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Abstract

In this paper we provide SAT-solving procedures
that use the idea of decomposition together with the
heuristic of solving the most constrained subprob-
lem first. We present two approaches. We provide
an algorithm to find the most constrained subprob-
lem of a propositional SAT problem in polynomial
time. We use this algorithm iteratively to decom-
pose a SAT problem into partitions. We also pro-
vide a polynomial-time algorithm that uses the idea
of minimum vertex separators iteratively to provide
different decompositions. We show how to solve
SAT problems, using these algorithms to empha-
size solving the most constrained subproblem first.

1 Introduction

Problem structure is used to speed up real-world problem
solving in constraint satisfaction problems (CSPs), Bayes
nets and propositional satisfiability problems (SAT) [9; 3; 20;
7; 1]. Typically, one transforms the given problem into a tree
of subproblems that is then processed to yield the solution.
To minimize the processing time, it is common to search for
trees that minimize the size of the largest subproblems (called
TREEWIDTH). The main difficulty with these algorithms is
that finding optimal decompositions is NP-hard, and it is un-
known whether constant-factor approximations can be found
in polynomial time [2; 4].

In this paper we provide SAT-solving procedures that use
the idea of decomposition together with the heuristic of solv-
ing the most constrained subproblem first. Most notable
among the contributions in this paper is a polynomial-time
algorithm for finding the most constrained subproblem of a
SAT problem. Here, high constrainedness of a SAT problem
corresponds to high clause-to-variable (c/v) ratio. We use this
algorithm iteratively to provide a decomposition of a given
SAT problem in polynomial time. We also present a second
decomposition algorithm that improves a greedy algorithm
of [1]. It views the SAT problem as a graph and decomposes
it by iteratively finding the minimum vertex-separators. We
provide algorithms for SAT that exploit these decompositions
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and the constrainedness of each of the subproblems. Our ap-
proach generalizes the simple SAT-search heuristic that in-
stantiates the most constrained variable first.

Our view on the constrainedness of SAT problems is sup-
ported by analyses that showed that, for many important
distributions of theories, the expected number of models
of a theory decreases as the c/v ratio increases (e.g., [19;
6]). Other works that use the c/v ratio and more sophis-
ticated parameters to predict satisfiability and guide SAT-
search algorithms include [16; 18]. Our view is also in
line with the work on constrainedness of search of [12;
23] and is consistent with [15] that shows that the difficulty
of showing unsatisfiability corresponds to the size of mini-
mal unsatisfiable sub-problems. Following this line, we wish
to find those subproblems that are most likely to have the least
number of models.

In section 2 we present an algorithm for decomposing a
propositional theory using minimum vertex-separators itera-
tively. We also present an algorithm that uses the resulting
tree of partitions to determine the satisfiability of the the-
ory, using the c/v ratio of partitions to determine the order
in which partitions are processed. Finally, we show how
to order variables for instantiation by a backtracking search
procedure. In Section 2.1, we present a procedure that finds
the most constrained subproblem of a SAT problem. This is
followed in Section 2.2 by an algorithm that iteratively finds
the next most constrained subproblem, ultimately generating
a decomposition of the theory into mutually exclusive parti-
tions. We use this decomposition to determine the satisfiabil-
ity of the theory in similar ways to the first decomposition. Fi-
nally, in Section 2.3 we present an algorithm that interleaves
searching for the most constrained subproblem with search-
ing for a solution to the SAT problem.

2 Partition-Based Satisfiability Checking

In this section we present the first of two approaches to
partition-based SAT. We describe an algorithm for decompos-
ing a theory into subtheories or partitions, and show how to
solve SAT by processing these partitions in an order that de-
pends on the c/v of each partition. We also use the partitions
and their c/v to order variables for a SAT-search procedure.



2.1 Decomposing and Ordering Partitions

Procedure Split-Thy, presented in Figure 1, uses procedure
Split2 to decompose a theory into a tree of partitions. It is
given a theory1, A, and limitations on the partition size (a
lower limit,M ) and the separators between partitions (an up-
per limit, l). Split2 initially considers the theory as one big
partition, and at every recursive iteration it breaks one of the
partitions in two. It represents the tree structure of the parti-
tions in a global variable,Gstr. This tree structure and the set
of partitions, {Ai}i≤p, is returned as the result of Split-Thy.
An example of the input and the output is shown in Figure 2.

PROCEDURE Split-Thy(A,M , l)
A is a theory. M limits the number of symbols in a partition from
below. l limits the number of symbols shared between partitions.

1. Let G(V,E) be an undirected graph with V = L(A) and
E = {(l1, l2) | ∃C ∈ A l1, l2 ∈ L(C)}.

2. Let Gstr(Vstr, Estr) be an undirected graph with Vstr =
{{V }} and Estr = ∅.

3. Run Split2(G,M , l, nil, nil).
4. For every v ∈ Vstr , letAv = {C ∈ A | L(C) ⊂ v}. Return
{Av}v∈Vstr and Gstr .

PROCEDURE Split2(G,M , l, a, b)
G = (V,E) is an undirected graph. M , l as above. a, b are in V
or are nil.

1. If |V | < M , then return V .
2. (a) If a, b=nil, find a minimum vertex separator, R, in G.

(b) Otherwise, if b=nil, find a minimum vertex separator,
R, of a inG. (c) Otherwise, find minimum vertex separators,
Ra of a in G, and Rb of b in G. Let R be the smaller of
Ra, Rb.

3. If R = V or |R| > l then return V .
4. Let G1, G2 be the two subgraphs of G separated by R, with
R included in both subgraphs.

5. Let Vstr ← Vstr \ {{V }} ∪ {{V1}, {V2}} and Estr ←
Estr ∪ {({V1}, {V2})}. Change the edges that connected to
{V } to connect to one of {V1}, {V2}.

6. CreateG′1, G′2 fromG1, G2, respectively, by aggregating the
vertices in R into a single vertex r, removing all self edges
and connecting r with edges to all the vertices connected by
edges to some vertices in R.

7. Run Split2(G′1,M, l, r, a), Split2(G′2,M, l, r, b). Replace
r in the nodes of Vstr by the members of R.

Figure 1: An algorithm for generating partitions of axioms.

If A is a propositional theory, let L(A) be the set of its
propositional symbols. Split-Thy creates a graph called the
symbols graph that represents the connections between the
symbols in L(A). Each symbol in L(A) is represented by
a node in this graph, and two nodes are connected iff their
respective symbols appear together in a clause in L(A). Fig-
ure 3 (top) illustrates the symbols graph of theory A from
Figure 2 and the connected symbols graphs (bottom) of the

1In this paper, a theory is a set of propositional clauses.

PSfrag replacements

(1) ¬ok pump ∨ ¬on pump
∨water

(2) ¬man fill ∨water
(3) ¬man fill ∨ ¬on pump
(4)man fill ∨ on pump

(5) ¬water∨¬ok boiler
∨¬on boiler∨steam

(6)water ∨ ¬steam
(7) ok boiler ∨ ¬steam
(8) on boiler ∨ ¬steam

(9) ¬steam∨¬coffee∨hot drink
(10) coffee ∨ teabag
(11) ¬steam∨¬teabag∨hot drink

A

A1

A2

A3

¬ok pump ∨ ¬on pump ∨water

¬man fill ∨water
¬man fill ∨ ¬on pump
man fill ∨ on pump
¬water ∨ ¬ok boiler

∨¬on boiler ∨ steam
water ∨ ¬steam
ok boiler ∨ ¬steam
on boiler ∨ ¬steam
¬steam ∨ ¬coffee ∨ hot drink

coffee ∨ teabag
¬steam ∨ ¬teabag ∨ hot drink

water

steam
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individual partitionsA1,A2,A3. Notice that each axiom cre-
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Figure 3: DecomposingA’s symbols graph.

Split2 partitions the theory A by taking as input its sym-
bols graph, G = (V,E), the two limiting parameters,M and
l, and nodes a, b ∈ V that are initially set to nil. Split2 up-
dates the global variable Gstr to represent the progressing
decomposition. In each recursive call, Split2 finds a mini-
mum vertex separator of a, b inG (i.e., a minimum-size set of
vertices that crosses every path between a, b). If one of a, b
or both are nil, it finds the overall minimum vertex separator
between all vertices and the non-nil vertex (or all other ver-
tices). This separator splits G into two graphs, G1, G2, and
the process continues recursively. An algorithm for finding
minimum vertex-separators is given in [10].

Theorem 2.1 Algorithm Split-Thy takes time O(n
5
2 ∗m), for

n propositions andm clauses.

A similar algorithm to Split-Thy is described in [1]. Split-
Thy improves on this algorithm by allowing decompositions
into trees of partitions that the algorithm of [1] could not gen-
erate. In addition, it is not clear how to generate the tree of
partitions from that algorithm, whereas in our algorithm the
tree is explicit in the output.



2.2 Ordered Partition-Based SAT

Given a partitioning of a theory, A, we run an ordered
partition-based SAT procedure that aggregates computation
on each of the partitions, and then uses the results of this com-
putation to decide the satisfiability ofA. The procedure is de-
tailed in Figure 4. It takes as input a theory,A, and returns as
output all its models, or FALSE if there are no models. The
procedure can be made to return a single model by changing
step 8 to leave only one entry in Ti1 at each iteration. This
will save space and time in case there are too many models
of A and only one is needed. Applications that require all
the models include verification, nonmonotonic reasoning and
knowledge compilation.

We describe the algorithm using database notation [22].
πp1,...,pkT is the projection operation on a relation T . It
produces a relation that includes all the rows of T , but only
the columns named p1, ..., pk (suppressing duplicate rows).
S

�
R is the natural join operation on the relations S and R.

It produces the cross product of S,R, selecting only those en-
tries that are equal between identically named fields (check-
ing S.A = R.A), and discarding those columns that are now
duplicated (e.g., R.A will be discarded).

PROCEDURE CV-Compile-Join(A)
A a propositional clausal theory.

1. Let {Av}v∈V and G(V, E) = Gstr be the results returned
by Split-Thy(A, 1, n).

2. ∀v ∈ V , L(v) =
⋃
(v,w)∈E(L(Av) ∩ L(Aw)).

3. Let cv(Av) = #clauses(Av)
#variables(Av)

for all v ∈ V . Let i1, ..., ip
be indexes such that cv(Aij ) ≥ cv(Aij+1 ).

4. For each j from 1 to p (with this order):
– For every truth assignment A to L(ij):
• If ∃(ia, ij) ∈ E (a < j ∧ A ∩ L(Aa) ∈ Tia ), then

perform SAT-search on Aij ∪ A. If it is successful,
insert A to the table Tij .

5. If Tij = ∅, for some j ≤ p, return FALSE.
6. Let dist(v,w) (v, w ∈ V ) be the length of the shortest path

between v, w in G. Let v ≺ w iff dist(v, i1) < dist(w, i1)
and (v, w) ∈ E.

7. Iterate over v ∈ V in reverse dist(v, i1)-order (highest to
lowest), excluding i1: Take w ∈ V that satisfies w ≺ v.
• Tw ← Tw � (πL(w)Tv) (Join Tw with those columns

of Tv that correspond to L(v)).
If Tw = ∅, return FALSE.

8. Iterate over v ∈ V in dist(v, i1)-order (lowest to highest),
excluding i1: Let Ti1 ← Ti1 � Tv .

9. Return Ti1 .

Figure 4: An algorithm for SAT of a propositional theory,
ordering the processing using the c/v ratio.

This procedure uses the c/v ratio of the symbols and
clauses in each partition to determine an order on the parti-
tions. It performs a compilation process for each of the parti-
tions, and then joins the results of the compilations, determin-

ing SAT. In this algorithm we use a subroutine for SAT-search
that can be any SAT procedure that answers TRUE/FALSE.
If this subroutine is complete, then our algorithm is complete.

This process is similar to the one exploited by [1]. How-
ever, CV-Compile-Join follows the order on the partitions
during the compilation process and avoids unnecessary SAT-
searches. This guarantees that harder sub-problems (that are
more likely to be unsatisfiable) are tackled first, pruning the
search/compilation space for the partitions that follow. CV-
Compile-Join also returns all the models of A (or a single
model, if desired), whereas the procedure described in [1]
only reports TRUE or FALSE.

Theorem 2.2 Procedure CV-Compile-Join is sound and
complete for SAT checking, if its SAT-search subroutine is
sounds and complete. If the largest partition generated in
step 1 of the procedure has k propositional symbols, then the
algorithm (up to step 8) has a worst-case time bound of

O(n
5
2 ∗m+ p · 2|L(i)| · fSAT (k − |L(i)|))

for A having n propositional symbols andm clauses, i is the
index of the largest partition and p is the number of partitions.

PROOF Soundness and completeness follows from
Theorem 3.1 in [1]. Computational complexity follows from
that of Corollary 3.3 in [1].

2.3 Order for Dynamic Backtracking

One way to apply our decomposition algorithm is to order
the variables for a backtracking SAT procedures (e.g., DPLL
[8], dependency-directed backtracking [21] dynamic back-
tracking [13]). Those variables participating in the most con-
strained partition should come first, then those appearing in
the most constrained partition of the remaining partitions and
so forth.

Figure 5 presents a simple algorithm that orders the vari-
ables for dynamic backtracking [13]. CV-Backtrack takes as
input a propositional clausal theory A. It finds a decomposi-
tion of A, sorts the partitions according to c/v ratios and sort
the variables in accordance to this partitioning. It uses this
order on variables to call a dynamic backtracking SAT-search
procedure. It returns a model of A or FALSE.

3 Finding the Most Constrained Subproblem
Section 2 proposed one approach to partitioning a theory and
performing partition-based SAT checking. In this section, we
present an alternate method of partitioning the theory by find-
ing the most constrained subproblem. In the section that fol-
lows we use this algorithm for SAT checking. As mentioned
above, we take increasing constrainedness of a SAT problem
to indicate an expectation of a decreasing number of mod-
els. Thus, we approximate the problem of finding the most
constrained subproblem using the problem of finding the sub-
problem with the highest c/v ratio.

Our Densest-Subproblem (D-S) algorithm is described in
Figure 6. It takes as input a theory (a set of clauses), and
returns as output a set of clauses that has the highest c/v



PROCEDURE CV-Backtrack(A)
A a propositional clausal theory.

1. Let {Av}v∈V and G(V, E) = Gstr be the results returned
by Split-Thy(A, 1, n).

2. Let cv(Av) = #clauses(Av)
#variables(Av)

for all v ∈ V . Let i1, ..., ip
be indexes such that cv(Aij ) ≥ cv(Aij+1 ).

3. For all q ∈ L(A), let P (q) be a partition Ai with maximal
cv(Ai) such that q ∈ L(Ai).

4. Sort L(A) into q1, ..., qn such that if a < b ≤ n, then
cv(P (qa)) ≥ cv(P (qb)).

5. Return the result of running dynamic-backtracking on A
with the order q1, ..., qn on the propositional symbols.

Figure 5: An algorithm for SAT of a propositional theory,
using decomposition, dynamic backtracking and c/v ordering.

PROCEDURE Densest-Subproblem({ci}i≤m)
{ci}i≤m clauses over n propositions enumerated 1, ..., n.

1. Define G = (V,E, c) to be a bipartite network as follows
(L(c) is the set of propositions showing in c):

(a) V1 ← {1, ..., n}, V2 ← {L(c1), ..., L(cm)}, V3 ←
{S, T} (source and sink nodes), V ← V1 ∪ V2 ∪ V3.

(b) E ← {(S, i) | i ∈ V1} ∪ {(h, T ) | h ∈ V2} ∪
{(i, h) | h ∈ V2, i ∈ h}.

(c) Let the capacities of the edges be c(S, i) ← λ,
c(i, h) ← ∞, c(h, T ) ← |{ci|L(ci) = h}|. All other
vertex pairs have capacity 0.

2. Let f(x) =
∑
h∈V2

c(h, T )
∏
i∈h xi and g(x) =

∑n

i=1 xi

3. 〈x∗, λ∗〉 ← Find-Max-Fraction(G, f, g, n).
4. Let V ∗ = {i | i ∈ V1, xi = 1}. Let C = {ci | i ≤
n, vars(ci) ⊆ V

∗}. C is the desired set of clauses.

Figure 6: An algorithm that finds the subproblem (subset of
clauses) that has the highest c/v ratio.

ratio among all subtheories of the input theory. This algo-
rithm transforms the optimization of the ratio of clauses-to-
variables to a zero-one fractional-programming problem. It
solves this problem using procedure Find-Max-Fraction (Fig-
ure 7) and translates the problem back to find the desired set
of clauses. In the description that follows we assume some
familiarity with the classic concepts of network flow. Those
notions that we do not define here can be found in basic algo-
rithms textbooks, such as [5].

A fractional-programming problem is a discrete or network
optimization problem with fractional objectives. For exam-
ple, we may have an optimization problem where we wish
to find a vector, x, that is a maximum point for f(x)/g(x).
A solution is a fixed-point x∗ of λ(x∗) = maxx{λ(x) =
f(x)/g(x)}. A zero-one fractional-programming problem is
further restricted to have

f(x) =
∑
P∈A aP

∏
i∈P xi +

∑n
i=1 aixi

g(x) =
∑
Q∈B bQ

∏
i∈Q xi +

∑n
i=1 bixi

(1)

for some sets A,B, coefficients ai, bi for i = 1, ..., n and
coefficients aP , bQ for P ∈ A,Q ∈ B, respectively.

To find a solution to such a problem we specialize and
slightly modify the algorithm proposed by [11]. The origi-
nal algorithm may yield an empty set of clauses, which we
wish to avoid. The algorithm uses the push-relabel max-flow
algorithm of Goldberg and Tarjan (see [5]), the parametric
max-flow algorithm of [11], the fractional programming al-
gorithm of [14] and the translation of [17] of the selection
problem into a flow problem. Together, they provide a gen-
eral solution to zero-one fractional programming, as shown
in [11].

Our combined algorithm is shown in Figure 7. Find-Max-
Fraction takes as input a bipartite network (see an example
in Figure 8), functions f and g and an integer n > 0. It
returns as output a fixed point 〈x∗, λ∗〉, where x∗ is the max-
imum vector and λ∗ = f(x∗)/g(x∗). We do not repeat the
push-relabel (Preflow in [11]) algorithm here and the reader
is referred to [5].

PROCEDURE Find-Max-Fraction(G, f , g, n)
G = (V,E, c) a bipartite network. f and g functions. n > 0.

1. Set x0 = 〈1, ..., 1〉. Compute λ0 = f(x0)/g(x0). Set k = 0
and N = |V |. Set the preflow −→f (S, v) = c(S, v) for all
v connected to S and −→f (v, w) = 0 everywhere else. Set
d(S) = N and d(v) = 0 for all v 6= S (for push-relabel).

2. Define GR as G with all arcs reversed and source and sink
switched.a Define←−f as the opposite flow to −→f .

3. Set λ in GR to λk.
4. ←−f ← push-relabel(GR) (reuse the previous←−f and d).

5. Compute a minimum cut (X, X̄) from −→f with T ∈ X:
Γ← {v | (v, T ) ∈ E, no residual path from S to v}.
X ← {x | (S, x) ∈ E, ∃v ∈ Γ (x, v) ∈ E} ∪ Γ ∪ {T}.

6. ∀i ≤ n: if i ∈ X , set xk+1i = 1; otherwise xk+1i = 0.
7. If f(xk+1) = λk ∗ g(xk+1), return 〈xk, λk〉.
8. Let λk+1 = f(xk+1)/g(xk+1). Set k← k + 1 and go to 3.

aThis allows push-relabel to reuse previously computed flows.

Figure 7: Find x∗ with λ(x∗) = maxx{λ(x) = f(x)
g(x)}.

Find-Max-Fraction iteratively refines λ and x until a fixed
point is achieved. At each loop iteration, the maximum flow
−→
f is computed forG using the push-relabel algorithm. Then,

we check to see if we got a fixed-point. If we did not, we
increase λ according to the newly found flow, and repeat the
loop. The algorithm is guaranteed to terminate after no more
thanN = |V | repetitions of the loop.

D-S translates our original problem to a zero-one
fractional-programming problem by letting f(x) correspond
to the number of clauses and g(x) correspond to the num-
ber of variables. In equation (1) we let xi = 1 indicate that
proposition i is in our set of variables, and xi = 0 indicate
it is not in our set. We take B = ∅ and ∀i.bi = 1, ai = 0.
Finally, A is a set that includes sets of variables. Each set in
A corresponds is the set of variables of a clause. For each P
in A, aP is set to the number of clauses that use exactly the
propositions of P . f(x) is then the number of clauses who’s



variables are from our set, and g(x) is the number of variables
in our set. Notice that possibly L(ci) = L(cj). In that case,
ci and cj will have a single vertex, since V2 is a set.

The bipartite network represents this maximization prob-
lem by having one vertex for each set P ∈ A , one vertex
for each propositional symbol i ∈ {1, ..., n}, and two addi-
tional vertices, a source, S, and a sink, T (see Figure 8). The
network has an arc (v, T ) of capacity aP for each vertex v
corresponding to a set P ∈ A, an arc (S, i) of capacity λ for
every i ∈ {1, ..., n}, and an arc (i, v) of infinite capacity for
every vertex corresponding to a set P ∈ A that has i as one
of its elements.

f=2

f=7

f=6

f=7

f=
6

f=
1

f=4
f=1

f=0
f=2f=2

f=0

f=0

f=0
f=0

f=0

f=0

f=0

f=5

f=5

f=2

f=1

f=5

f=2

f=4

f=5

f=5

f=
5

f=5

f=
5

5

4

3 1, 3, 4

2 1, 2, 4

1 1, 2, 3

4, 5, 6

3, 5, 6

2, 3, 5

6

7

7

6

1

5

5

5

6

S T2

5

5

5

PSfrag replacements

∞

∞

X

Figure 8: Maximum flow on a bipartite networkG and the cut
(X, X̄) for λ = 5 (every edge has capacity and flow (’f=...’)).

An example of the final loop iteration for a network G
with λ = 5 is shown in Figure 8. The flow −→f (in the fig-
ure, ’f’) produces xk = 〈1, 1, 1, 1, 0, 0〉. This xk produces
λk = f(xk)/g(xk) = 5, so it is the fixed point. Thus, in this
example, the highest c/v (which is λk = 5) is achieved by
taking the propositional symbols corresponding to 1, 2, 3, 4
and the clauses that include only symbols from this set.
Proposition 3.1 Procedure Densest-Subproblem returns a
subset of the variables (and the clauses represented in the
vocabulary of those variables) that has the highest c/v ratio.
The running time of procedure D-S is O(k ∗m2 ∗ log(m)), if
each clause is of length≤ k.

PROOF According to [11], the time for the solution of
the zero-one fractional programming using their parameter-
ized preflow algorithm is O(n′m′log(n′2/m)) where n′ =
n+ |A|+2 andm′ = n+ |A|+

∑
P∈A |P | (becauseB = ∅).

Since |A| = O(m) (it is at most the set of clauses) and∑
P∈A |P | = k ∗ |A| (for k-SAT), n′ = O(n + m) and

m′ = O(k ∗m+m+ n). We assume thatm ≥ n. Thus, we
get O(k ∗m2 ∗ log(m)).

Since the rest of the algorithm takes time that is linear inm,
this is the time complexity of the combined algorithm.

As is, the algorithm outputs the largest sub-problem with
this c/v ratio. It can be changed to output a minimal sub-
problem with this c/v ratio or a maximal/minimal one that
includes a specified set of clauses or propositional symbols.

To find a sub-problem with highest c/v that includes a clause
C and is minimal in size, change step 5 in procedure Find-
Max-Fraction to set
Γ← {v | (v, T ) ∈ E, exists a residual path from v to T},

and increase the capacity of (v, T ) by 1 for the node v corre-
sponding to the clause C. To find a sub-problem with highest
c/v that is of minimal size, find the minimal X , iterating the
last procedure over all nodes v that appear in the original Γ
(before our modification above). For lack of space we do not
bring more details of these modifications here.

4 Applying D-S to Satisfiability
In this section we use the D-S procedure to create partitions
and ordering of variables. D-S-var-order (Figure 9) makes
iterative use of procedure D-S. It uses procedure D-S to or-
der the variables for a backtracking search through the SAT
search space. Those variables participating in the most con-
strained subproblem come first, then those appearing in the
most constrained subproblem of the remaining axioms and so
forth. After decomposition, we use CV-Compile-Join (Figure
4) or CV-Backtrack (Figure 5) to reason with these partitions
or variable ordering (as in step 4 in Figure 9).

PROCEDURE D-S-Var-Order({ci}i≤m)
{ci}i≤m clauses over n propositions enumerated 1, ..., n.

1. Let V = {1, ..., n}, C = {ci}i≤m , i = 1.
2. While V 6= ∅,

(a) Run D-S(C), returning Ci and Vi.
(b) Set C ← C \ Ci; V ← V \ Vi; i← i + 1.

3. Order the variables in {1, ..., n} such that if x ∈ Vi and
y ∈ Vj and i < j then x ≺ y.

4. Use the order ≺ in a dynamic-backtracking search of SAT
on A = {c1, ..., cm}.

Figure 9: Order variables according to most constrained sub-
problems, and perform SAT search using this order.

Using D-S-Var-Order can be considered a static decompo-
sition approach to solving SAT problems. After a subprob-
lem is extracted, the rest of the clauses are considered as a
fresh new problem. However, the most constrained subprob-
lem found in the second and subsequent iterations of proce-
dure D-S-Var-Order can depend on the way we use the first
subproblem. In backtracking SAT procedures the variables
are set one by one to some truth values (interleaving such
setting choices with search-pruning procedures such as unit
resolution and tautology elimination), backtracking (to some
point) when there is no way to reach a satisfying truth assign-
ment. If we set the variables in the first subproblem V1 before
any other variables, the second iteration of finding the current
most constrained subproblem can use this setting.

Procedure Dynamic-DS-SAT, shown in Figure 10 presents
a dynamic ordering approach. It first selects V1, the first set
of variables, allows the SAT-search to instantiate the variables
of V1, eliminates those clauses that are satisfied by the instan-
tiation, and eliminates the variables of V1 from the rest of the



clauses. C[A] denotes the set of clauses C after removing
clauses that are satisfied by the truth assignment A and re-
moving symbols that appear with opposite polarity to the one
sanctioned by A from the rest of the clauses. Dynamic-DS-
SAT is then applied to search for the current most constrained
subproblem V2 in the updated set of clauses.

PROCEDURE Dynamic-DS-SAT({ci}i≤m)
{ci}i≤m clauses over n propositions enumerated 1, ..., n.

1. Let V = {1, ..., n}, C = {ci}i≤m , i = 1, A = ∅.
2. Perform indefinitely:

(a) Run D-S(C), returning Ci and Vi.
(b) Run backjumping search of SAT on C[A], instantiating

only Vi.
(c) If the search did not conclude successfully,
• If i = 1, return FALSE (not satisfiable).
• Otherwise, backjumping needs to change a variable

that is in Vj (j < i). Set V ← V ∪ Vj ∪ ... ∪ Vi−1,
and remove the truth assignments for Vj ∪ ...∪Vi−1
from A. Set i← j. Go to step 2b.

(d) If the search concluded successfully (no backtracking),
• If V = ∅, return TRUE (satisfiable).
• Otherwise, add the the truth assignment found to A,

let V = V \ Vi, let i← i+ 1 and go to step 2a.

Figure 10: An algorithm for SAT of a propositional theory,
using backjumping and dynamic c/v ordering.

To use procedure Dynamic-DS-SAT, we amend procedure
D-S to allow our notion of constrainedness to depend on the
length of each clause. We use the observation that a clause of
length k has an expectation for 2k−1

2k
satisfying models. This

allows us to approximate the constraining of such a clause to
be 2k

2k−1 . E.g., for k = 1 we get constraining of 2, and for
k = 2, we get 43 . Change step 2 in procedure D-S (Figure 6)
to reflect this weighing of clauses by replacing it with

2. For each i ≤ m, let w(ci) be 2ki

2ki−1
, for ki being the

number of propositions in ci. Let

f(x) =
∑
h∈V2

w(ci)c(h, T )
∏
i∈h xi

g(x) =
∑n
i=1 xi

The dynamic ordering approach has the benefit that we get
a better estimate of the most constrained subproblem at each
stage. However, it comes in price of adding the time of run-
ning D-S multiple times throughout the search.

5 Summary and Discussion
We presented algorithms that use the c/v ratio to guide SAT
solvers in choosing and ordering subproblems, with the ob-
jective of solving the most constrained subproblem first. The
rationale behind our approach is to use the observation that
real-world theories are not uniformly distributed and are of-
ten comprised of loosely coupled subtheories of varying con-
strainedness. We were also motivated by the need to gen-
eralize the simple search heuristic that instantiates the most

constrained variable first. The satisfiability ofA is correlated
to its most constrained subproblem. As such, to determine
that a theory is unsatisfiable, our approach is to focus compu-
tational effort on the most constrained subproblem.

To this end, we provided a fast algorithm for decomposing
SAT problems into subproblems that are loosely connected,
ordering the subproblems according to c/v ratio, and then
solving the original SAT problem using this order. Our SAT
procedure returns all the models, if needed. We also pro-
vided an algorithm that finds the subproblem with highest c/v
ratio in a low polynomial time. We used it iteratively to de-
compose given SAT problems, then performed SAT on the
separate subproblems. We also proposed using the decompo-
sitions to provide variable orders for backtracking algorithms.

Our algorithms are suitable for structured real-world prob-
lems, such as the commonsense theories found in the DARPA
High Performance Knowledge Base (HPKB) program. Our
results show that proper decomposition of such problems
can produce a very fast solution, even if the problems are
large. This work also generalizes and justifies heuristic ap-
proaches to SAT search that choose and instantiate the most
constrained variable first, in an iterative fashion.
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