in bi-directional MP algorithms, showing
that we can restrict the messages significantly for the task
of projection.

3 Projection Using Bi-Directional Passing of
Restricted M essages

In this section we propose two message-passing algorithms
that perform projection in situation calculus theories by
sending only messages of a restricted-form. Both algo-
rithms perform projection by sending messages back-and-
forth between partitions. They differ in the restrictions they
put on the messages and in the range of theories for which
they are applicable.

In the following we assume that each observation that we
have (about S0 or otherwise, if allowed in our scenario) can
be represented using the vocabulary that we associate with
a single partition (or can be compiled (e.g., using the meth-
ods of (Mcllraith and Amir, 2001)) into equivalent multiple
observations that satisfy this condition).

Also, for simplicity we assume that fluents are proposi-
tional (i.e., there are no function fluents or predicate fluents,
but rather fluents are named and no function generates new
fluents from others).

3.1 Deterministic Situation Calculus Theories

Our first algorithm sends messages of the form
Holds(f,S;) between partitions, for f and S; being
ground terms of sort fluent and situation, respectively. This
algorithm is applicable to situation calculus theories that

have a fully specified initial situation and deterministic
actions. The procedure is present in Figure 5.

PROCEDURE MP-2dir-det-SitCalc (MP2d)({SC; }i<n, G, Q)

{SC;}i<n an oo-sitcalc theory, G = (V, E,l) a graph de-
scribing the connections between the partitions, @ a query in
L(SCr) (k < n).

1. Concurrently,

(a) Perform consequence finding for each of the parti-
tions SC;, i < n.

(b) For every (i,j) € E, for every consequence
Holds(y,S) of SC; found (or Holds(y,S) in
SC;), if ¢ € L(I(i,7)) is a fluent term and S a
ground situation term, then add Holds(yp, S) to the
set of axioms of SC;.

(c) If Qis proven® in SC, return YES.

@Derive a subsuming formula or initially add =@ to SCj
and derive inconsistency.

Figure 5: A bi-directional message-passing algorithm for
deterministic scenarios.

Theorem 3.1 (Soundness and Completeness of MP2d)

Let SC = {SCi}i<n be an oo-sitcalc theory,
a1,...,a;,; actions in L(SC) and for all j < m
S; = result(aj,res(aj_1,...,res(ai, S0))). Let

o € L(SC) be a fluent term, for & < n. Then
SC = Holds(y, S;) iff MP2d outputs YES for the query
Holds(yp, S;) stated in partition SC.

Most of the rest of this section is devoted to proving this
theorem. The proof outline is as follows: We unroll the
result function for a partitioned situation calculus theory,
SC, that has only two partitions, SC; and SC> (see Fig-
ure 6). We show that the resulting theory, SC', is equiv-
alent to the first one for a set of queries. We use this and
the soundness and completeness of MP for arbitrary parti-
tioned theories to find the messages that can be sent in MP
running on SC'. These messages are then translated back
to the original system, resulting in the desired characteriza-
tion. Finally, the generalization of this characterization to
the case of a tree of partitions (instead of only two parti-
tions) is done by induction.

Definition 3.2 (Unrolling result) Let SC = {SC1,SC>}
be an oo-sitcalc theory with two partitions (e.g., see Figure
3). We say that SC’ unrolls SC for the action sequence
ai,...,an if SC' = {SC'}1<i<, and for every i < n
SC' is a copy of SC (if a; residest in SC,) or SCs (if
a; resides in SC3) that we change in three ways: First, we

Twe say that a; resides in SCj if the effect axioms of a; are
in SCj.

SC*: Move-Block Theory
Fluents: on(z, y), above(z, y), clear(z), handEmpty, inHand(z)

inHand(z);
SC?2: Buy/Sell Theory

Fluents: money, value(z), hasltem(z), inHand(z)
1 0n((l’,‘7 y)) aboVe((L', y)
inHand(z)» clear(x), handEmpty

SC3: Move-Block Theory

Fluents: on(z, y), above(z, y), clear(z), handEmpty, inHand(z)

hasltem(z), money,

value(zx)

inHand(x)3

SC*: Buy/Sell Theory
Fluents: money, value(z), hasltem(z), inHand(z)

Figure 6: High-level diagrammatic view of unrolling result.

replace every nonlogical symbol X that is not a fluent name
by a new symbol SC?.X. Then, we add new propositional
symbols f; for every fluent name f € L(SC?). Finally, for
every fluent name f € L(SC* 1) N L(SC?) we add the
axioms

fii1 < SC'.Holds(f,SC*'.res(SC'.a;_1,...,
res(SC*.a1,SC.S0)...))

fi < SC%Holds(f,SC%.res(SC".a;,...,
res(SCt.a1,SC.S0)...))

and for every f € L(SC;) \ L(SC;—1) we add the axioms

fi <= fit1 - fie &= fi1

if j < i such that SC*, SC7 are copies of the same parti-
tion (SCy or SC5) and j is the largest such index.

Figure 6 is an example unrolling of the theory SC =
{Apw, Aps } for four actions. The intuition behind this
unrolling is that we try to keep the partitions SC; =
Apw, SC2 = Aps as separate as possible. Every partition
of axioms in Figure 6 corresponds to a situation, action and
the action’s result in that situation. It is important that ev-
ery partition SC does not include the entire state, nor does
it need to reason about the absent fluents.

The definition roughly suggests that partition SC* receives
information from the previous partition and one more parti-
tion, if its immediate predecessor is not a copy of the same
original partition of SC. After applying the action a; in
SC* we send some of the fluents values in the resulting sit-
uation to SC**! and the rest of the fluents of L(SC?) to the
next partition down the chain that needs them (a partition
that is a copy of the same original partition of SC as SC*).

We show that this
the original

unrolling is equivalent to
structure for queries of the form

Holds(p,res(an, res(...,res(a,S0)))).

Lemma 3.3 (Equivalence of Unrolling) Let SC =
{SC1,SC>} be an oo-sitcalc theory (as in Figure 3),
and let SC' be the unrolling of SC for ay,...,a,. Let
S; = result(a;,res(ai—1,...,res(a1,S0))) forall i < n,
and let ¢ € £(SC™) a fluent term. Then,

SC |= Holds(p, Sn) <
SC' = SC™.Holds(p,res(SC™.an, SC™.50)).
PROOF See AppendixA.l. =

For the following lemma we assume full knowledge of the
state SO and actions that are deterministic.

Lemma 3.4 (MP in Unrolled Theory) Let SC =
{S8C1, SC>} be an oo-sitcalc theory, ay, . .., a, actions in
L(SC) and S; = res(a;,res(a;—1,...,res(as, S0))) for
alli < n. Lety € L£(SC;) be afluentterm, for j € {1,2}.
Then SC = Holds(p, Sy) iff MP outputs YES for the
query? SC™.Holds(p, SC™.S,,) stated in partition SC™.

It is important to notice that we do not convert the graph
G into a tree before running MP. The fact that this lemma
holds even without running BREAK-CYCLES on G isare-
sult of our assumption about deterministic actions and full
knowledge of the fluents in SO.

Now we can show that the only messages that need to be
sent in a back-and-forth Message-Passing are of the form
of a single state observation or constraint. For the follow-
ing theorem we assume full knowledge of the state SO and
actions that are deterministic.

Theorem 3.5 (MP2d is Complete & Sound for 2 Parts.)
Let SC = {S8C;,SC>} be an oo-sitcalc theory
(as in Figure 3), ai1,...,a, actions in L(SC) and
S; = result(a;,res(a;_1,...,res(a1,S0))) for all i < n.
Let ¢ € L£(SC;) a fluent term, for j € {1,2}. Then
SC = Holds(p, Sy) iff MP2d outputs YES for the query
Holds(yp, Sy) stated in partition SC;.

PROOF SkETCH From Lemma 3.3 we know that SC' |=
Holds(p, Sg) iff SC' = SC™.Holds(yp, SC™.Sy)). Fur-
thermore, from Lemma 3.4 we know that the messages that
need to be passed between partitions that are copies of SC'!
and those that are copies of SC? are of a form equivalent
to Holds(v,S;). 1

The generalization of the last theorem to the tree case is
done by induction, leading to the conclusion of the proof
of Theorem3.1. =

2\We abuse notations here and write SC™.S, for
SC"™.res(SC™.an, ..., SC™.res(SC".a1, SC"™.50)...).

For this special case (deterministic actions and fully known
initial state) we can show that MP2d is complete even if G
is not a tree. This follows from a similar argument that we
do not bring here.

3.2 Non-Deterministic Situation Calculus Theories

It is important to notice that Theorem 3.1 does not hold
if SO is not fully specified or some actions have non-
deterministic effects. To see this, assume that we know that
Holds(on(A, B) v inHand(A4), S0). This implies that

Holds(on(A, B) v inHand(D),
res(buy(D), res(sell(A), S0)))

is a valid consequence of Ap,,. However, we cannot prove
this using messages of the form Holds(«), S;) when 1 is a
fluent term based on inHand because there is no conclusion
that we can draw about inHand(A) or inHand(D) or any
relationship between them in any single situation. We can
conclude

Holds(inHand(A4), S0) =
Holds(inHand(D), res(buy(D), res(sell(4), S0))),

but this is a formula that includes two different situations.

Nonetheless, a generalization of Theorem 3.1 holds for the
case of nondeterministic actions, partially-specified initial
state and possible observations about states later than SO.
By nondeterministic actions we refer to actions whose ef-
fect axioms specify results that are not a single conjunction
of fluents. The specification of nondeterministic actions
and the solution to the frame problem in such settings take
different semantics in different works (Lin, 1996; Levesque
etal., 1997). Here, we assume that the solution is given us-
ing some added first-order axioms, but we do not assume
any particular information about them. Similar results can
be achieved for the GOLOG model of nondeterministic se-
lection of actions (Levesque et al., 1997).

Our algorithm performs projection by sending messages
of the form Holds(¢1,Si,) A ... A Holds(t,, Si,) =
Holds(¢q41,Si,,,) between partitions, for 1; being
ground terms of sort fluent and S;; being ground terms of
sort situation. It is more generally applicable than the first
algorithm, allowing theories that include nondeterministic
effects of actions, partially specified first situation and ob-
servations about later situations. The procedure is present
in Figure 7.

Theorem 3.6 (Soundness and Completeness of MP2n)

Let SC = {SCi}i<n be an oo-sitcalc theory,
ai,...,am, actions in L(SC) and for all j < m
S; = result(aj,res(aj_1,...,res(ai, S0))). Let

¢ € L(SCk) be a fluent term, for & < n. Then
SC = Holds(p, S;) iff MP2n outputs YES for the query
Holds(p, S;) stated in partition SC.

PROCEDURE MP2-nondet-SitCalc (MP2n)({SC;}i<n, G, Q)

{SCi}i<n an oo-sitcalc theory, G = (V,E,!l) a graph de-
scribing the connections between the partitions, @ a query in
L(SCk) (k < n).

1. Concurrently,

(a) Perform consequence finding for each of the parti-
tions SC;, i < n.

(b) For every (i,j) € E, for every consequence
of the form ¥ = Holds(¢1,S;;) A ... A
HOlds(wa,Si) = Holds(¢a+1,.5'¢a+1) of SCj
found (or ¥ € SCj), if ¥ € L(I(4, §)), then add ¥
to the set of axioms of SC;.

(c) If Q is proven® in SC, return YES.

2Derive a subsuming formula or initially add =Q to SCj
and derive inconsistency.

Figure 7: A bi-directional message-passing algorithm for
nondeterministic scenarios.

The proof of this theorem follows from Lemma 3.3 and the
soundness and completeness of MP for properly labeled
graphs (Mcllraith and Amir, 2001). The proof follows if
we notice that running MP on an oo-sitcalc theory as in
Figure 6 after running BREAK-CYCLES (Amir and Mcll-
raith, 2000) results in messages that can be converted to the
proper form for our theorem.

4 Projection Using M essages-Passing in One
Direction

The previous section characterized those messages that
must be sent in a back-and-forth message passing proof
over an oo-sitcalc theory. In this section we examine the
case of sending messages in only one direction, the way
MP does. We find that the messages that must be sent
are of a similar form to that given for nondeterministic
domains in the previous section: Holds(1,S:,) A ... A
Holds(vq, S;,) = Holds(q41,Si,,,). Our algorithm is
shown in Figure 8.

Surprisingly, we must send the same kind of messages
even if we limit our attention to deterministic domains,
i.e., formulae of the form Holds(f,S) or Holds(v, S) =
Holds(y', S") are not enough. Roughly speaking, the rea-
son for this is that when we send messages in a single direc-
tion each partition has to send enough messages to account
for all the possible situations to which it might have been
applied if we used bi-directional message-passing.

In the following theorem we allow partially specified initial
situation, nondeterministic effects of actions and observa-
tions in situations later than SO.

PROCEDURE MP-nondet-SitCalc(MPn)({SC; }i<n, G, Q)
{SC;}i<n an oo-sitcalc theory, G = (V, E,l) a graph de-
scribing the connections between the partitions, @ a query in
L(SCk) (k < n).

1. Determine < as in Definition 2.1.

2. Concurrently,

(a) Perform consequence finding for each of the parti-
tions SC;, 1 < n.

(b) Forevery (i,5) € E such thats < j, for every con-
sequence of the form ¥ = Holds(¢1,Si,) A ... A
Holds(%a, Si,) = Holds(ta+1,Si,,,) of SC;
found (or ¥ € SCj), if ¥ € L(I(4, 5)), then add ¥
to SC;’s axioms set.

(c) If Qis proven® in SC, return YES.

2Derive a subsuming formula or initially add —Q to SCjx
and derive inconsistency.

Figure 8: A forward message-passing algorithm for projec-
tion in deterministic and nondeterministic domains.

Theorem 4.1 (Soundness and Completeness of MPn)

Let SC = {SCi}i<n be an oo-sitcalc theory,
a1,...,a, actions in L(SC) and for all j < m
S; = result(aj,res(aj_1,...,res(ai, S0))). Let

p € L(SC) a fluent term, for k¥ < n. Then
SC | Holds(p,S;) iff MPn outputs YES for the
query Holds(yp, S;) stated in partition SC.

5 Structure and Computational Analysis

In situations where computation is distributed over several
computers or agents, our procedures and their alike are the
only mean for performing inference and projection. How-
ever, in cases where distribution is not necessary, there are
simple methods that may outperform our procedures sig-
nificantly, especially if we allow long messages to be sent.
The computation offered by the procedures above can be
very costly if the length of messages is not bounded.

In those cases, when is it better to use our procedures? In
general, can we estimate the amount of computation in-
volved given a sequence of actions and a set of partitions?
In this section we characterize those cases and yield a few
insights into the related problem of planning. Our analysis
is based on the observation that the size of the messages can
be kept small if there is only little back and forth transition
between partitions in a given sequence of actions.

We make this intuition precise using the following defini-
tion.

Definition 5.1 Let SC = {SC;}i<x, be an oo-sitcalc the-
ory, ai,...,an actions in L(SC) and G(V, E, 1) a graph

describing the connections between partitions. For (¢, j) €
E, we say that {a;,,a,,...,a;,) V2 < k1 < I, <
lz+1 < m) is an influencing sequence for SC; from SC;
if (A) there are t1,t5 < m such that I, < t; < to,
ai,,ar, € L(SC;) and ag, has preconditions in £(1(i, j))
and ay, has effects in £(I(i,7)); and (B) for every z < k,

1. ay, € L(SC}),
2. a;, has effects in £(I(i, j)), and

3. if x < k, then there is I’ < m such that [, <

' < lgy1, ap € L(SC;) and ay has preconditions
in £(1(i,5))-

The intuition behind this definition is that if we have a
sequence of actions such that some of them belong to
SC;, SCj, then SC; needs to send SC; a message of the
form

if S1 was to be the case after a;, , and S, was to be the
case after a;,, and ... and S;, was to be the case after
ar,, then Sy, ., will be the case after a,,, .

The length of the largest influencing sequence for SC; from
SC; in a sequence of actions is exactly the maximal num-
ber of situations that must participate in a message that is
sent from SC; to SC;.

Theorem 5.2 Let SC = {SC;}i<, be an oo-sitcalc the-
ory, ai, ..., am, actionsin L(SC) and G(V, E, 1) a tree de-
scribing the connections between partitions. Let SC;, SC;
be two partitions such that (i,j) € E, and let B;, B; be
the two connected components of G that result if we remove
(¢,7) from E. In MP2n and in MPn, the only messages that
we need to send from SC; to SC; are of the form

Holds(1, Si,)A. . .AHolds(4r, S,) = Holds(¢41, Sty ,)

such that (ay,,...,ay,) is an influencing sequence for B;
from B;.

Thus, if there is no influencing sequence in our sequence
of actions (e.g., when the sequence of actions is such
that the actions are grouped into the partitions, and the
order between the action-groups follows < from Defini-
tion 2.1), then the only messages that need to be sent
are of the form Holds(p, S). If the only influencing se-
quences for aq, . . ., a., are of length 1, then the only mes-
sages that need to be sent are of the form Holds(y, S) =
Holds(¢',S").

Corollary 5.3 Let a4,...,a, be a sequence of actions
and let SC = J_, SC; be an oo-sitcalc theory with
treewidth %, (treewidth is defined in Section 2.3). If the
largest influencing sequence is of length &5, then the pro-
jection with MPn takes time O(2F1*kz2),

This compares well with the coNP-completeness results
for projection with partial information and nondeterminis-
tic actions (Baral et al., 2000; Amir, 2002a).

While doing projection we may sometimes take the given
order of actions and change it to suit our purposes (not the
actual execution, which is given, but the sequence of ac-
tions that we process in our algorithm). For example, we
can try to group the actions so that they minimize ky * ks in
Corollary 5.3 by looking at the dependencies between the
actions, and rearranging the actions so that those dependen-
cies are not altered or broken.

This result also suggests a new planning goal. When plan-
ning, try to find those plans that have the best aggregation
of actions. Finding plans that have influencing sequences
of length at most &, if such exist, takes time that is propor-
tional to 2F1*#2_ This is subject of ongoing work.

6 Conclusions

This paper presented three novel algorithms for reasoning
in partitioned domains using situation calculus. The al-
gorithms were shown to be sound and complete for their
respective classes of situation calculus theories. The first
is a back-and-forth message-passing algorithm that needs
to send only single-state formulae between partitions. The
second is a back-and-forth message-passing algorithm that
needs to send only effect-style formulae (two-state formu-
lae) between partitions. The last algorithm is a single-
direction message passing algorithm that needs to send k-
state effect formulae between partitions. The first algorithm
is applicable to situation calculus theories that have fully-
specified initial states and deterministic effects of actions.
The second and third are applicable to more general the-
ories, including those that have only a partially specified
initial state and nondeterministic effects of actions.

The results of this paper are important for several appli-
cations. First, in domains where reasoning is distributed
among several machines or agents these algorithms allow
us to perform projection. Also, algorithms for planning
and diagnosis can be devised using our algorithms and the-
orems. Our results can serve as the basis for algorithms for
reasoning about interacting agents and planning for collab-
orating agents. We can also analyze existing planning algo-
rithms that are built around the idea of decomposition, such
as (Lansky, 1988; Lansky and Getoor, 1995; Frank et al.,
2000).

Also, our results can serve as a basis for reasoning algo-
rithms for Markov Decision Processes (MDPs) and infer-
ence algorithms for some dynamic Bayes networks. They
particularly shed some light on the applicability of algo-
rithms for first-order MDPs (Boutilier et al., 2001). Fi-
nally, we are interested in building Al architectures that

are based on networks of interacting interacting knowledge
bases, and the algorithms and theorems offered in this pa-
per are important for the understanding and scaling up of
such architectures (see e.g., (Amir and Maynard-Reid II,
1999)).

7 Acknowledgments

I wish to thank Sheila Mcllraith and Stuart Russell for dis-
cussions on subjects related to this paper. This research
was supported by DARPA grant N66001-00-C-8018 (RKF
program) and National Science Foundation grant ECS-
9873474.

A Proofs

A.1 Lemma 3.3: Equivalence of Unrolling

Backward Direction The backward direction is seen
by viewing the way MP works on SC’ (after apply-
ing BREAK-CYCLES to those bypassing edges in the
graph). Let S be a message-passing proof of SC' |=
SC™. Holds(p,SC™.res(SC".a,,SC™.50)) represented
as a sequence of formulae (this is the traditional Frege-
Hilbert proof in which every formula is derived from pre-
vious ones in the sequence using a rule in the logic).

Every step in this proof is a possible in a regular proof in
SC because every deduction step in this proof can be made
between the corresponding axioms in SC. The only axiom
that we add in SC’ to the translated axioms of SC are the
equivalence axioms f;_; <= f; for fluents in far-apart
partitions. However, this axiom is a translation of a valid
consequenceof SC: Holds(f,Si—1) <= Holds(f,S;).

To see that this is a valid consequence, assume, without
loss of generality, that SC? is a translated copy of SC;
(as in Definition 3.2). Then this formula follows from SC
because f does not occur in L(SC5) and thus does not ap-
pearin SCI+!, ..., SC*1. Because we do not have domain
constraints (or they were compiled away) and we use expla-
nation closure, this implies that the explanation closure ax-
ioms in SC for the fluent f show that f does not change its
value during the execution of actions a1, ..., a;—1. Thus,
SC = Holds(f,Si—1) <= Holds(f,S;). As aresult,
we can translate the proof in SC" into a proof in SC, so

SC' = SC™.Holds(p,SC™.res(SC™.a,, SC™.50))
= SC E Holds(y, Sc).

Forward Direction For the forward direction we
show that for every model M' of SC’ there is
a model M of SC such that for every i < mn,
for every ¢y € L(SC?) a fluent term, if M’ E

SCi.Holds(, SC%.res(SCt.a;, ..., SCt.res(SC'.ay,
SCi.50)...)), then M |= Holds (i, S:).

Only Effect Axioms We show this for the case of situa-
tion calculus theories in which there are only effect axioms
(no explanation closure) first. We then generalize this to
the case including explanation closure, domain constraints
and observations (in S0 and otherwise).

Assume otherwise. Let ¢ be the first index for which this
assertion is not true. For i = 0 look at SC*. It is isomor-
phic to SC; (for j = 1 or j = 2, whichever SC"* is a copy
of) under syntactic translation. Since there are only effect
axioms in our theory, there are no domain constraints or ob-
servations regarding S0. Thus, there are no restrictions on
S0in SC and there is a model M of SC that has the fluent
values specified by M’ for fluents L(SC*). Thus, M'
SCi.Holds(,SC.res(SC*.aj, ..., SCt.res(SC.ay,
SC1.50))) implies that M = Holds (v, S;).

Thus, ¢ > 0 (recall that i is the first index for which our as-
sertion is not true). Thus, the value of Holds in Sy, ..., S;
(in the respective partitions SC, ..., SC?) according to M’
is not consistent with the axioms of SC, but the value of
Holds in Sy, ..., S;_1 is consistent with SC'.

Let A" be the set of formulae of the form
SCI.Holds(, SCI.res(SC .aj, ..., SCI .res(SC.ay,
S$Ci.50))) or SCI.Holds(p,SC’.res(SCY.aj_1,...,
SCI.res(SC7.a1,SC?.50))) that M’ satisfies, for j < i.
Let A be the translation of A’ into L(SC) (essentially
removing SC7 from all the axioms in A").

A is consistent because the only way it
may not be consistent is if it includes both
SCI.Holds(, SCI.res(SCY.aj_1, ..., SC7 .res(SCY a1,
SC7.50))) and -SCI=t . Holds (v, SCI 1 .res(
SCi~taj_1,..,8Ci 1 .res(SC''.a1,SCI~1.50)))

for some formula ¢ € L£(SCY) N L£(SCI~1), but
this is inconsistent with the set of formulae f;_; <=
SCi.Holds(, SCY.res(SCY.aj_1, ..., SCI.res(SC a1,
5C71.50))) and f;—1 & SCI~L.Holds(+,SC'~L.res(
SCi—ta;j_1,...,SCI" res(SCI~t.a1,5C771.50))).

Furthermore, let A be the set of formulae of A that do not
mention a;. Then, Ag is consistent with SC, but A is not.
Let SC be the set of axioms of SC with the additional pre-
condition that the variable s in those axioms that mention
a; is different from S;_1. SC U A, is consistent because
SC U Ay is. Consequently, SC U A is consistent because
there are no axioms in SC that can interact with those of
A\ A (there is no effect axiom in SC that tells us anything
about this particular situation).

Let M be a model of SC U A. We show that M [
SC. Assume not. Then, there is an effect axiom in SC,
U =Vs Holds(yn,s) = Holds(¢,res(a;, s)), such that

M = ¥, Thus, M |= =¥, because M is a structure and ¥
aclosed formula. Since M = ¥ (for ¥ being the matching
axiom in SC) we get that M = —(Holds(11,S; 1) =
Holds(1ps,res(ai, Si—1))). Rewriting this formula yields
M = Holds(1,S;-1) A —~Holds(v2,res(a;, Si—1)).

Let SCL.¥ = Vs SC'.Holds(1,s) =
SCi.Holds(1), SC.res(SC.a;, 5)). By the way
we defined SC?, the axiom SC'.¥ appears in SC".
In particular SC* = SC*.Holds(¢1,SC".S;—1) =
SCt. Holds(1)s,SC*.res(SCt.a;, SC.S;_1)).

From the paragraph preceding the last one, M
Holds(y1,S;_1). Furthermore, ¢; € £(SC?) by the def-
inition of SC'. Since M = Holds(1,S5; 1) it must
be that M’ = SC*.Holds(y1,SC*.S; 1) because other-
wise M’ = SC¢ Holds(—1,SC?.S;_1) which implies
M = Holds(—1, Si—1), which is a contradiction.

Thus, M' = SCi.Holds(11,SC%.S;—1), and we get that
M' | SCUHolds(i)2,SC res(SC.a;, SC*.S;—1)).
This contradicts our previous consequence that
M | -Holds(ys,res(a;,S;—1)) (which implies
M' | =SC*.Holds(1)2,SCl.res(SCt.a;, SCt.S;_1))).

Thus, M | SC U A which concludes the induction step.

Adding Explanation Closure First we examine the way
that we add explanation closure axioms to SC and to SC".
Without loss of generality, assume that our explanation clo-
sure axiom ¥ is of the form

¥ = Vs,a Holds(f,res(a, s)) =
(Holds(31,8) Aa = A1) V ... V (Holds(¢, s) Aa = Ay)
V(Holds(f,s) Aa # A;...Ag)

If f € L(SCy) \ L(SC>), then all the effect axioms that
influence f arein SCy and all of Ay, ..., Ag arein L(SCh).
Thus, ¥ is added to SC; in SC and SC*.¥ is added to the
copies SC? of SC; in SC'. The situation is the opposite if
f € L(SCs) \ L(SC).

If f € L(SCy) N L(SCs), then there are effect axioms
for different actions in SC1, SC; that influence f. Let
Ay, ..., A; be the actions for whose effect axioms are in
SCy and Aj4q, ..., A, be the actions for whose effect ax-
ioms are in SC5. In SC; we add the effect axiom

U, = Vs, a Holds(f,res(a, s)) =
(Holds(1,8) Aa = A1) V ...V (Holds(¢y, s) Aa = A;)
V(a = Aj41...A;) V (Holds(f,s) Aa # A;... A)

and in SC5 we add the effect axiom

¥y =Vs,a Holds(f, res(a, s)) =
(H0|d5(¢l+1, S) Na = Al+1) V..
V(Holds(¢g, s) Aa = Ayg)
V(a = AlAl) \% (HOIdS(f, S) Na 7é A]_Ak)

First, notice that ¥ = ¥; AW, because each of ¥, ¥5 isa
weakened version of ¥ (we weakened the consequent of ¥
to get each of them). Then, notice that 1 A ¥y = W, This
is because we include a UNA for actions, which implies
that (a =A41V..Va = Ak) = —|(a =AV..Va = Al),
and using the resolution rule (see (Genesereth and Nilsson,
1987)) we get ¥. Thus,

T AT, =T

For all SC* that is a copy of SC; we add SC*.¥,. Also,
for all SC? that is a copy of SC» we add SC*. .

Now, assume that SC' already includes all the explanation
closure axioms as detailed above and that SC' has no ex-
planation closure. Let [SC] be the set of models of SC.

Let M’ € [SC'] a model of SC’ together with the ex-
planation closure axioms. Let M € [SC] be a matching
model, as found by our previous section of the proof (Only
Effect Axioms).

(Lin and Reiter, 1994) provided a model-minimization
policy that gives semantics® to explanation closure ax-
ioms. Roughly, it says that M is minimal if there is no
model M’ which agrees with M on all actions a, flu-
ents f and situations s for which M = Holds(f,s) =
Holds(f,res(a,s)) but that has fluent f, situation s and
action a for which a is possible (Poss(a,s)) in M and
M = Holds(f,s) = ~Holds(f,res(a, s)) but for which
M' | Holds(f,s) = Holds(f,res(a,s)). If there is
such a model, M’, we write M' < M. This minimiza-
tion is for models that satisfy the effect axioms, the UNAs
for actions and the foundational axioms for situation cal-
culus (inclusion of other formulae is done only after the
minimization is complete; the process, called filtering, was
first discussed by Sandewall (Sandewall, 1989; Sandewall,
1994)).

We use this minimization policy to show that our M’
has a corresponding model in the sense of our first case
above (Only Effect Axioms). If M is not minimal, let M
such that M < M. Assume that M differs from M in
Holds(f, res(ait1,9S;)) for a minimal ¢ < n (otherwise,
M still matches our M’). Then M = Holds(f,S;) =
Holds(f,res(ait1,S:)) while M = Holds(f,S:)
—Holds(f,res(ait1,Si)).

If f € L(SCY), then M’
SCH*t Holds(f,SC*.S;)

-SCH Holds(f, SC.res(SCt.a;y1,SCHL.S;)
because of the similar property that holds in M and the
fact that M’ M agree on f in S;, S;11. However, recall
that M’ satisfies all the explanation closure axioms that

=

30Other semantics are sometimes used for nondeterministic ac-
tions (e.g., (Levesque et al., 1997)). The following proof proceeds
similarly for those.

are stated in SC”. Since M = SC and is <-smaller than
M we get another frame axiom (for the exact state of SM)
that we can compile into an explanation closure axiom for
f. This axiom then implies that

Ya,s Holds(f,s) A —~Holds(f,res(a,s)) =
(—Holds(state_in_S;,s) V a # a;t1)-

Recall our observation about the way we can split an expla-
nation closure axiom into the two partitions in a seemless
way. By this observation we should have added the proper
explanation closure axioms to the copies of SC,SC> in
SC'". This would have prevented us from having M’ as a
model of SC’. Contradiction.

If f ¢ L(SC1), then M’ = fi = fiy1. This guarantees
that if M’ and M agree on the value of f in situation S;
then they also agree in situation 1 Sit1 (where M, M’ did
not agree). Let M be such that M < M and the first S;in
which M M disagree has the smallest index ¢ among all
models that are <-smaller than M. We show that, for this
i, M’ and M agree on the value of f in situation S;. This
will show by induction that there is no situation S; in which
M, M disagree (on the fluent-situation combinations that
count, namely, those mentioned in the previous section of
our proof).

Otherwise, M', M disagree on f in S; and thus M', M
agree on f in S;. Take j < ¢ such that j is the small-
est index for which M', M disagree on f in S; and
SCY,...,SC" are copies of the same partition of SC. Sim-
ilarly, take k£ > i such that & is the largest index for which
M', M disagree on f in Sy and SC, ..., SC* are copies
of the same partition of SC. If there is no such j, then
M £ M because M’ = fi <= fi+1 and similarly does
M (because we did not find such j) while M does have a
change between Holds(f,S;) and Holds(f, S;+1). Thus,
there are such j and k.

Define M to be identical to M but with the
Holds(f,Sl)M = fM forall I such that j < I < k.
M < M because in M there is no change in the value
of f throughout the situations Sj, ..., S, whereas there
is at least one such change for S; in M. Furthermore,
M = SC because it satisfies all the effect axioms for
all unchanged situations and fluents and there is no effect
axiom that constrain f in those situations (the actions we
take in S;, ..., Sy are in the other partition of SC, so f
does not show in their effect axioms (recall that in this part
of the proof SC includes only effects axioms)).

This means that we found a model of SC' that contradicts
our choice of M (we chose it to have the first index ¢
such that M M disagree on S;). Thus, if M is not
<-minimal then we can find a <-smaller model that

agrees with M’. This, together with an assumption of
well-foundedness of < (also called smoothness (Kraus
et al., 1990)), which is assumed by (Lin and Reiter,
1994), provides our result: For every model M' of SC'
there is a corresponding <-minimal model of SC. As a
result, if SC is the set of effect axioms (SC) together
with the explanation closure axioms, then for every
M' = SC' there is M | SC such that if M'
SCi.Holds(y,SC%res(SC*.a;, ..., SCt.res(SC'.ay,

SC1.50)...)), for¢p € L(SC?), then M |= Holds(¢, S;).

Adding Observations The overall process that leads
to the solution to the frame problem along the lines of
successor-state axioms first computes those successor state
axioms from effect axioms and state constraints (in the
form of ramification constraints) and only then includes ob-
servations.

As a result, the pure deductive approach that we are taking
here cannot treat state constraints. Any state constraints
that we add are treated as observations.

For the case of observations (no uncompiled state con-
straints), assume that we have our set of explanation closure
axioms already compiled into SC and SC'. Adding the
observations at the proper places is analogous to removing
models from each one of them (those that contradict the
observations). These observations do not need to be de-
terministic, but each sentence should be expressible in the
language of a single situation and a single partition from
SC. Then, we get the previous result about M’ having a
corresponding M immediately. ®

References

Amir, E. (2000). (De)Composition of situation calcu-
lus theories. In Proc. National Conference on Arti-
ficial Intelligence (AAAI 00), pages 456-463. AAAI
Press/MIT Press.

Amir, E. (2001). Efficient approximation for triangulation
of minimum treewidth. In Proc. Seventeenth Con-
ference on Uncertainty in Artificial Intelligence (UAI
’01), pages 7-15. Morgan Kaufmann.

Amir, E. (2002a). Projection, filtering and belief state
representation in nondeterministic dynamic systems.
Submitted for publication. Available on the author’s
website.

Amir, E. (2002b). Projection in decomposed situation cal-
culus (with proofs). Available on the author’s website.

Amir, E. and Maynard-Reid II, P. (1999). Logic-based
subsumption architecture. In Proc. Sixteenth Interna-

tional Joint Conference on Artificial Intelligence (13-
CAl ’99), pages 147-152.

Amir, E. and Mcllraith, S. (2000). Paritition-based logical
reasoning. In Principles of Knowledge Representation
and Reasoning: Proc. Seventh Int’l Conference (KR
’2000), pages 389-400. Morgan Kaufmann.

Baral, C., Kreinovich, V., and Trejo, R. (2000). Computa-
tional complexity of planning and approximate plan-
ning in the presence of incompleteness. Artificial In-
telligence, 122(1-2):241-267.

Boutilier, C., Reiter, R., and Price, B. (2001). Sym-
bolic dynamic programming for first-order MDPs. In
Proc. Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI ’01), pages 690-697.
Morgan Kaufmann.

Bylander, T. (1994).
propositional STRIPS planning.
gence, 69(1-2):165-204.

The computational complexity of
Artificial Intelli-

Darwiche, A. (1998). Model-based diagnosis using struc-
tured system descriptions. Journal of Artificial Intel-
ligence Research, 8:165-222.

Dechter, R. and Pearl, J. (1989). Tree clustering for con-
straint networks. Artificial Intelligence, 38:353-366.

Finzi, A., Pirri, F., and Reiter, R. (2000). Open world plan-
ning in the situation calculus. In Proc. National Con-
ference on Atrtificial Intelligence (AAAI ’00), pages
754-760. AAAI Press.

Frank, J., Johnsson, A. K., and Morris, P. (2000). On re-
forumlating planning as dynamic constraint satisfac-
tion. In Choueiry, B. and Walsh, T., editors, Abstrac-
tion, reformulation and approximation, Proceedings
of the 4th international symposium (SARA’2000), vol-
ume 1864 of LNAI, pages 271-280. Springer-Verlag.

Genesereth, M. R. and Nilsson, N. J. (1987). Logical Foun-
dations of Artificial Intelligence. Morgan Kaufmann
Publishers Inc.

Green, C. (1969). Theorem-proving by resolution as a ba-
sis for question-answering systems. In Meltzer, B.,
Michie, D., and Swann, M., editors, Machine Intelli-
gence 4, pages 183-205. Edinburgh University Press,
Edinburgh, Scotland.

Haas, A. R. (1987). The case for domain-specific frame
axioms. In proceedings of the 1987 workshop on the
frame problem, pages 343-348.

Kraus, S., Lehmann, D., and Magidor, M. (1990). Non-
monotonic Reasoning, Preferential Models and Cu-
mulative Logics. Artificial Intelligence, 44(1):167-
207.

Lansky, A. (1988). Localized event-based reasoning
for multiagent domains. Computational Intelligence
Journal, Special Issue on Planning, 4(4):319-340.

Lansky, A. L. and Getoor, L. C. (1995). Scope and ab-
straction: Two criteria for localized planning. In
Proc. Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI *95), pages 1612-1618,
Montreal, Canada.

Levesque, H., Reiter, R., Lesprance, Y., Lin, F., and Scherl,
R. (1997). Golog: A logic programming language for
dynamic domains. Journal of Logic Programming,
31:59-84.

Lin, F. (1996). Embracing causality in specifying the inde-
terminate effects of actions. Proceedings of the Thir-
teenth National Conference on Artificial Intelligence.

Lin, F. and Reiter, R. (1994). State constraints revisited.
Journal of Logic and Computation, Special Issue on
Actions and Processes.

Lin, F. and Reiter, R. (1995). How to progress a database
I1: The STRIPS connection. In Proc. Fourteenth In-
ternational Joint Conference on Artificial Intelligence
(1JCAI °95), pages 2001-2007, Montreal, Canada.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophi-
cal Problems from the Standpoint of Artificial Intelli-
gence. In Meltzer, B. and Michie, D., editors, Machine
Intelligence 4, pages 463-502. Edinburgh University
Press.

Mcllraith, S. (1997). Representing action and state con-
straints in model-based diagnosis. In Senator, T. and
Buchanan, B., editors, Proc. National Conference on
Artificial Intelligence (AAAI *97), pages 43-49, Menlo
Park, California. American Association for Artificial
Intelligence, AAAI Press.

Mcllraith, S. (2000). Integrating actions and state con-
straints: a closed-form solution to the ramification
problem (sometimes). Atrtificial Intelligence, 16(1-
2):87-121.

Mcllraith, S. and Amir, E. (2001). Theorem proving with
structured theories. In Proc. Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (13-
CAl ’01), pages 624-631. Morgan Kaufmann.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kauf-
mann.

Pednault, E. P. D. (1989). ADL: exploring the middle
ground between STRIPS and the situation calculus. In
Proc. First International Conference on Principles of

Knowledge Representation and Reasoning (KR ’89),
pages 324-332.

Pfeffer, A. (2001). Sufficiency, separability and tempo-
ral probabilistic models. In Proc. Seventeenth Con-
ference on Uncertainty in Artificial Intelligence (UAI
’01), pages 421-428. Morgan Kaufmann.

Pinto, J. (1999). Compiling ramification constraints into ef-
fect axioms. Computational Intelligence, 15(3):280-
307.

Pinto, J. A. (1994). Temporal Reasoning in the Situation
Calculus. Ph.d. dissertation, Department of Computer
Science, University of Toronto, Toronto. Also avail-
able as Technical Report Number KRR-TR-94-1.

Reiter, R. (1991). The frame problem in the situation cal-
culus: A simple solution (sometimes) and a complete-
ness result for goal regression. In Lifschitz, V., ed-
itor, Artificial Intelligence and Mathematical Theory
of Computation (Papers in Honor of John McCarthy),
pages 359-380. Academic Press.

Reiter, R. (1992). The projection problem in the situation
calculus. In Proceedings AIPS, pages 198-203.

Reiter, R. (2001). Knowledge In Action: Logical Foun-
dations for Describing and Implementing Dynamical
Systems. MIT Press.

Sandewall, E. (1989). Filter preferential entailment for the
logic of action in almost continuous worlds. In 1JCAI-
89.

Sandewall, E. (1994). Features and Fluents. Oxford Uni-
versity Press.

Santibaez, J. S. (1999). Declarative formalization of rea-
soning strategies: a case study on nonlinear plan-
ning. In Golumbic, M., Morgenstern, L., and
Shimoni, E., editors, Bar Ilan Symposium on the
Foundations of Artificial Intelligence. http://www-
formal.stanford.edu/jsierra/aaai-draft-98-s.ps.

Schubert, L. K. (1990). Monotonic solution of the frame
problem in the situation calculus. In Kryburg, H.,
Loui, R., and Carlson, G., editors, knowledge rep-
resentation and defeasible reasoning, pages 23-67.
Kluwer.

Shanahan, M. (1997). Solving the Frame Problem, a math-
ematical investigation of the common sense law of in-
ertia. MIT press, Cambridge, MA.

