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Chapter 1

Introduction

In this introduction we give a brief historical account of the subjects and prob-
lems we shall be considering in the following chapters, as well as a summary of
the main results.

1.1 Descriptive Set Theory

Descriptive Set Theory was developed by Lusin and others which continue
Borel‘s and Lebesgue‘s work on real functions.

Borel sets were first introduced by Borel in 1905, which also proved that
1.1.3 below holds. A mistake that found Souslin in Borels work, lead to the
construction of an Analytic nonborel set and the construction of the Souslin-
operation .4 in 1917. The Projective sets were introduced by Lusin and sierpinski
in 1925.

We will work in ZFC (Zermelo-Fraenkel Set Theory with the axiom of
choice). Our basic references are [Je] and [Ku].

a, 3,7 etc. denote ordinals (and sometimes cardinals). w is the set of all
finite, or natural numbers, which we denote by ¢,j, k,I,m,n. w® is the Baire
Space, i.e., the set of all infinite sequences of natural numbers with the product
topology. 2¥ is the Cantor Space i.e., the set of all infinite sequences of
zeroes and ones with the product topology. R is the real line with the topology
generated by the open intervals with rational endpoints.

Real numbers are elements of R | although by our previouse remarks, elements
of 2* and w will also be called real numbers or, for short, real. Usually f, g denote
elements of w®, or 2¢.

The Spaces mentioned above are all polish spaces. i.e., separable complete
metric spaces. If X is a polish space, then A C X is a Borel Set if it belongs
to the smallest o-algebra of subsets of X containing all open sets. The following
is a more explicit definition of Borel Sets:
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Definition 1.1.1 For each countable ordinal o, we define the collection 2 and
1% of subsets of X :

X9 = the collection of all open sets.

Y = the collection of all closed sets.

Xy = the collection of sets A = UpLyA,(Vn € w3 < a(A, €13)).
% = the collection of all complements of sets in X0

Fact 1.1.2 A is a Borel set if A in some X% (or some 112).

Lemma 1.1.3 Va > 03(U C (w¥)* A (U € %) AVA € B9 (w¥)Ta € w¥ (A =
Ua)). U is called a Universal Set.

The projective sets are defined as follows:

Definition 1.1.4 For each n > 1, we define the collection L 1L Al of subsets
of a polish space X as follows:

I} = the collection of all closed sets.

YL = the collection of all projections of all I, _-sets in X x w*.
Il = the collection of all complements of sets in X1.

Al = s

1

L TIL are called Projective. A

The sets belonging to one of the collections X
set is Analytic if it belongs to X1.

Lemma 1.1.5 (cf [Je] Ch.7) Let n > 0. Then
(AU C (W)U € ), AVA € X} (w¥)Ta € w¥ (A = U,)).
U s called a Universal Set.

We have several goals in our research in descriptive set theory. Two of them
are:

1. To find a statement about the reals that explains completely the theory
of the reals in Solovay models.

2. To find a combinatorial statement equivalent to “Projective measurabil-
ity” (as well as the Baire Property).

Next we will describe our efforts in these directions.

1.1.1 Notion for forcing

A forcing notion P = (P, <p) is a set P together with a binary relation <p on P
which is reflexive and transitive. We do not explicitly require that PP has a least
element, although this is almost always the case. p,q denote elements of P, or
conditions. |Fp denotes the forcing relation of P. p <p q means “q is stronger
that p”, or “q extends p”. o, 7 denote P-names. Standard names are denoted

by n,a,P. If G is a P-generic filter over some model V, then 7[G] denote the
evaluations of 7 by G in V[G].
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1.2 Ideals & Souslin Forcing

We are interested in representing a forcing notion as a quotient Boolean algebra
Borel/Z for some ccc Borel o-ideal Z. This is interesting because of several
reasons. The first (and the main one) is that if we assume (or prove) some
additional properties of the ideal Z then we can use the well-developed machinery
of Z-reals (cf [Ku2]). The second reason is that we have a nice description of
reals, Borel sets etc in extensions via such algebras.

In the second Chapter we will introduce the reader to the basic definitions
and facts about souslin forcing and forcing at large. We will also introduce
the concept of a model being absolute under certain forcing extensions, and
Souslin Absoluteness. We will give some examples, such as Random, Cohen
and Amoeba forcing notions which will be very usefull in the rest of our work.

In the third Chapter we will make a survey of the main results in a late work
by H. Judah and A. Roslanowski (cf [JuRo]) concerning that problem. By the
end of this chapter we will also prove that the main theorems known to be true
for Random and Cohen forcings will also be true for a generalized case.

In the rest of our work we will emphasize the generalization available for
each of the theorems we will prove. This will be our main job in the Fourth
chapter (the exapmles), and will also be shown in the 5th and 6th chapters.

1.3 Regularity Properties

Among the various regularity properties of sets of reals considered in the liter-
ature, the Lebesgue measurability and the Baire property have been the most
thoroughly studied. They have been the object of continued mathematical in-
terest for almost a hundred years. We will concentrate in these properties con-
cerning projective sets.

We will use the following notions: we shall write X1 (L)(IT} (L), AL (L)) if ev-
ery XL (T}, Al) set of reals is Lebesgue measurable, and . (B)(I1} (B), AL (B))
if every X1 (TTL  Al) set of reals has the property of Baire.

1.3.1 Examples

We want to have an intuition on the connections that can be established between
Souslin absoluteness, Uniformization, and regularity properties for projective
sets. We will do so by giving some examples, and investigate these examples
through the above criterions. We will be moved by the need to generalize
theorems which were proved for measure and category, to other ideals.

The first example will be the well known model of solovay. We will show
that in the model of Solovay - Projective Regularity concerning souslin forcing
notions of the form Borel/Z (where Z is souslin), holds. The second will be the
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Constructible universe .. We will show that in 1., we have (for these forcing
notions) a set of complexity Al which is not regular concerning Z.

1.3.2 Uniformization

In Chapter 5 we introduce the concept of a model having a uniformization
property concerning an ideal Z. We already know (by a work of Woodin in
[Wol]) that Random-Uniformization implies Random-Absoluteness and Cohen-
Uniformization implies Cohen-Absoluteness. We will generalize this fact to
forcing notions of the form Borel/Z having some properties, and prove that
P-Uniformization holds if and only if P-Absoluteness and Z-regularity holds (i.e
- the reverse direction to Woodin).

1.3.3 Regularity

It follows from Shoenfield‘s Absoluteness theorem that every model of ZF4+DC
is Y1-absolute under all forcing extensions. However, we can get more for special
Souslin forcing notions.

Theorem 1.3.1 ([Ju2]) 1. Al-measurability iff ¥3 (Random)-Absolute.
2. Al-categoricity iff £ (Cohen)-Absolute.
3. Yl-measurability iff ¥ (Amoeba)-Absolute.
4. Si-categoricity iff ©i (Hechler)-Absolute.

Theorem 1.3.2 ([Ju2]) 1. Xl(Random)-Absolute + X1 (Amoeba)-Absolute
— Al-measurability

2. ¥} (Cohen)-Absolute + S} (Hechler)-Absolute — A}-categoricity
Shelah proved the following :

Theorem 1.3.3 (cf [Ju2] p.8) Zi(L) = (Vr e R)(w%[r] < wi).
Recently J. Brendle, using the ideas of [Ju2], proved the following

Theorem 1.3.4 (cf [Ju2] p.14) X} (Amoeba)-Absolute = Y.i-measurability
holds.

Corollary 1.3.5 (cf [Ju2] p.14) X} (Amoeba)-Absolute = X.1-categoricity.

In our last chapter - we will establish a connection between Souslin absolute-
ness and Projective measurability /categoricity. We will show (using the results
about uniformization) that Souslin absoluteness implies A}(L) and AL(B). We
will also establish the general case.



Chapter 2

Souslin Forcing

In the following chapter we will introduce the reader to the common definitions
and facts we will use in the rest of our work. We will, though, assume that
the reader is well known with the methods of Forcing, and Descriptive Set
Theory. Furthermore, notice that some of the references are to the original
papers. In some cases these references are not clear to understand, and in
others the notation used today is not the notation used in the original article
(This turns mostly towards [MS] in which most of our well known partial orders
Random, Cohen etc. and MA (Martin‘s Axiom) are not referred by their modern
names, and even not properly defined). We will use in some cases a modern
resource for the reader‘s comfort.

Notation: For general set theory, we refer the reader to [Je] and [Ku].
We will use P and @ as partial orders (we confuse to a certain extent Boolean-
valued models V¥ and generic extension V[G], where G is P-generic over V).
For a formula ¢ of the forcing language for some p.o. P, [¢] denotes the truth
value of ¢ (in p.o. P); furthermore, we sometimes use 7, ™, etc., to denote the
canonical P-names for the natural numbers n, m. For a function ¢ : A — B we
use 7" as the relative function from P(A) to P(B), where i(X) = {i(z) : z € X}
for X C A. At the end of the chapter we will give some more notations, which
will only then be valid.

2.1 Forcing

The two fundamental theorems of the method of forcing, the forcing theorem and
the generic model theorem, are due to Cohen (To be accurate, Cohen‘s original
method was formulated for particular examples of a notion of forcing, and under
the assumption that M is a countable transitive model of ZFC). The boolean-
valued version of Cohen‘s method has been formulated by Scott, Solovay, and
Vopénka. Following an observation of Solovay that the forcing relation can be
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viewed as assigning Boolean values to formulas, Scott formulated his version of
Boolean-valued models in [Sc]. Vopénka developed a theory of Choen‘s method
of forcing, using open sets in a topological space as forcing conditions (in [Vol],
[Vo2], [Vo3], and [VuHa]), eventually arriving at the Boolean-valued version of
forcing more or less identical to Scott-Solovay‘s version ([Vo4]).

Definition 2.1.1 (cf [Ku] Ch.7 §7 p.218) Let (Q, <q, 004) and (P, <p, c0p)
be p.o‘s, and i : Q) — P. i is a complete embedding iff

1.Yq,¢' € Q(¢' < g = i(¢') < ilg))-
2.¥q,¢' € Q(¢'Lg & i(q) Li(g)).
3. ¥p e PIge Q¢ € Q(¢' > q = i(¢') Ap).
In (3) we call ¢ a reduction of p to Q.
Definition 2.1.2 (cf [Je2] p.3) A set D is predense if
(Vp € P)(3d€ D)(3g €P)(¢>d A q>p).

Corollary 2.1.3 In the last definition, i (Q) is predense in . ®

Definition 2.1.4 (cf [Ku] Ch.7 §7 p.218)
<Q7§@1 Ooq> CC <]P)1§ﬂ)1 Oop>1 or Q CC ]P)a or Q <C ]P) or Q < ]P) Zﬁ S@: (SP
NQ x Q), and the inclusion (identity) map from Q to P is a complete embedding.

Fact 2.1.5 (cf [Ba] p.5-6) In the definition of complete embedding above, as-
sume that 1 1s 1:1. Then one may replace the second and third requirements of
the definition with the requirement that i preserves mazimal antichains. (i.e.,
for every mazimal antichain A of (Q, <q), the corresponding set {i(z) : x € A}
is a mazimal antichain of YQ, <qg ().

Theorem 2.1.6 (cf [Ku] Ch.7 §7 p.220) Suppose i,P,Q are in M, i : P —
Q, and i is a complete embedding. Let H be Q-generic over M. Then i=*(H)
is P-generic over M and M[i=*(H)] C M[H].

Definition 2.1.7 (cf [Ku] Ch.7 §7 p.221) Let P, Q be partial orders and i :
P — Q. i is a dense embedding iff

1L¥p,p eP(p' <p=i(p)) <ip).
2. ¥p,p' € P(p'Lp = i(p’) Li(p)).
3. i"P is dense in Q.

Corollary 2.1.8 FEvery dense embedding ts a complete embedding.
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Proor If g € Q, and p € P with i(p) > ¢ is a reduction of ¢ to P. [ ]

Theorem 2.1.9 (cf [Ku] Ch.7 §7 p.221) Suppose i,P,Q are in M, i : P —
Q, and 1 1s a dense embedding. If G C P, let

J(G)={q€Q:IpeCGi(p) >q)}.

Then
1. If G is P-generic over M, then j(G) is Q-generic over M and G =
i1 (§(G)).
2. If H is Q-generic over M, then i~1(H) is P-generic over M and H =
JiHG)).
3. In1or2, if G=i"1(H) (or equivalently, if H = j(G)), then

MIG] = M[H].

Definition 2.1.10 We say that o is a P-name for a P-real over a model V,
if G is a P-generic filter over V and a 1s the intersection of G, and o s the
P-name of a. a 1s called a P-real. We will denote the set of all P-reals over M

by Pr(M).

Definition 2.1.11 We say that T is the canonical P-name for a P-real over
V, if T is a P-name such that for each a a P-real over V, V]a] = 7[a] = a.

Corollary 2.1.12 (cf [Ku] Ch.7 §2) . For each such P, there is a canonical
P-name for a P-real.

Definition 2.1.13 (cf [JS] §0) Let P be a forcing notion. We say that T € VE
ts a simple P-name for a real iff

1. the elements of T are of the form (p,n,m) where p € P and n,m are the
canonical P-names for the natural numbers n,m. (this means p |k 7(n) =
m)

2. for every n € w, the set {p € P : Im € w((p,n,m) € 7)} is a mazrimal
antichain of P.

Fact 2.1.14 For every p.o. P, and for every P-name 7 for a real (i.e., IFp “r
is a real”), there is a simple P-name for a real o such that Ikp “r = o ”.

Proor Fix P, 7, and suppose |Fp“r is a real”. For every n € w, let A,
be a maximal antichain of P such that for every p € A,, p F“r(n) = m”, for
some m € w. A, exists since |Fp“7 1s real” and, therefore, for every condition
p € P there is ¢ > p and m € w such that ¢ [F“7(n) = m”. Now, let ¢ be the
simple name defined by (p, 7, m) € ¢ iff p € A,, and p IFp“r(n) = m”. [ ]
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Lemma 2.1.15 (cf [Ku] Ch.7 §6 or [Ba] p.6)) Let P and Q be partial or-
ders such that P < Q, and let T be a simple P-name for a real. Then, (we
wdentify the standard P-names for natural numbers with the corresponding stan-

dard Q-names) T is a Q-name for a real. Moreover, if G C Q is a generic filter,
then PN G is a generic filter for P, and 7[PN G| = 7[G]

Definition 2.1.16 (cf [Ba] p.19) A partial order P is o-centered iff there
exists h : P — w such that

Vn € wVYF € [P]<“(Vp € F(h(p) = n) = g € PV¥pE F(q > p)).

We call the partition induced by h on P a o-centering partition of P.

2.2 Souslin Forcing

Souslin forcing, i.e., forcing notions in which the set of conditions, the order-
ing, and the incompatibility relation, are x-Souslin sets of reals in the sense of
Descriptive Set Theory, was first studied by H.Judah and S.Shelah in [JS]. In
their paper, they show that Souslin forcing notions admit a systematic treat-
ment, and specially so for Ng-Souslin, i.e., the set of conditions is a Xi-set of
reals, and the ordering and incompatibility relations are ¥1. In this work we
shall be interested only in Rg-Souslin forcing notions which satisfy the countable
antichain condition (ccc). Henceforth, for simplicity of notations, “Souslin” will
mean Ng-Souslin.

We will begin by giving some definitions and basic facts about Souslin forcing
which we will use later in the rest of our work.

Definition 2.2.1 (cf [BJ], [Ju] §2) Let V be a universe of set theory. Given
a forcing notion P € V, we say that V is Xl (P)-absolute iff for every X! -
sentence ¢ with parameters in V we have

VEeiff ViE .

We are interested in this notion only in case of ccc forcing notions having an
easy definition.

Definition 2.2.2 (cf [JS] §0) We say that a forcing notion I’ has a Souslin-
definition iff there are Xi-relations Ry C w®, and Ry, Ry C w¥ x w¥, such
that
P =Rg
<r ={(pa);ipePAgeEPAP<q} =Ry
le ={(p,a);pePAgePAVr(r£pVr£q)} =R,
We say that P is Souslin iff P is ccc and has a Souslin definition.

Corollary 2.2.3 Let P be Souslin, then Lp is in fact Borel for any Souslin
forcing.
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Proor zlpyiff 3z(z <p zAy <p z). Hence, both Ap and its complement
Lp are X1 subsets of w¥ x w*, thus they are both Borel by the Souslin theorem
(cf [Je], Theorem 93, Ch.39 p.502).

Fact 2.2.4 Let P be a Souslin p.o and let M be a transitive model of ZF which
contains the parameters of the ¥} formulas that define P. Then, P is absolute
for M, ice., PM=PNM,<p'=<p M and Lp' = Lpn M.

ProoOF Follows obviously from the absoluteness of ¥1-formulas for such

models of ZF (cf [Je], Ch.40 p.509). W

Lemma 2.2.5 IfP is a Souslin ccc p.o., then every antichain of P can be coded
by a real, and the predicate, “r codes a marimal antichain of P” is II}.

Proor Since [P is ccc, every antichain A is a countable set of reals. So,
we can write A as a sequence (p, : n < w). But any such a sequence of reals
can be recursively coded by a real. e.g., let J : w X w — w be standard, 1:1 and
onto, pairing function given by J(n,m) = 2"(2m + 1) — 1. Now, take a € w®
which satisfies a(J(n,m)) = p,(m). This is the desired code.

Now, for the other part, “x codes a maximal antichain of P” iff

1. antichain: Vn, m({(3, j) : z(J(n,)) = j} Le{{7,7) : (T (n,?)) = j}).
2. maximal: =3y € w¥Vn(yLp{(i, j) : z(J(n,)) = j}).

Since P is Souslin, Lp is Borel (see 2.2.3). So 1 is A}, and 2is1I]. ®

Definition 2.2.6 (cf [BJ]) We say that V is Souslin-absolute if and only if
V is XL (P)-absolute for all n € w and all Souslin forcing notions IP.

In [Ju2] §1 Haim Judah showed that Souslin-absoluteness is preserved by
Souslin forcing; i.e., if V' is Souslin-absolute and P is a Souslin forcing notion,
then VT is Souslin-absolute as well. One of the main technical devices for that
proof (and many other) is the following result of [JS].

Theorem 2.2.7 ([JS], 3.14) Let P be a forcing notion having a Souslin defi-
nition. Then P is ccc iff for every transitive model M containing P, M = “P is
cec” iff for some transitive model M containing P, M = “P is ccc”.

Corollary 2.2.8 Let P be a Souslin forcing notion. Then, the following are
equivalent:

1. P s cce.

2. For every transitive model M of ZF (including WF) withP € M, M = ‘P

15 cec”.
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3. There exists a transitive model of ZF (including WF) with P € M such
that M |= P is ccc”.

Proor Tt is clear that 2 implies 3 (assuming consistency of ZF of course).
1 implies 2, and 3 implies 1, follow immediately from the theorem. [ |

In [BJ] it was proved that if we collapse an inaccessible cardinal to wq, and
we build the Solovay Model, then this model satisfies “Souslin Absoluteness”.
Thus the following result was obtained.

Theorem 2.2.9 ([BJ]) The following theories are equiconsistent:
1. ZFC + there is an inaccessible cardinal
2. ZFC + Souslin-Absolute
3. ZFC + Yi-measurability

Lemma 2.2.10 For a forcing P having a Souslin definition, the statement “P
is ccc” is a Al-statement.

ProoF By theorem 2.2.8, “IP is ccc” iff
VM  ((M is a countable transitive model of ZFC* A P € M)
- ME “Piscec”) iff
M (M is a countable transitive model of ZFC* A P e M
AME “Pis cec”).
The first formula is IT3, while the second one is 1. ]

Lemma 2.2.11 The statement ‘b encodes a Souslin forcing” is a I1i-statement.

ProoF Let o(z,y,z) be a universal L}-formula, then for every Xi-
formula ¥(z,y) there is an a € w* such that

ez, y,a) & ¥(z,y).
Furthermore, given b € w®, set
bi(n) :==b(3n+1)(7 € {0,1,2}).
Given b € w®, we define the triple (Py, <p,, Lp,) = (Ro, R1, R2) as follows:
1. Ry =Pp= {z: Jy(e(z,y,b0))}.
2. Ry =<p,= {(z,9) : p(z,y,01)}.
3. Ry = 1p, ={{z,y) : p(z,y,ba)}.

Thus, “b encodes a Souslin forcing” iff “(Py, <p,, Lp,) is a Souslin forcing”
iff the following are satisfied:
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1. {(Ro, R1) is a partial order:
Ve,y,z ((Ro(z) A Ro(y) A Ro(2)) =
[Ri(z,z) A (((Ri(z,y) A Ri(y, 2)) = Ra(w,2))
A((Ri(z,y) A Ri(y, z)) = = = y)])).
2. Ry is incompatibility:
Vo, y((Ro(z) A Ro(y)) = [Ra(x,y)
< Vz(Ro(2) = (mRi(z,z) V- Ri(z,y)))])-

3. Field (Smb) g ]P)b, field (J—H”b) g pbi

Vo (Jy(Ri(x,y) V Ra(x,y) V Ri(y, x) V Ra(y,x)) = Ro(x))

4. [Py satisfies ccc

1 through 3 are easily seen to be II3; / is Al by the preceding Lemma
(2.2.10). [ ]

2.3 Examples for Souslin forcing notions

Let us consider generic extensions of a ground model V| using either the algebra
of Borel sets modulo the ideal of null sets or the algebra of Borel sets modulo
the ideal of meager sets. The reader may take a look in [MS] (p.153, pp.166-167),
[BJS], [JRS], [BJ] and [JuBa] Ch.3 (besides the references below).

Definition 2.3.1 ([So]) Let N be the o-ideal of null sets
N = {B € Borel : u(B) =0}

Random forcing B — Borel/ N, is the Boolean algebra of all the Borel subsets
of the unit interval [0, 1] modulo the ideal of the Borel sets of Lebesque measure
zero (the Null sets). The ordering is given by [A] < [B] iff u(B\ A) = 0, where
1 ts the Lebesque measure.

Fact 2.3.2 (cf [Je] Ch.42 p.542-544) If G is a generic filter for the Random
forcing over some model V, then The intersection of the filter N{AVIG] . [A] €
G} contains a single real called a Random real over V. Moreover, if {r} =

M{AVIG . [A] € G} is a Random real over V, then for every [A] € BV,
V[G] = “[A] € G = r e AV,
Hence V[G] = V]r].

Fact 2.3.3 (cf [Je] Ch.42 p.544) A real is a Random real over a model V iff
it does not belong to any Borel set of measure zero with code in V.
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Fact 2.3.4 (cf [Ba] p.15-16) The Random forcing notion is Souslin.

Definition 2.3.5 (cf [Je] Ch.42 p.542-544) Let M be the o-ideal of Meager
sets (sets of first category)

M = {B € Borel : B is meager}

Cohen forcing C = Borel/ M, is the Boolean algebra of all the Borel subsets
of the unit interval [0, 1] modulo the ideal of the Borel sets of first category. (the
Meager sets). The ordering is given by [A] < [B] iff B\ A is of first category.

The original definition of the Cohen forcing notion (which is isomorphic to
our modern one (see [Ba] p.14)) is as follows:

Definition 2.3.6 ([Co]) The conditions are finite sequences of zeroes and ones
ordered by inclusion.

We will use the modern one.

Fact 2.3.7 (cf [Je] Ch.42 p.542-544) If G is a generic filter for the Cohen
forcing over some model V, then the intersection of the filter J{AVIG] . [A] € G}
contains a single real called a Cohen real over V. Moreover, if {c} = N{AVI¢] .
[A] € G} is a Cohen real over V, then for every [A] € CV,

V[G] = “[A] € G <= ce AVIE,
Hence V[G] = Ve].

Fact 2.3.8 (cf [Je] Ch.42 p.544) A real is a Cohen real over a model V iff
it does not belong to any meager Borel set with code in V.

Fact 2.3.9 (cf [Ba] p.15) The Cohen forcing notion is Souslin.

The Amoeba forcing was first discussed by Solovay in his quest for proving

that M A(k) = N is k-additive.

Definition 2.3.10 ([MS] §4 p.167) The Amoeba forcing notion, denoted
by A, 1s defined as follows:

pEA & pC2YApisopen Ap(p) <

N | —

p<qeopCyq

Fact 2.3.11 ([MS]! §4 p.168) 1. A has the ccc.

I The proof can be found in [Ba] p.18 as well.
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2. In every forcing extension by A, the set of Random reals over the ground
models has measure zero.

Fact 2.3.12 ([BJ] p.5 2.3.2) A is Souslin.

In his quest for the invariant proof for Category, Solovay used the Domi-
nating Forcing notion.

Definition 2.3.13 ([MS]) The Dominating forcing notion, denoted byD is
defined as follows:
D={(nf):ncw fecw’}

where for (n, f), (m,g) €D,

(n,fy>(mg) == n>mAflm=glmAf>g
Fact 2.3.14 (cf [JuBa] Ch.3) D is o-centered.
Corollary 2.3.15 D is Souslin.

Proor By the fact above, ID is o-centered. Thus ID has the ccc. On the
other hand - ID, <p are obviously Borel. [ |

For a clear description (clearer than the reference), and some deeper research
on these four mentioned examples, look in [JuBa] Ch.3 §3.1.

Shelah used in [Sh] a forcing notion similar in many ways to ID. This forcing
notion is called Amoeba for category or Amoeba meager forcing notion
(Shelah calls it “Universal Meager” in his article).

Definition 2.3.16 ([Sh] §4 p.15) 1. Let E be the set of pairs (n,T) such
that n € w, T C 2<% is a perfect tree and the set of branches of T is a
meager subset of 2¢.

2. For members of E we let (n,T) < (m,S) iff n < m and T'[n = S[n, and
T C S (notice that the restriction is to n and not to m).

3. (E, <) is called Amoeba meager forcing (or Amoeba forcing for
category ).

Lemma 2.3.17 ([Sh]) 1. (E, <) is o-centered.
2. VE=4J{M : M is meager and coded in V} is meager”.
3. E is Souslin,(and in fact w-Souslin (see [Ju]}).
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T will prove the first part of the lemma. The others can be found in [Sh].
Proor Recalling the definition of a o-centered partial order (see 2.1.16),
we need to show that there is a function h : [E — w such that

VYn € WwYF € [F]<(Vp € F(h(p) = n) = Jq € BVp € F(q > p)).

We will create a countable partition of E which will satisfy this condition for
each class of it (each class has its own n in the above statement). First let
us partition the partial order by its first element. Now, fix n € w. There are
finitely many possibilities of T'[n. Thus each class has its first element n equal
for all the members of the class, and the second element restricted to n 1s also
equal between the elements of the class. Thus there are countably many classes.
Take h : [E — w sending each element to its class number. Thus obviously
this function satisfies the condition above: Take n, F' as above, and assume F
is included in the n-th class (i.e Vp € F(h(p) = n)). Take S to be the union
of the second element in all the conditions in F. Then S is still meager, thus
(n, S) € F, and then
Vp € F(p < (n,S)).
Thus A is the needed function. [ ]

Definition 2.3.18 We say that a o-ideal T is a Souslin Ideal, if Z is a non-
trivial (i.e R ¢ T) Borel ccc absolute o-ideal.

2.4 General Notations

Our notation is standard. However, in forcing considerations we keep the con-
vention that a stronger condition is the greater one. ¢ stands for the cardinality
of the continuum. We use the following notations:

F* The Borel set constructed in a bigger model, according to the Borel code of

F (see cf [Je] p.537-540).
A. 1s the Borel set coded by ec.
A The Amoeba forcing notion.
B The Random forcing notion.
C The Cohen forcing notion.
D The Dominating forcing notion.
[E The Amoeba meager forcing notion.
A° is the complement of A concerning the current context.
Ra(V) denotes the set of reals random over V.

BC Borel codes



Chapter 3

Ideals & Souslin Forcing

3.1 Introduction

Preliminaries: In the following chapter we will make a survey of the main
results in a late work by H. Judah and A. Roslanowski (cf [JuRo]).

We are interested in representing a forcing notion as a quotient Boolean
algebra Borel/Z for some ccc Borel o-ideal Z. This is interesting because of
several reasons. The first (and the main one) is that if we assume (or prove)
some additional properties of the ideal Z then we can use the well-developed
machinery of Z-random reals (cf [Ku2]). The second reason is that we have a
nice description of reals, Borel sets etc in extensions via such algebras.

For the rest of our work we will need the following definitions (for more on

the basis of the following, see cf [Je] Ch.17):
Definition 3.1.1 Let B be a Boolean algebra. Let
S = {p:p is an ultrafilter on B}
and for everyu € B, let X, = {p:pE SA u € p}. Let
F={Xy:ueB}

We call the space S with the topology given by the base F the Stone space of
B and we denote it by ST (B).

Definition 3.1.2 A Boolean algebra B is said to be a countably generated
complete Boolean algebra if there is a countable set A C B such that for each
complete Boolean subalgebra of B (D # B), A ¢ . The invariant definition
goes for countably generated Boolean algebra. Note: When we refer to
a countably generated forcing notion P, we will actually say that the boolean
algebra of P (see def. 3.2.3) is countably generated.

18
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Definition 3.1.3 Let X be a topological space. We say that a set A is a Baire
subset of X if A is generated by a countable series of countable unions in-
tersections and complements of basic open sets (Notice the similarity and the
difference to the definition of Borel sets). We notify the set of Baire subsets of
X by BAIRE(X).

To begin with, we have Sikorski‘s theorem (cf [Si], §31) which says that
every ccc countably generated complete Boolean algebra B is isomorphic to the
quotient algebra Borel(2)/Z of Borel subsets of the Cantor space modulo some
Borel o-ideal. The isomorphism can be described as follows. Let ST(IB) be the
Stone space of the algebra B, M be the o-ideal of meager sets of the space.
Then the algebra B is isomorphic to the quotient BATRE(ST(B))/M of Baire
subsets of ST(B) modulo meager sets. Let u,, € B be generators of B (so [un]am
are generators of BATRE(ST(B))/M; elements of B are identified with clopen
subsets of ST(IB)). Define ¢ : ST(B) — 2% by ¢(z)(n) = 1 iff u, € z and let

f : Borel(2¥) — BAIRE(ST(B))/M : A = [67[A]]lm.
Then f is a o-epimorphism of the Boolean algebras and hence
B = Borel(2¥)/Ker(f).

The ideal Ker( f) consists of all Borel sets A C 2% such that the preimage ¢~ ![A]
is meager in ST(B).

As both the space ST(B) and the ideal of meager sets of it have no nice
general description, this approach has several disadvantages. In particular it is
difficult to describe and to investigate the ideal Ker(f). Moreover, generally it
has none of the properties we could expect - we should keep in mind the ideals
of meager and of null subsets of the Cantor space as “positive” examples here.
For these reasons we will present another approach.

Proposition 3.1.4 Suppose that T is a ccc Borel o-ideal on 2%, B = Borel/Z
is the quotient (complete) algebra. Let 1 be a B-name for an element of 2 such
that [s C 7] = [[s]lz (where [s] is the basic set constructed by s and [[s]|z is that
set modulo T). Then

1. If 7 is a B-name for an element of 2% then there is a Borel function
2% — 2% such that IFg f(r) = 7.

2. IfB is a B-name for a Borel subsel of 2% then there is a Borel set A C
2% x 2 such that Ikp B = (A);, where (A), = {y : (z,y) € A}.

Proor 1. Construct inductively Borel sets A, C 2% such that for each
s € 2VY: A, = Ayq U Az, Ao N Ag- = 0 and [s C 7]g = [As]z. Put
fle)y =y if e €N,e, Ayin and fz) = 0if 2 ¢ N, U,eqn As (This actually
means that z ¢ Acs). T will show that this f works. Take G B-generic over V.
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Now V[G]lEsCr = [AJz€G = Tsy([s2] CAA[[s2]lz€G) =
VIGIEs:2 Cr = V[GIErE[ss] = VI[G]E7€A, Soristhe
appropriate y for 7. .

2. Let {Cy, : n € w} enumerate the (clopen) basis of 2*. If B is a name
for an open set then we have a name U for a subset of w such that IF B =
U{Cn : n € U}. Let A, be a Borel set such that [A,]z = [» € U] and put
A= J{An x Cp 1 n € w}. Since [A,]7 = [r € A,] (by the assumption on )
we get that IF (A); = B. Thus we are done for open sets. Next apply easy
induction (note that ((,, An)ez =, (4r)e and (m4); = =(A4);). ®

3.2 The ideal

This section is devoted to the construction of a single Ideal denoted Zp, which
will be the ideal associated with P. We start with some definitions of well known
properties (of Forcing notions & Ideals) and advance to the needed properties
and the construction of the Ideal.

Definition 3.2.1 An ideal Z is Borel Absolute if for a Borel set A. (c is the
Borel code of A. (cf [Je] p.537)) the property of A. € T is absolute. Examples
for absolute ideals are the ideals of Meager sets and of Null sets.

We want the ideal to be a nice one. We want it to be a ccc absolute o-ideal,
to be able to calculate its complexity, and to ensure invariance of it. For some
forcing notions we will construct the ideal on the Baire space in a way giving
more possibilities to work with in the manner described above.

Definition 3.2.2 A forcing notion P is countably-1-generated if there are
conditions p, € P (for n € w) such that

(Vp e P)(Vq € P,qLp)(In € w)(pnLlp & pn Lq).

In this situation the conditions p, (n € w) are called o-1-generators of the
forcing notion P.

Definition 3.2.3 RO(IP) is the regular open algebra of P. The elements of
RO(P) are the regular open subsets B C P (B is regular if B = internal(B)).
B < C iff BD C. The topology on P is built up by the basis {[p] : p € P} where

pl={q€P:q>p}
Lemma 3.2.4 Let P be a partial order. Then RO(P) is a complete boolean

algebra and the map i(p) = internal([p]), i : P = RO(P) is dense embedding.
(cf [Ku] pp.63-64)

Corollary 3.2.5 IfP is countably-1-generated then the Boolean algebra RO(IP)
is countably generated and each element of P is the complement (in the algebra
RO(P) ) of the union of a family of generators.
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Proor  Take p € P. Take A = {[pn] : n € w ppLp}. Then A is predense
(cf [Je2] p.3) above —[p]. Therefore =[p] = > . A. So the second part is done.
Now the first part is clear, taking {[p,] : n € w} to be the generating family of
ROMP). =

From the corollary above, it is clear that elements of RO(P) are unions
of elements of the form —> {p, : n € u}, u C w. For an arbitrary Souslin
forcing 1t is not clear that they should be of this form. Many classical ccc
countably generated Boolean algebras are determined by countably-1-generated
forcing notions. The Random Algebra is determined by the order of closed sets
of positive measure in 2%. Clearly this order is countably-1-generated. The
Amoeba Algebra for measure, the Amoeba Algebra for category, the Hechler
forcing and the Eventually Different Real forcing notion can be represented as
countably-1-generated orders. Actually we have no example of a ccc Souslin
forcing notion (producing one real extension) which is not of this kind. Judah
& Roslanowski proposed the following problem:

Problem 3.2.6 Suppose P is a ccc Souslin forcing notion such that the algebra
RO(P) is countably generated. Can P be represented as a ccc Souslin countably-
1-generated forcing notion?

In the following considerations we will assume that every forcing notion is
separative, i.e. if p,qg € P, p £ q then there is gy > ¢ such that ¢oLp. This
assumption can be easily avoided if we replace (in some places) inequality in P
by that in RO(P) (in which this is obviously the case).

Proposition 3.2.7 Suppose P is an atomless cce countably-1-generated forcing
notion. Then there is a mapping 7 : w<% — P such that

1. for each s € w<% the family {m(s'n) : n € w} is a mazrimal antichain
above 7(s),

2. 7(()) = Op and

3. rng(m) is a set of o-1-generators for P.

Proor Let (pn : n € P) C P be a sequence of o-1-generators. Construct
inductively infinite maximal antichains A,, C P such that

o foreach p € A, theset {g € A,41 : ¢ > p} is an infinite maximal antichain
above p, and

o {qg € A, : pn < q} is a maximal antichain above p,,.
Use these antichains to define 7 in such a way that m[w™ + 1] =A,. ]

The mapping 7 given by the above proposition (i.e. satisfying 1-3 of 3.2.7) will
be called a basts of the forcing notion P.
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Note that the formula “a real b encodes a ccc Souslin forcing notion and (a
real) 7 is a basis of it” is a Il}-formula (The first part is a TI}-formula (see [Ba]
p.13)) since if b is a fixed code for a ccc countably-1-generated Souslin forcing
notion, then 7 is a basis for the forcing notion coded by b is 111 (see [JS], [Ju]).
Consequently all the notions above are suitably absolute.

Fix a ccc countable-1-generated atomless Souslin forcing notion P and a basis
7 w<% — P for it. Let b be a real encoding P.

Definition 3.2.8 1. For a condition p € P we define
¢(p) = {x € w® : (¥new)(n(z[n) Lp)}.

2. A set A Cw" is P-small if there is a marimal antichain A C P such that
AnlHe(p) :pe A} =10.

3. A set A C w¥ is P-o-small if it can be covered by a countable union of
P-small sets. The family of P-o-small sets will be denoted by Tp.

From this point on, we will proceed towards showing this ideal to be the one we
are looking for.

Proposition 3.2.9 1. For each p € P the set ¢(p) is closed; ¢(n(s)) = [s]
for each s € w<Y. If p < q then ¢(q) C &(p).

2. No set ¢(p) (for p € P) is P-o-small, and every singleton is P-small.

3. P-small sets constitute an ideal, Ip is a o-ideal of subsets of w*. Fvery
set from Ip can be covered by a ¥3-set from Tp.

ProOF 1. Tt 1s clear from the definitions of ¢ and .

2. Let p € Pandlet A, CP (n € w) be maximal antichains. We want to
find z € w* such that (Vn € w)(m(z|n)Lp) (i.e z € ¢(p)) and (Vn ew)(Iq €
Ap)(Vm e w)(m(zIm) Lq) (i.e (Vn €w)(Tg € Ay)(z € ¢(q))). Take po € Ag
such that poAp and find ny € w so that #({(ng)) L(p V po) (i-e., such that
(F¢€P)(q > p,po, m((no)))). Choose p1 € Ay such that p; L(pVpeVr((ng))) and
let ny € w be such that w({ng, n1)) L(pVp1VpoVm({ng))) (one can obviously omit
the m({ng))). Continuing in this fashion we will define z = (ng, n1,ns...) € W%
which will work (just remember that by ¢‘s definition, if w(z[m) L q then (VYn <
m)(m(z[n) L q), and that we built 2 such that w(z[m) L(pV \V{pn : n < m})).
Thus ¢(p) is not P-g-small.

Now suppose that 2 € w¥. To show that the singleton {z} is P-small it is
enough to prove that the set {p € P : = ¢ ¢(p)} is dense in P (thus we will
have the needed antichain). Given q € P, take qg,q1 > ¢ such that ¢goLqy (P
is atomless). There is s € w<% with 7(s) Lgo and 7(s) Aq1 (rng(7) is a set of
o-1-generators of P). If s C z then z ¢ ¢(g0) and we are done. So suppose that
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z[lh(s) # s. Take q3 > 7(s),q1. Then m(z[lh(s)) and g2 are incompatible and
consequently z ¢ ¢(qa).

3. To prove the additivity of P-small sets note that if maximal antichains
A; CP (i = 0,1) witness that sets A; C w* are P-small then any maximal
antichain A C P refining both 4y and .4; witnesses that Ay U Ay is P-small.
The second part is obvious. The third part is clear from corollary 3.2.5 and
from the definition of P-o-small sets. [ ]

Definition 3.2.10 Let ¥ = 7, be the P-name for a real in w* such that for
each s € w<% we have mw(s) lkp s C 7r.
For a real r € w* we define G(r)={peP:r e é(p)}.

Proposition 3.2.11 Let N be a transitive model of ZFC* such that b, m and
everything relevant s in N.

1. If G C PV is a generic filter over N then G(r¢)N N = G.

2. Suppose that x € w* is such that for any marimal antichain A C P,
A € N we have x € UpeA o(p). Then G(z)N N is a generic filter over N

and 790 — .

Proor First note that, in N, b encodes a ccc Souslin forcing notion and
7 is a basis for it (I13 formulas are downward absolute for all models of ZFC*).
Moreover if N E“A is a mazimal antichain in P” then A is really a maximal
antichain of P. Notice that PY = PN N and the same concerns Lp, <p (for all
of these, one can see [Ba]).

1. Let us show that G C G(r%) first. Take p € G. If p ¢ G(r%) then there
is n € w such that 7(r%[n)Lp so 7(r%[n) € G, but since G is a filter in PN N,
this contradicts m(r%[n) Ik (#[n) C 7. Thus we have G C G(#%). Now, if
pé G, pEPNN then there is s € w<% such that n(s) Lp and 7(s) € G (7 is a
basis for P). Consequently s C 7% and #% ¢ #(p), so p & G(+9).

2. Asz € ¢(p) & p € G(z) it is enough to show that G(z) N N is a filter
(genericity follows from the definition of ¢ and 7). For this it suffices to prove
that G(z) N N contains no pair of incompatible elements. Thus suppose that
po, p1 € PN N are incompatible. Let A € N be a maximal antichain in P such
that (in N) for each p € A

either there is s € w<% such that p > 7(s) and 7(s) Lpo
or there is s € w<% such that p > 7(s) and 7(s)Lp;.

By the choice of  we have that z € ¢(p) for some p € A. Let s € w<% be such
that p > m(s) and m(s)Lpe (or 7(s)Lp1). Then s C & (since m(s) Lx(z[lh(s))),
and z ¢ &(po) (or ¢ é(p1)). Consequently either py & G(z) or p1 ¢ G(z), and
G(x) is a P-generic filter. Now, since 7(s) € G(z) = s C x, #5%) = & is clear.
|
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Proposition 3.2.12 1. Let B be a Borel subset of w*. Then

B ¢ Ip if and only if (GpeP)((¢(p)\B) € Zp).

2. The formula “c is a code for a Borel set belonging to Zp” is Al; it is
absolute for all transitive models of ZFC".

Proor 1. Since ¢(p) ¢ Zp for any p € P (by 3.2.9) we easily get that
(Fp €P)(¢(p)\B € Zp) implies B ¢ Zp. Suppose now that B ¢ Zp. Let ¢ be a
real encoding the Borel set B. Let N be a countable transitive model of ZFC*
such that b,¢,m,...€ N. Since B ¢ Zp we find a real z € B such that

x € ﬂ{ U é(p) : N = A is a mazimal antichain in ]PN}.
peA

(we can find such an z by using the technique of the proof of 3.2.9/2). By
3.2.11 we get that G = G(z) N N is a PN-generic filter over N and 7% = z. As
N[G] | 7% € B we find p € PV such that N |= pIF 7 € fc (where fc stands for
the Borel set coded by ¢). We claim that

(6(p)\B) N ﬂ{ U é(q) : N = A is a mazimal antichain in ]PN} = 0.

geA

Suppose not and let y be a real from the intersection. As earlier we have that
G' = G(y) N N is a PN_generic filter over N, 76 = y. Since p € G(y) we get a
contradiction to y ¢ B.

2. For a real a let ((a)n : n € w) be the sequence of reals coded by a. Let
An = {a:{(a), : n €w) C P is a maximal antichain }. Clearly An is a I1}-set
(see [Ba] p.5). Now
“c is a Borel code for a set from Ip” =

(Fa)((¥r)((a)n € An) & (Vz € fc)(FnVm)(z ¢ ¢(((a)n)m))) & ¢ € BC

The first part of the conjunction is ¥, the second part is TI}. Hence the formula
is B1. On the other hand, by 1.,
“c is a Borel code for a set not belonging to Ip” =

(3p € P)((¢(p)\ic) € Ir) & c € BC.

Easily the last formula is ¥} too. Consequently both formulas are Al and this
fact is provable in ZFC. As X} formulas are upward absolute (for models of
ZFC*) and I} formulas are downward absolute (for models of ZFC*) we are
done. [ ]

Before the last corollary, let me redraw our assumptions: P is a Souslin ccc
forcing notion which is separative, atomless, and countably-1-generated.
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Corollary 3.2.13 Zp is a Borel ccc absolute o-ideal on w* . The quotient alge-
bra Borel(w")/Zp is a ccc complete Boolean algebra. The mapping

P — Borel(w")/Zp : p > [¢(p)]zs
is a dense embedding (so RO(P) = Borel(w*)/Zp). For each Borel code c:
[7 € telp = lic]lz, =

Let us define another Ideal which will be denoted by Z#: Let p, € P (for
n € w) be such that they completely generate the algebra RO(P) (remember
3.2.5). Let 7 be a P-name for a real from 2% such that [r(n) = Hroe) = Pn-
Now, define the ideal:

7P = {B € Borel :IFp + ¢ B}

Corollary 3.2.14 Zp = 1. [ |

3.3 Baire Property
The next section is also connected to a work of Judah & Repicky in [JuRe].

Definition 3.3.1 A family F of subsets of w* is a category base on w" if
|[F|=¢, UF = w* and for each subfamily G C F of disjoint sets, |G| < ¢ and
each A e F

if ABEF)(B C ANJG) then (ABEF)(ICEG)(B C CN A), and
if ~(ABEF)(B C AN|JG) then (IBEF)(B C A\UJG).

Definition 3.3.2 Let F be a category base on w* and let A C w*.
1. A is F-singular if (YBeF)(IC € F)(C C B\A).

2. A s F-meager if it can be covered by a countable union of F-singular
sets.

3. A has F-Baire property if for ecvery B € F there is C € F such that
C C B and either C N A is F-meager or C\ A is F-meager.

Theorem 3.3.3 (Marczewski, Morgan) Assume F is a category base on

w¥. Then F-meager sets constitute a o-ideal on w*. Sets with the F-Baire

property form a o-field which is closed under the Souslin operation A. [ |

Suppose that 7 is a basis for a ccc Souslin forcing IP. Assume that

(Vp,q € P)(pLq if and only if ¢(p) Né(q) =0).
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Proposition 3.3.4 If n,P are as above then the family Fp = {¢(p) : p € P} is
a category base. The family of Fp-singular sets is the family of P-small subsets
of W, Fp-meager sets agree with P-o-small sets. [ |

Corollary 3.3.5 Let w, P be as above.

1. Sets with Fp-Baire property constitute a o-field of subsets of w*. This
o-field is closed under the Souslin operation A and contains all Borel sets
(and hence it contains both ¥1 and 1} sets).

2. If A€ w¥ is allj set then either A € Ip or (Ip € P)(¢(p)\A € Tp). ]

3.4 Absolute Ideals

Before we conclude this chapter, let me define some notions which will be useful
in the chapters to follow, and prove some useful facts about forcing notions of
the form Borel/Z where T is an absolute o-ideal.

To the rest of the rest of our work we will use the following context as our
main point of view: Let P = Borel(w*)/Z be a Souslin ccc forcing notion (Z
is a o-ideal on w*). Notice that this context is quite similar to the one used
in [Ku2] with the difference that Kunen requires that his ideal (which he calls
“reasonable ideal”) will have a form of the Fubini property. We do not need that
property, and we do not require it (although in some cases (e.g., L | —AL(P)
in §4.3) it would have made things much easier.

Definition 3.4.1 Let n > 1. X1 (Z) is the following statement:

For every X% subset of the real line A, there is a Borel set B such that BAA C
Z. (note that we abuse notations by referring to I, which is defined on the
Borel o-algebra, as its expansion to the real line.) We say also, that a set A
has the P.p (P-property), if there is a Borel set B such that BAA C I.

We want to show that the basic facts we need about Random and Cohen
forcing, apply also to our general case. We will prove the following two lemmas
using the absoluteness of the ideal Z. For the Random/Cohen case one can look
at [Je] pages 542 through 544. For the definition and main facts about Borel
Codes, one may use [Je] Ch.42 pp.537-540 and also [Ku2] for basic facts.

Lemma 3.4.2 Let M be a transitive model of ZFC. If G 1s an M-generic filter
on P, then there is a unique real number xa such that for all B € P

rgE€EB & [Bre G (3.1)

The formula (3.1) determines G and hence M[G] = Mlz¢].
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ProoF To start, we claim that there is at most one real number z that
satisfies

VB € Borel(z € B* & [B] € G). (3.2)

If z satisfies (3.2), then z belongs to all B* such that [B] € G. If z < y are
two real numbers, let r be a rational number such that x < r < y, and let A
be the interval (r,c0) C R. Either [A] or [R\ A] belong to G, but z ¢ A* and
y ¢ (R\A)"

In order to show that there exists a real number z that satisfies (3.2), let
x = sup{r : r is a rational number and [(r, c0)] € G'}. (3.3)

By the genericity of G, there exists r such that [(r,00)] € G, and hence the
supremum (3.3) exists. Note also that z ¢ M (by the genericity of G). We shall
show that z satisfies (3.2). We shall show, by induction on Borel codes in M,
that for every ¢ € BCM,

re A, < [A]€eq. (3.4)

First we consider the ¥9-codes (in M), and let us start with those ¢ € X9 N .M
that code a rational interval, i.e., such that ¢(n) = 1 for exactly one n; then ¢
codes the interval I,,. Let I, = (p,¢). We have
reA = p<r<yg
< p<sup{r:[(r,0)] € G} <q
= (ool € GAll4,00) ¢ G
— [(p,9)] € G <= [A]E€G.
Now, if ¢ € XY, then A. = U, —, Ix,, where {k, : n = 0,1,...} is the set
{k : ¢(k) = 1}, and we have
reA; = welL I,
< dn(zel})
<~ 3In([lk,] €G)
— ZSLOIO[I]‘?TL] € G
— (UL, k]€CG < [A]€eG.
Next let @ < wM™ and let ¢ € TI% N M, and let us assume that (3.4) holds
for all ¢ € X% N M. We may assume that ¢(0) = 0; then u(c) € % N M and
Au(ey =R\ Ac, and we have

€A = v ¢ Ay = [Au] ¢ G — [A]EG.

Finally, the induction step for £ is handled in a way similar to the case for
c € 0. Thus (3.4) holds for every ¢ € BC™, and thus = is the unique real
number that satisfies (3.1). ]

One should notice that in fact we did not use the absoluteness of the ideal,
but just the structure of the partial order (being of the form Borel/Z). The
following lemma provides a characterization of P-reals.
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Lemma 3.4.3 A real number is a P-real over M if and only if it does not
belong to any Borel set I € T with a code in M.

Proor On the one hand, if z is a P-real over M, let G be an M-generic
filter on P such that # = zg. Then if A. € 7 then [A;] ¢ G, and by 3.4.2,
z ¢ AL

On the other hand, let z be such that z ¢ A% whenever A. € Z (and ¢ € M).
First we observe that if [A.] = [A4] then AcAAg € Z, hence AZAAL € T* (by
the absoluteness of 7). Tt follows that = belongs to A% if and only if z belongs
to AY. Let

G={[A] =z €A} (3.5)

Tt is easy to see that G is a filter on P: If [A.] € G and [A4] € G, then
z € A7 N A} and hence [A. N A4] € G; similarly, if [A.] > [A4] and [A] € G,
then [A4] € G (recall that we use “p > ¢” to denote “p is stronger than ¢”).
We shall show that G is M-generic. Since [P satisfies the ccc, it suffices to show
that if {A., : n € w} € M is such that > .7 [A..] € G, then some [A. ] is in

(7. But this is true because

1A =11 AcJand (| Ac)7 = [ 4z,

n=0 n=0 n=0 n=0

Finally, we claim that 2 = z¢. But this follows from (3.5), by the genericity
of GG. Thus a real number z is a P-real over M if and only if z ¢ A% for any
Borel set A, € TM. |

Corollary 3.4.4
Pr(M) =R\ J{A: :ce BCMNA. €T},
Proor Notice that by the last lemma we get
Pr(M) =R\ J{A; :c€e BCMAA; €T}
Thus by the absoluteness of 7 we get
Pr(M) =R*\ [ J{A: :ce BCMAA. €T},

In the rest of our work we will abuse notations and use the notations of
subsets of the plain, also for their class in P (modulo the ideal Z). For example
B will also denote [B]p.
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Examples

4.1 Introduction

Recalll that P = Borel(w*)/Z is a Souslin ccc forcing notion (I is a o-ideal on
W) (see 3.4).

We want to have an intuition on the connections that can be established be-
tween Souslin absoluteness, Uniformization, and regularity properties for projec-
tive sets. We will do so by giving some examples, and investigate these examples
through the above criterions. The first will be the well known model of solovay.

4.2 Solovay‘s model

We will refer the reader mostly to [Je] but the reader may as well look at the
original paper [So], or at the new ideas in [JuBa] Ch.9 §6.

To get a model where all projective sets are measurable, Solovay started with
the constructible universe I and an inaccessible cardinal £ € IL.. The forcing
extension, where all projective sets are measurable and have the property of
Baire, was obtained by collapsing & onto ®;. The Solovay model is known to
approve with the following theorem:

Theorem 4.2.1 (Solovay in [So]) Assume that there exists an inaccessible
cardinal.

1. There is a model of ZF+ DC' in which all sets of real numbers are Lebesgue
measurable and have the property of Baire, and every uncountable set of
reals has a perfect subset.

2. There is a model V of ZFC such that V = Vn € w(Xl(L)&X! (B)) and

every uncountable projective set contains a perfect subset.

29
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We will prove that Solovay’s model also satisfies the same properties for
forcing notions of the form P = Borel/Z, where 7 is an absolute o-ideal (see

3.4).

4.2.1 Solovay‘s sets of reals
Let M be a transitive model of ZFC'

Definition 4.2.2 (cf [Je] Ch.42 p.544) Let S be a set of reals. We say that
the set S is Solovay over M if there is a formula p(z) with parameters in M,
such that

Ve eR(z € S <= Mz] = o(x)) (4.1)

Lemma 4.2.3 Let S be a Solovay set of reals over M. There is a Borel set A
such that
SN Pr(M)=AnNPr(M)

Proor Let us consider the forcing language in M associated with [P.
Let G be the canonical name for a generic ultrafilter on P, and let a be the
canonical name for a P-real. Let ¢(z) be a formula with parameters in M such
that (4.1) holds for all z. Let A. € P such that

[Ac] = [p(a)]

and let A = A%. The set A is a Borel set (in the universe). T claim that for all
r€ Pr(M),z €S < z€ A Butif z is a P-real over M, let G be M-generic
on P such that z = a¢g, so a is a name for x and we have

z€S & MhlEe) < M[GEe)
< Jela)]eG < [AJeG & zcA:

Thus A is the required set. [ |

4.2.2 The Lévy collapsing forcing notion

We will now define the Lévy Collapsing forcing notion, and study some of its
properties:

Definition 4.2.4 (cf [JuBa] Ch.9 p.287 & [Je] Ch.19 p.182) Let p be a
reqular cardinal and let X be an ordinal such that X\ > p. Let Py = A<F with
Pa < Qo © Pa C qa- Let Coll(pn, < A) be the product with < p-support of
(Po; 0 < A). This partial order is called the Lévy Collapse. Note that

pE€Coll(p,<X) & pe [[Pa A Isupp(p)| < p
a<A

(supp(p) = {a : p(a) # 0}). Forp,q € Coll(p, <)),
p < g & VYo < A(p(a) < q(a)).
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Let k be an inaccessible cardinal in M. We will concentrate on Coll(Rg, < k)
(i.e finite functions under a product with finite support).

Lemma 4.2.5 1. Coll(Rg, < K) is k-cc.
2. Fcourg,<x) € =R1”

Proor 1.: Take {py : @ < k} C Coll(Ng, < k). By the A-system-lemma
(cf [Ku] ch.2 §1), there is aset B C & such that |B| = , and {supp(pa.) : @ € B}
forms a A-system with some root R. Since & is regular and there are less
than k possibilities for the (p[R), there is a €' C B such that |C| = & and
Va, € C((palR) = (ps[R)). Thus

Vo, 3 € C(pa Lps)-

2.: Suppose G is Coll(Ng, k)-generic over V. By 1., k remains a cardinal in
VIG] (cf [Ku] ch.7 §6 p.213). Fix o < k. For every v < a and every n € w, the
set

Dy n ={p € Coll(Rg,< &) : n € dom(p(ar)) Ay € ran(p(a))}

is dense in C'oll(Rg, < k). Hence Uper(oz) maps w onto a. [ ]

Lemma 4.2.6 (cf [Je] Ch.25 p.280) Let G be a generic filter on the Lévy
collapse P, and let X be a countable set of ordinals in M[G]. Then there exists
an M[X]-generic filter H on P such that M[X][H] = M[G].

Theorem 4.2.7 (cf [Je] Ch.25 p.281) The Lévy algebra B is homogeneous,
in the following sense: If A and A’ are isomorphic complete subalgebras of B
such that |A| = |A'| < |B| and if mg is an isomorphism between A and A’, then
there exists an automorphism m of B such that w(a) = mg(a) for all a € A.

Lemma 4.2.8 (cf [Je] Ch.25 p.282) Let B be the Lévy algebra (in a ground
model N'), and let C be a complete subalgebra of B such that |C| < |B|. For
any formula ¢(z), if x is a C-valued name, i.e, x € N, then

[e(x)]B € C

4.2.3 Solovay’s model

Now that we have defined the Lévy collapsing forcing notion, let P = Coll(Rg, <
k) and let B be the Lévy algebra for P (i.e B = RO(P)). Let G be an M-generic
ultrafilter on B. We shall show that M[G] | Vn € w(XL (7))

Lemma 4.2.9 Let s € M[G] be an infinite sequence of ordinals. The set of all
reals (in M[G]) that are not P-reals over M(s] is in the ideal T.
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ProoF Since the algebra B is k-saturated (by 4.2.5), there exists a
subalgebra D C B such that |D| < x and M([s] = M[D N G] (where M[D N G]
is the extension of M by the filter D N G in the algebra D). Tt follows that
k is inaccessible in M][s] (since |D| < k), and since k = N?A[G], M(s] has
only countably many subsets of w (D is also x-saturated). Thus there are only
countably many Borel codes in M[s], and since every P-real is not in any set in
the ideal Z, the set Pr(M][s])® is a union of countably many sets in the ideal,
thus Pr(M(s])°e€Z. N

Lemma 4.2.10 Let X € M[G] be a set of reals that is definable in M[G] from
a sequence s of ordinals. Then X is (in M[G]) Solovay over M(s].

Proor We shall first prove the following: Given a formula ¢, there is a
formula @ such that for every sequence of ordinals z € M[G]

M[G] | ¢(2) = Mlz] = $(2).

Recall that P is the Lévy forcing notion for . The forcing conditions are finite,
and thus the definition of P is absolute for all models. If A is a model, we
denote N'F the boolean valued model constructed in A using P. Let ¢(z) be
the following formula

@1 =1
Let z be a countable sequence of ordinals in M[G]. We shall show that
M[G] = ¢(2) = M[z] = ¢(2)

By 4.2.6 there exists an M|[z]-generic filter H on P such that M[G] = M[z][H].
Arguing in M[z], we invoke the homogeneity of the Lévy algebra (see 4.2.8):
the Boolean value b = [o(#)]M] is either 0 or 1. Since H is generic on [P over
M(z], p(z) is true in M[z][H]if b = 1, and false if 6 = 0. Hence ¢(z) is true in
M(G] if and only if @(z) is true in M[z]. P) of ¢(z)

Clearly the above argument works also for a formula ¢ with two variables:
There is a @ such that for all z,y € M[G] N Ord*:

MIG] [ p(z,y) = Mz, 4] | o(2,9).

Now, let X € M[G] be a set of reals that is definable in M[G] from a sequence
of ordinals s. For some formula ¢

reX — M[G]E ¢(z,s)

For all reals z € M[G]. Since every real can be concidered a countable sequence
of ordinals, we have, for all z € RMIC]

reX = Mls,2lF §(z) < Mslle] F 3(e,5).
Thus X is Solovay over M[s]. H
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Corollary 4.2.11 In M[G], every set of reals A, definable from a sequence of
ordinals (and in particular, every projective set of reals), has a corresponding
Borel set B such that BAA CT.

Proor Assume A 1s a set as mentioned above. Take s the corresponding
sequence of ordinals. By 4.2.10 A is Solovay over M(s], thus by 4.2.3 there is a
Borel set B such that AN Pr(M) = BN Pr(M). Now, since by 4.2.9 the set of
all reals that are not P-reals is in the ideal Z, we have AAB € I. [ |

4.3 The Constructible Universe

In the following section, we will prove that for each souslin ideal Z € I there is
a Al-set A such that IL = “A does not have the Baire property concerning Z”.
The general and easy way of showing that property concerning the ideal of
Null sets and the ideal of Meager sets, is a well known use of the Fubini theorem
(see [Je] Ch.41 p.527). We will use another method which is more difficult but
will suit our general case. The development of this proof to the ideals of Null
and Meager sets is described in [Mo] (2H.10 p.112, 5A.7 p.280, 5A.8 p.281).

Definition 4.3.1 (cf [Je] Ch.1 p.33) A set of reals is perfect if it is closed,
nonempty, and has no isolated points.

Definition 4.3.2 ([Mo] §4F p.247) A set P C R is thin if P has no perfect
subsets.

The following definition corresponds to the definition of py-measurable (cf

[Mo] §2H p.112).

Definition 4.3.3 f : w* — WY is Z-Souslin if for each open set U in w®
F~1(U) is Z-Souslin (has the P.p).

?

Definition 4.3.4 ([Mo] §5A p.279) Let f : w¥ — w¥. The Graph of f
(denoted Graph(f)), is

Graph(f) ={(z,y) : f(z) =y}
(This is actually the function as a set in (w*)?)

Definition 4.3.5 (cf [Je] p.114) Let f :w¥ — w*. We say that f is a Borel
function if Graph(f) is Borel (We will not prove it here, but this definition is
equivalent to being a Borel function in the topological sense (Borel Measurable,

see [Mo])).
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Definition 4.3.6 f: B — w“ is B-continuous (B C w“ ), if there is a Borel
function f* :w* — W% such that

Ve e B f(z) = f(2).
(On W™ this is equivalent to being a Borel Measurable function (see [Mo]). We
do not need this fact though.)

Lemma 4.3.7 Assume f : w¥ — w% is Z-Souslin. Then there exists a Borel

set B C w* which is the complement of a set in the ideal (i.e B € ), and such
that the restriction f[B of f to B is B-continuous.

Proor For each s € Seq let G5 be Borel in w® such that f=1([s])AG; €
Z ([s] is the basic clopen set created by s). We can Choose such a G, since
F=1([s]) is a X! set. Choose a Borel set @5 € Z such that

FHs)AG, € Qs

(We can take such a set @5, since the o-ideal Z, is Souslin (see 2.3.18)). Take
@Q = Useseq@s. Now B = Q°. We will show that f[B is B-continuous.

Let us enumerate Seq by (s,;n € w) which preserves precedense by lh (i.e
Vn € w(lh(sy) < lh(sn41))). We can obviously take this enumeration to be
Borel. For each n € w Take

folz) = ()
funte)= { g 7€ ]
For each n € w, f, is Borel. Define
f* = lim f(e).
f* is obviously Borel. Now, take z € B. Take ¢ > (0. Then
dn € w(x € [sp] Az — sn| < €).

Thus
Ve e B f(z) = f"(2).

|
Lemma 4.3.8 (cf [Mo] §2C p.81) Every uncountable 1 set has a prefect
subset.

Lemma 4.3.9 Assume f : w* — w* and Graph(f) is thin. Then f is not
Z-Souslin.
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ProoF By lemma 4.3.7, if f is Z-Souslin then there is a Borel set B
such that B¢ € Z, and f[B is B-continuous. Now B is uncountable (elsewhere
B €7 and B® € T (by the choice of B) and thus R € Z - Contradiction), so the
injective image

B* = {(z, f(z)) : z € B}
is also uncountable, Borel and a subset of Graph(f) (f is B-continuous on B).
But then B* must have a perfect subset by 4.3.8, contradicting the hypothesis.
|

Lemma 4.3.10 ([Mo] 5A.6 p.279) Assume w* C I (e.g V = 1.). Then
there erists a function f :w*” — w* whose graph Graph(f) is 11 and thin.

Proor Let <y, be a ©1-good wellordering of w® of rank R, and put
Pla,B) <= a<LBABEWOA(Vy <L B)~(y e WOA |y =10])
where WO is the set of ordinal codes (see [Mo] §4A). Clearly P is X3, so let

Pla,p) <= (3)Q(a,8,7)

with @ in TI}. considering @ as a subset of w® x (wW¥ x w¥), let @* uniformize

@ in T1}, so that for each a,

F)FNQ(e, 8,7) = (3E8)(F)Q" (@, 5,7)

and
Q (0, B,NANQ (o, )= B=p Ny=1+"
By (cf [Mo] §4A.6) Q* has no perfect subset. Since @* is obviousely the graph

of the function

frw¥ =¥ xuw¥
this proves the result for a function from w® to w* xw" , from which the general
fact follows by taking A} isomorphism and using ([Mo] 4F.7). =

Theorem 4.3.11 Assume w* C IL. Then there is a Al set which is not -

Souslin (has the P.p).

Proor Take f : w* — w* asin 4.3.10. Now, we will show that for each
p,q € Q,theset Ay, , ={z:p < f(z) < q}is a Al set.

f(z) < ¢ <= Fy(((z,y) € Graph(f)) Ny < q).

Thus, “f(z) < ¢” is a ¥} sentence. The same goes for “p < f(z)”. on the other
hand “¢g > f(z)” and “f(z) > p” are also X1 sentences, thus “z € A, ;" isa Al.
This is true for all p, ¢ € Q. Finally we will show that, if for all p,q € Q, A, ,
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is Z-Souslin (has the P.p), then f is Z-Souslin. Take U open in w*. Then U is
a countable union of sets of the form (p,q). Thus, since A, , = f~'((p,q)), we
get that f=1(U) is a countable union of Z-Souslin sets, thus Z-Souslin. Thus in
that case f is Z-Souslin, contradicting 4.3.9. Thus

dp, ¢ € Q(Ap,q is not Z-Souslin (does not have the P.p)).

Corollary 4.3.12 1L = 34 € AL(A is not Z-Souslin). N
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Souslin Absoluteness vs
Uniformization

5.1 General Facts

Lemma 5.1.1 Let o be a P-name for a real number. Then there is a Borel
function f such that for a P-real a over V,

Vid] | old] = f(a)

Proor We define f by approximating it using simple functions. We work
in [0,1]. Let A;,, = [0 € (55, &1)], i < 2". Let

()= 3 oo X, ()

i<2m

where X', is the characteristic function on A; ,,. So, each f, is a simple Borel

function. Let

f(z) = lim fn(z)

n—00

Since f(z) =y & VndmVk > m(|y — fu(z) |< 1), f is Borel. Now, let

a be a P-real over V. Pick ¢ > 0. For every n, there is a unique ¢ < 2" such
that ¢ € A;,. But if a € A;,, ola] € (Lf—n,g"—nl) Also fn(a) = Hence,

=<
| o[a] — fa(a) |< 5. Thus, we can find n such that | o[a] — f,(a) [<e. ®

Lemma 5.1.2 Letn > 2. Assume () is a 1} -formula and f is a Borel func-
tion (Graph(f) is Borel). Then o(f(z)) is also a 11\ -formula in the additional
parameter, borel code for f.

37
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Proor Saying that for z, V |= ¢(f(z)) holds, is equivalent to saying

V I (V23y((z,y) € Graph(f))) A (Yy((z,y) € Graph(f) = ¢(y))).

5.2 Souslin Uniformization

In the following (unless elsewhere is mentioned) we will use the following notions:
Let P = Borel(w*)/Z be a Souslin ccc forcing notion (I is a o-ideal on w*).
p is the Lebesgue measure (on the appropriate field, concerning the context).
One can take P to be the Random/Cohen forcing notions as an example to the
definitions and theorems to follow.

We will show that there is a strong relationship between Uniformization and
Souslin absoluteness.

Definition 5.2.1 Let n > 1.

1. TIL (L-uniformization) is the following statement:
For every 11} subset of the plane A, if u({z : Ay = 0}) = 0, then there is
a Borel function f : R — R such that p({z : f(z) € Az}) = 1.

2. T} ( B-uniformization) is the following statement:
For every T subset of the plane A, if {x : A, = 0} is meager, then there
is a Borel function f:R — R such that {z : f(z) € Az} is comeager.

Motivated by the last definition we define the following concept:

Definition 5.2.2 Let n > 1. II}(P-uniformization) (or as we will mention it
Souslin Uniformization ) is the following statement:

For every I subset of the plane A, if {x : A, = 0} € Z, then there is a Borel
function f: R — R such that {z : f(z) € A;}° € T.

The invariant definition comes for X! (P-uniformization).

Corollary 5.2.3 X! (P)-uniformization iff I} _, (P)-uniformization.

Proor The forward direction is obvious. The backward direction is as
follows: Take a ¥} subset of the plane A, and assume that {z : A, = 0} € Z.
A= {(z,y) : p(z,y)} where ¢ is a Xl-formula. (z,y) = Jz¢(z,y, z), where
¢ is a II._,-formula. The idea is to use the function guaranteed from the
I1! (P)-uniformization to replace the “3” sign in ¢. Take

¢ R2TLACR
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to be a Borel function mapping R? to R. By our assumption on A, F = {xz :
A, =0} €Z. So,

(Ve ¢ E)(Jy, z ¥(z,y, 2)).
Therefore, we have the needed assumption for the set B = {(z,d(y,z)) :
Y(z,y,z)}. But this is a II}_,-set, so by the uniformization for II} _,(IP) we

n—1 n—1
have a function f such that

I={z:f(z)¢ Bs}eZ (5.1)

Take g(z,y) = . Then F(z) = g(¢~'(f(z))) is the needed function ((Va ¢
N(F(z) € Ag)). =

The following lemma is due to H. Woodin ([Wo] 1,2):

Lemma 5.2.4 1. I}, (L-uniformization) implies X}, ,-absoluteness for Ran-
dom.

2. T} (B-uniformization) implies E}L+2-absoluteness for Cohen.
We will now rephrase and prove that lemma for our more general case:

Lemma 5.2.5 Let n > 1. Il (P-uniformization) implies E,ll_I_Q-absoluteness

for P,

Proor Let us prove for n = 1. The general case follows by induction on
the complexity of the formula.

Let JzVyp(z,y, z) be a Li-formula with parameters in V, where ¢ is Xi.
Suppose that v is a P-real over V and V[v] = JzVyp(z, y, a), for somea € RNV,

Let b be a witness so that V[v] = Yye(b, y,a). Choose in V a term 7 for b.
7 may be chosen as a Borel function g such that

V[v] E Yye(g(v), y, a) (5.2)

(see 5.1.1).

Suppose V |= Yzdy-p(z,y,a). Then, V | Vedy—e(g(z),y,a). Let A =
{(z,y) : ~p(g(z),y,a)}. By IIi(P-uniformization), there is a Borel function
f such that {z : (g(z), f(z)) € A}* € Z. Choose a Borel set of B C {z :
(g9(z), f(z)) € A} such that B® € Z. Hence,

V EVe(x € B = —p(g(x), f(2),a)).

Since —p is I}, Vz(z € B = —¢(g(z), f(z),a)) is I} with the Borel codes for
B, f, g as additional parameters (see 5.1.2). So,

Vvl EVa(z € B= —¢(g(x), f(2), a)).
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But since v is a P-real over V', and since the complement of B is a Borel set in
the ideal Z in V, v € B (see 3.4.3). Therefore, V[v] E —¢(g(v), f(v),a), which
contradicts (5.2) above.

The other direction is simply by Shoenfield‘s theorem (cf [Je] Ch. 41) which
gives us X.1-absoluteness, and in the induction step - by the induction hypothesis.
|

Lemma 5.2.6 Fiz n > 0.
Assume TI,, ; -absoluteness for P. Take ¢ € (X} UTIY) and 7 the canonical
P-name for a P-real. Assign p = {x : ¢(z)}. Then

1. if p/T € P then
[e(n)] = p/T.

2. if p contains a subset q such that q/T € P, then

[e(m)] = /T

Proor Let us prove 2 first, and then 7 will follow easily. Take p and
q as mentioned above. Take a Borel set F' C ¢ such that F/Z = ¢q/Z (By the
assumption on ¢, where I is the o-ideal mentioned above). Take r = F/Z. 1
claim that r |- ¢(7). Take a € F* P-real over V (If there is none, then ¢ € 7
and we are done). Then
Vla] = ¢(a),

since by IT}, |, [IT}]-absoluteness for P,
VEVz € F(p(x)) = VP = Vr € Fp(z)).

But V[a] = 7[a] = a (7 is the canonical P-name for a P-real). So V]a] & ¢(7)
(and this is for each a € F* P-real over V), thus r IF ¢(7) and

le(m)] =2 ¢/
n

Now, for the first part of the lemma, notice that p satisfies the assumptions
given in the second part, of ¢. Thus it is obvious that

le(m)] =z p/T

For the the equality case, just observe that for ‘<’ we have

[=e(T)] = {2 - ~p(=)}/Z

(By the assumption of H}LH—absoluteness), which 1implies

l[e(r)l <p/T
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Thus
[e(r)] =p/T

Fact 5.2.7 Let ACR. (ANfe(r)]) ¢ Z = [e(r)] ¢ Z. (This is especially
correct for the case of A as our p from the last lemma)

ProOF [e(r)]€Z = AN[e(r)] €T (T is an ideal). ®

As an example of the last lemma’s use - one can observe the following corol-
lary:

Corollary 5.2.8 Fiz n > 0.

1. Assume X1(L). Assume also that H,ll_l_l-absoluteness for Random holds.
Take ¢ € (XL UTL) and 1 the canonical random name for a random real.

Then
u(le(r)]) = n({z:e(z)})

2. Assume X} (B). Assume further that 11} | -absoluteness for Cohen holds.
Take ¢ € (X} UTIL) and  the canonical cohen name for a cohen real.
Then

{z : ¢(z)}is not meager <= [p(7)]is not meager

|
Corollary 5.2.9 Let P be a countably generated forcing notion. Fix n > 0.
Assume I}, -absoluteness for . Take ¢ € (X} UIL). Assign p = {z : p(z)},

and 1 the dense embedding mentioned in theorem 3.2.13. Then there is a P-
name 7 for a P-real such that:

1. if p/Ip € Y(P) then
b(le(n]) = p/Ze

2. if p contains a subset q such that q/Ip € (), then
(le(r)]) = a/Ze

|
We will now use the notion defined in 3.4.1 to prove the opposite direction
to 5.2.5 under the assumptions of this notion.

Lemma 5.2.10 Assume X1(Z). Then, E}L_}_Q(JP))—absoluteness implies TIL (P)-
uniformization.
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Proor Let A = {(z,y) : ¢(z,y)} be a IT} subset of the plane. Suppose
that {z : A, = 0} € Z. Take C' a Borel subset of Z, with {z : A, = 0} C C.
Let B = {(z,y) : € C}. Thus B is a Borel set in Z x P(R). Let ¢ (z,y) be
an arithmetical formula that defines B. Then

V = Va(Jye(z,y) V Iy (z, y))

By E,ll_l_z—absoluteness for P

vE E Ve (Jye(z,y) V Iy (z,y))

Let 7 be the canonical name for a P-real in V.

VE = Jye(r,y) v 3yb(r, y)

Moreover, if a is a P-real over V, then Vla] | 7[a] = a. But since {z : By # (i}
is a Borel set contained in Z in V, a ¢ {z : By # 0}*. Hence

VP E Jye(r,y)

Let o be a P-name for a real such that

VP Eo(r,0)

Then we can find a Borel function f such that for each P-real a, V[a] = o[a] =
f(a). So
VEE o(r, f(1) (5-3)

Now Assume {z : —p(z, f(z))} € Z. Take p = [-¢(r, f(7))]. Take a € p* a
P-real over V' (one may do so, since by corollary 5.2.6, p ¢ Z). Then, Vi]a] |
—¢(a, f(a)) (p forces that), but that contradicts (5.3) above.

Therefore {z : —¢(z, f(z))} €Z. N

For our theorem to be complete, we need another property which is shown
in the following lemma:

Lemma 5.2.11 TI} (P-uniformization) implies ¥ (Z).

Proor  Take aset C € ©}. Take A = C°. Take A’ = A x {0} U {(z,z) :

z € A°}. By uniformization, we have a Borel function f such that

pu{z: f(z) =z V f(z)=0}) = 1.

Take B = {z : f(z) = 0}. Then B is Borel and u(AAB) = 0. Thus A has the
P.p, and therefore C' has the P.p. [ ]

Theorem 5.2.12 X ,(P)-absoluteness + ¥, (I) <= 11}, (P)-uniformization.
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ProoF Obvious from lemmas 5.2.10, 5.2.5 and 5.2.11. |

To emphasis the use of the previous theorem, let me give an example of the
use for Random and Cohen forcing notions.

Corollary 5.2.13 1. ¥} ,-absoluteness for Random + X (L) off 11}, (L)-
uniformization.

2. X} o-absoluteness for Cohen + X, (B) iff 11}, (B)-uniformization.



Chapter 6

Souslin Absoluteness vs
Projective regularity

In our last chapter we will use technical tools about Souslin forcing and the
theorems proved in the previouse chapter, to show that Souslin absoluteness

implies Al(L) and AL(B).

6.1 Latest Results

We have several goals in our research in descriptive set theory:

1. To find a statement about the reals that explains completely the theory
of the reals in Solovay models.

2. To find a combinatorial statement equivalent to “Projective measurabil-
ity” (as well as the Baire Property).

We have seen some result concerning the first direction in the previous chap-
ters. In the second direction we have the following results:

Theorem 6.1.1 ([Ju2]) 1. Al-measurability iff ©3 (Random)-Absolute
2. Al-categoricity iff £ (Cohen)-Absolute
3. Yi-measurability iff ¥ (Amoeba)-Absolute
4. Si-categoricity iff X (Hechler)-Absolute

Theorem 6.1.2 ([Ju2]) 1. X](Random)-Absolute + X} (Amoeba)-Absolute
— Al-measurability

2. ¥} (Cohen)-Absolute + S} (Hechler)-Absolute — A}-categoricity

44
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Shelah proved the following :
Theorem 6.1.3 (cf [Ju2] p.8) Xi(L) = (Vr e R)(w%[r] < wi).

Recently J. Brendle, using the ideas of [Ju2], proved the following
Theorem 6.1.4 (cf [Ju2] p.14) X} (Amoeba)-Absolute — T-measurability.

Corollary 6.1.5 (cf [Ju2] p.14) X} (Amoeba)-Absolute — Xi-categoricity.

6.2 Souslin Absoluteness & A} Measurability

In this section we will use the uniformization properties mentioned in the pre-
viouse chapter to show Al-measurability.
Suppose 7 is the canonical Random name for a random real.

Lemma 6.2.1 Assume That for some t € R, L[t]® |= o(1) <= ¢(r). Then:
L L E[pEIN[v(n)] =0
2 LU E[p@IVlv(n] =1
Proor

1. Suppose otherwise. So, there is a Borel set p of positive measure such that
[e(T)] N [¥(r)] = p. But then, if » € p is random over LL[t],

L[] = e(rlr]) Ad(rr]).

2. Suppose otherwise. So, there is a Borel set ¢ of positive measure such that
[e(m)]e N [¥(7)]¢ = q. But then, if » € ¢ is random over L[t],

L] E —e(rlr]) A =¢(r[r]).
|
Theorem 6.2.2 X}-absoluteness for Amoeba + Xi-absoluteness for Random
implies AY(L).

Proor Let A= {z:¢(z)}, B={z:¢(z)}, where p,¢ are X}-formulas
with parameters in V. Suppose

V EVz(p(z) & ().

i.e., Ais a A} set of reals in V. Then, by Xl-absoluteness for Random

VP Ve (p(z) & —¢()).

Now, suppose 7 is the canonical Random name for a random real.
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Claim 6.2.3 There erxists t € R such that u(A) = p([e(7)lpue)-

Proor  of claim: Let 1, ¢ be ITi-formulas such that ¢(z) = Jye: (=, y),
Y(x) = Ty (z,y).

V EVz(p(z) Vy(r)) = V E Vz(3y(ei(z,y) V Iy (7, v)))

Thus, by (6.1.4)
¥} (A)-absoluteness = V = B3(L).

Also since in V, Xi(B)-absoluteness holds, we have by (5.2.13) that IIL(L)-
uniformization holds. Thus there is a borel function f, and a null set N such
that

VEVe(z ¢ N=ei(z, f(z)) Vi (z, f(z))).

Let t code the parameters of ¢, and f. By L3(L) (actually we need only
¥1(L)), we have that pu(Ra(IL[t])) = 1. Take r € V Random over L[t]. Also
assume r ¢ N. Then

VI @i(r, f(r) Vi (r, f(r)).

Assume w.l.o.g that V |= ¢1(r, f(r)). By (5.1.2) “p1(r, f(r))” is a IT}-formula
in the additional parameters, borel codes for f,r. Thus by Shoenfield‘s Abso-
luteness Theorem (downward absoluteness) IL[¢][r] = ¢1(r, f(r)). Thus

L[] = (7).
Therefore we get that r € [(7)]gua. This is true for each » € A\ N. Thus
p(AN [p(T)]prn) = 0.

The same process shows that (B \ [¢(7)]gee) = 0. Now we only need to show
that the assumptions of lemma (6.2.1), hold for ¢. But, we have just seen that
for each r € V Random over L[t],

VEe(r) = LI = e(r),
and the same goes for ¢. So we get that
LU E—v(r) = V E () <= VEe(r) = LI E o).

The same goes for the other direction. Thus the assumptions of lemma (6.2.1),

hold. Thus
#([e(T)]) = n(A).
|
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6.3 AJ-Categoricity and the general case

We will now establish the general connection which was used in the previouse
section to show AJ(L), to show A}(Z) given X1(Z). For this we need a powerfull
assumption. We assume that V¢ € R

V = (Pr(L[t))° € 1.

The question, of the validity of this assumption under £}(Z) is still open. We
know though, that it is true under X1(L).
Suppose 7 is the canonical P-name for a P-real.

Lemma 6.3.1 Assume M s a transitive model of ZFC. Assume further that
MEB = o(r) < (7). Then:

1. ME[p(MIn[g(n)] =0
2. ME[p(n]uly(n)]=1
Proor

1. Suppose otherwise. So, there is a Borel set p ¢ Z such that ()] N
[#(7)] = p. But then, if r € p is a P-real over M,

M= ¢(r[r]) A (rlr]).

2. Suppose otherwise. So, there is a Borel set ¢ ¢ Z such that [¢(7)]°N
[¥(7)]¢ = q. But then, if r € ¢ is a P-real over M,

M —p(rlr]) A=(r]r]).

Theorem 6.3.2 Assume Vt € R, V = (Pr(IL[t]))* € Z. Then Li(Z) + Xi(P)-
absoluteness implies AY(Z).

ProoFr Let A= {z:¢(2)}, B={z:¢(z)}, where p,¢ are X}-formulas
with parameters in V. Suppose

Ve Valp(e) & ()
i.e., Ais a Al set of reals in V. Then, by %}(Z)-absoluteness
VEE vz (p(z) & —¢(x)).

Now, suppose 7 is the canonical P-name for a P-real.
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Claim 6.3.3 There erxistst € R such that AA[¢(7)]pum € Z.

Proor  of claim: Let 1,1 be ITi-formulas such that ¢(z) = Jye: (=, y),
Y(x) =Ty (z,y).

V EVz(p(z) Vy(r)) = V E V2(3y(ei(z,y) V Iy (7, v)))

Since V = ¥4(Z) and in V, XL (IP)-absoluteness holds, we have by (5.2.12) that
13(Z)-uniformization holds. Thus there is a borel function f, and a set I € Z
such that

VEVz(x ¢ =i, f(x) Vi, f(2).

Let t code the parameters of ¢, and f. By our assumption V = (Pr(IL[t]))¢ €
Z. Take r € V a P-real over LL[t]. Also assume r ¢ I. Then

VI @i(r, f(r)) Vi (r, f(r)).

Assume w.l.o.g that V |= ¢1(r, f(r)). By (5.1.2) “p1(r, f(r))” is a II}-formula
in the additional parameters, borel codes for f,r. Thus by Shoenfield‘s Abso-
luteness Theorem (downward absoluteness) IL[¢][r] = ¢1(r, f(r)). Thus

L[] = ¢(r).
Therefore we get that r € [¢(7)]gua. This is true for each » € A\ I. Thus
AN[p(r)] €.

The same process shows that B\ [#(7)] € Z. Now we only need to show that
the assumptions of lemma (6.3.1), hold for ¢. But, we have just seen that for
each r € V, P-real over L[t],

VEe(r) = LI = e(r),
and the same goes for ¢. So we get that
L E —4(r) = V E () <= VEe(r) = LY E ().

The same goes for the other direction. Thus the assumptions of lemma (6.3.1),
hold. Thus
[e(n)]AAET.

Lemma 6.3.4 X}(L) = (Vt € R)(V | (Pr(L[t]))¢ € Z).
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ProOF By (6.1.3) we know that S3(L) = (Vr € R)(w%[r] < wi). So
vt € RV (RM is countable). Also by (3.4.3) we know that a real number is a

P-real over IL[t] iff it does not belong to any Borel set I € Z with a code in LL[¢].
Thus

e Pr(Llt]) < w¢| {X:XeZnlL[]}e1".

Therefore
(Vt e R)(V = (Pr(L[t]))° € 7).

Corollary 6.3.5 X}(A)-absoluteness + L1(Z) + LL(P)-absoluteness implies AL(T).

Proor using the previouse theorem and lemma. ®

Corollary 6.3.6 Souslin-Absoluteness implies A}(Z) (and therefore AL(B)).
|
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