Appearsin 5th Symposium on Logical Formalization of Commonsense Reasoning (Commonsense 2001).

LiSA: A Robot Driven by L ogical Subsumption

Eyal Amir and Pedrito Maynard-Reid ||
Computer Science Department
Stanford University
Stanford, CA 94305
{eyd.amir,pedmayn} @cs.stanford.edu

Abstract

This paper describes an implemented robot-control
system that is based on Brooks-style subsumption
[3] of logical theories. It implements Brooks-style
subsumption between layers using nonmonotonic
reasoning. We describe the control and reason-
ing algorithms and some of the experiments that
we did with the system, running on a Nomad200
robot and a set of computers. Our experimen-
tal study shows that commonsense theories and
general-purpose first-order logic theorem provers
can be used to control real-time agents and robots
in particular. Our system improves over traditional
subsumption systems in several ways. It allows the
user to send new axioms to each of the layers as the
robot is running, allowing the user to give advice
to the robot and to correct behaviors in runtime.
Our system has no voting scheme for deciding on
the behavior that should be followed. Instead, the
layers work in synergy to provide the compound
behavior. Our system improves over other robot-
control systems that are based on logic in that it al-
lows full first-order expressivity and that it is fully
declarative.

1 Introduction

Logic is promising for Al because it has the ability to rep-
resent virtually every domain and problem that humans and
other intelligent beings may be interested in. An approach ad-
vocated by Al researchers that study logical approaches (e.g.,
[16]), is to represent the world and the computer’s view of it
in logical theories and then let the computer use these logical
theories to reason and act in the world. This approach has
recently been reinvigorated with the successes of several im-
plementations (e.g., [14; 21]). These use logical theories for
semantics of robot-control systems and for specifying high-
level control. Recently, [1] suggested that the subsumption
architecture of [3] may be used to revisit this point of view.
Each layer in a subsumption architecture can represent the
behavior of the layer with a logical theory. The real-time use
of theorem provers or other more specialized reasoners with
these theories is then used to control a mobile robot. In this
paper we report on an empirical validation of this suggestion.

This paper shows that real-time commonsense control of an
Al agent can be achieved with an architecture based on log-
ical theories and general-purpose theorem provers with the
use of subsumption. We report on a system that follows these
ideas, and a set of experiments executed with this architecture
on a mobile robot. Our architecture uses layers of logical the-
ories and theorem provers put in a Brooks-style subsumption
system. Each layer performs autonomous theorem proving of
a pre-specified goal, sending the result to lower layers. We
use nonmonotonic reasoning in each layer to implement sub-
sumption by assuming defaults that may be subsumed when
information arrives from higher layers or from the agent’s
Sensors.

The architecture has been implemented and tested on a mo-
bile robot. It exhibits real-time performance and performs
navigation and control tasks. The layers can receive and in-
corporate new axioms from the user at run-time, allowing the
user to give advice to the robot and to correct behaviors that
are erroneous. The architecture also allows incorporating lay-
ers that perform diagnosis and layers that remember experi-
ences for other layers.

Previous work on using subsumption with logical theories
and theorem provers [1] has shown that the time taken by
theorem provers to prove the needed assertions is low enough
to promise real-time control of Al agents, but has presented
little empirical evidence of such control on a running system.
Our work also improves over results presented using GOLOG
(e.g. [14]) and the work of [21] in that our system is fully
declarative and has the full expressiveness of FOL. We pro-
vide a more detailed comparison to these and other related
work at the end of the paper.

2 Logic-Based Subsumption

This section describes how we implement the principles dis-
cussed above. The first important idea that this architecture
borrows from Brooks’ architecture is that of decomposing the
domain along behavioral lines into simple layers. Unlike sys-
tems that followed Brooks’ work, it allows the layers to work
in synergy to produce the compound behavior.

2.1 Basic Machinery

A Logic-Based Subsumption Architecture (LSA) is built of
layers corresponding to behaviors (see Figure 1). The layers
work concurrently and asynchronously to each other.

We distinguish four parts of a logical layer: (1) the body
of the layer, (2) the sensory and input Latches, (3) the out-
put, and (4) the default assumptions. The body of the layer is
a fixed axiomatization describing the behavior of that layer.
The latches are used to accept input axioms from the sensors
and from higher layers and replace them at the beginning of
every cycle (rather than accumulate this input). The output
is a fixed set of goal sentences (possibly with some free vari-
ables) whose proof and instantiation determine the behavior
sanctioned by the layer’s theory (including the latches ax-
ioms). The default assumptions are used to implement the
idea of subsumption between layers. These assumptions are
implemented using nonmonotonic reasoning methods, which
we describe in more detail in Section 2.2.

TN
e

T e 1Y
" Theory1 >
¢—1

Sensor @*) Effectors

Figure 1: An abstract diagram of the LSA.

A logic-based subsumption system is comprised of a set
of layers, each equipped with a theorem prover and concur-
rently running its own processing loop. The processing loop
of each layer proceeds as follows: First, collect any perti-
nent sensor data and assert it in the form of logical axioms.
Simultaneously, assert any inputs from higher-level theories.
The theorem prover of that layer then attempts to prove the
layer’s goal, from the theory including the default assump-
tions. Upon proving its goal, the layer transmits the goal in-
stantiation to the layer below or (in the case of the lowest
layer) to the robot manipulators.

Because the axiomatization of a layer is usually much
smaller than that of the whole system, each cycle is less com-
putationally expensive than running one theorem prover over
the whole compound axiomatization. As in Brooks’ system,
lower layers controlling basic behaviors are trusted to be au-
tonomous and do not need to wait on results from higher lay-
ers (they assume some of them by default) before being able
to respond to situations.

We will typically include a form of nonmonotonicity that is
not computationally expensive or that is a fast approximation
for a more computationally heavy form of nonmonotonicity.
Using a fast form of nonmonotonicity for implementing de-
fault assumptions and having lower layers typically having
simpler axiomatizations, the cycle time to compute these lay-
ers’ outputs can be significantly shorter than that of more
complex layers.

2.2 Circumscription-Based Subsumption

We use nonmonotonic reasoning to introduce defaults for
each layer. Without nonmonotonicity in each layer, goals that
were proved once without input from higher layers cannot be

rejected upon the introduction of new axioms arriving from
higher layers.

An example of a suitable nonmonotonic-reasoning system,
is McCarthy’s circumscription [17] formula:

Circ[A(P,Z); P; Z] =
A(P,Z) AVp,z (A(p, z) = —(p < P))

It says that in the theory A, with parameter relations and
function sequences P, Z, P is a minimal element such that
A(P, Z) still holds while Z is allowed to vary in order to
allow P to become smaller. Roughly speaking, adding this
formula allows us to say that the predicate P is true for only
those elements for which it must be true. In other words, P
is false by default. To state more complicated defaults one
can add axioms and predicates. For example, if we want to
say that P is true by default, then we can add a new predi-
cate symbol, P’, and the axiom Yz P(z) <= —P'(z), and
minimize P’ in the circumscription formula.
Take, for example, the theory

A = block(By) A block(Bs)

The circumscription of block in A, varying nothing, is
Circ[A;block;] = A AVD [Appiock/p) = —(p < block)] and
is equivalent to Vz (block(z) < (z = B1 Vz = Bs)). By
minimizing block, we have concluded that there are no other
blocks in the world besides those mentioned in the original
theory A.

In the LSA, we use circumscription for two distinct tasks:
assuming defaults in the layers and giving semantics to the
system of layers as one big logical system. The first is the
one used to implement subsumption in the actual system, in-
fluencing both the semantics and the implementation. The
second is needed for giving semantics to the directional na-
ture of the complete system (i.e., that messages between lay-
ers go only in one direction).

To implement the idea of subsumption, we let each layer
make default “assumptions” about the inputs that later may
be adjusted by other (higher-level) layers. These assump-
tions typically take the form of the Closed-World Assumption
(CWA) by minimizing a predicate in the layer’s input lan-
guage (Extended CWA, a generalization of CWA, was shown
to be equivalent to circumscription [8]).

More formally, for a set of axioms, A, let L(A) be the set
of nonlogical symbols (predicates, functions, and constants)
that appear in A. Also, let £(A) be the FOL language built
using the symbols in L(A) (a language here is the set of all
FOL sentences that can be built from those symbols). Let
Layer; be the combined theory of layer 4, i.e., the combi-
nation of the body axioms, Base;, the sensory-latch axioms,
Sensors;, and the input-latch axioms, Input;. Let C_’} be a
set of predicates in £(Layer;) for which we wish to assert
CWA. Then, subsumption is achieved for layer i by using the
parallel circumscription policy

Circ[Layer;; C—"i; L(Layer;)] D

When implemented, this formula often can be substituted
with a simple (external to the logic) mechanical interference

determining the value of the minimized predicates; we dis-
cuss this issue in section 4. Other systems for nonmonotonic
reasoning can also be used instead of circumscription, de-
pending on the intended behavior and the designer’s choice
of tradeoffs (e.g., time versus expressivity).

2.3 Putting It All Together

In the case of using Circumscription for nonmonotonic asser-
tions, each layer tries to prove

Circ[Layer;; C;; Z;] |= 32Goal;(T)

Here, C_’}, Z; are specified as part of the defaults for layer
i, Layer; is the set of axioms including the body and the
latches and Goal;(%) is a goal formula specified for layer 4
(Z is a vector of variables open in Goal;(£)). Upon prov-
ing Goal; (@), the layer transmits Goal;(@) either to the layer
below or (in the case of the lowest layer) to the robot manip-
ulators. Figure 2 summarizes this algorithm, while Figure 3
illustrates the process.

PROCEDURE LSA({Layer;}i<n, {Goal;}i<n)
{Layer;}i<n a layered theory T, Goal; a fixed goal in
L(Layer;) (i < n).

Concurrently, for each layer, i:

1. Request sensory data from the robot and assert it into
the Sensory Latch, Sensors;.

2. Combine axioms in the Body theory with those in
the sensory and input latch: Layer; < Base; U
Sensors; U Input;.

3. Let the theorem prover for this layer attempt to prove
Circ|Layer;; Ci; Z;) = 3% Goaly(Z) (ie., from
Layer; given the default assumptions).

4. If Goal;(@) was proved for assignment @, assert
Goal;(a@) in the Input Latches of layer i — 1, Input;_;.

Figure 2: The LSA algorithm.

L2 input Seek
Sensors Destination Outpu
Goal 1
| LO
Sensors| | Llinput | Avoid output Action
sensors | Obstacles

Figure 3: A detailed look at two layers.

This description of LSA hides two issues: First, what hap-
pens when a layer cannot prove something? Second, what
happens to the input latch of a receiving layer after some time
has passed? For the first question, in general we assume that
the theorem prover for each layer works without interruptions

until it finds a proof. If the theorem prover did not find a
proof after some timeout, we restart the prover (possibly on
a different sub-space of the search space) with the new latch
information. Alternatively, one can assume that the sensory
latch and the input latch are refreshed asynchronously, and
the prover immediately takes any new information into ac-
count, discarding any old information from that latch (and
any of the consequences it may have made on the basis of the
old latches). For the second question, we assume in this pa-
per that latch information disappears after some time. Thus,
if layer 1 did not prove its goes for the last few seconds, then
layer O will no longer consider an axiom sent previously by
layer 1 as valid.

3 Logical Layersfor a Mobile Robot

In this section we describe the logical theories used in a con-
trol system we have implemented for a Nomad200 mobile
robot operating in a multi-story office building. All theo-
ries but layer 1 are significant extensions and modifications of
those presented in [1]. The Nomad200 is a cylindrical robot
with sonar sensors on its perimeter, wheels that control its
motion, and encoders that compute an estimate of the robot’s
position and angular heading (see Figure 4).

The system includes five logical
layers. Each layer’s body theory can
be seen as having two main parts that
we categorize roughly into sensory-
focused and goal-focused. Most the-
ories also include other axioms that
describe domain-dependent relation-
ships in the world. This distinction
into parts is not reflected in the system
or in its behavior at the moment. The
following description uses upper-case
letters to denote variables and lower- .)
case letters for constants. We describe 19ure 4: Nomad
the theories but not the goals or de- 200
faults taken. Those are similar to those specified in [1].

3.1 LAYER 3. Wide-Range Motion Planning

The top layer, layer 3, is responsible for high-level robot mo-
tion planning. The theory can be seen as comprising of three
main parts: sensory-focused, goal-focused and spatial rela-
tionships in the world. The goal-focused part represents the
effects of robot motions in situation calculus [19]. There
is only one fluent, the robot’s location, and only one action
schema, moveto(L), where L is a location variable. For this
simple situation calculus theory it is convenient to consider
the actions as having duration and the situations as histories
of actions from the initial situation, SO. This theory has a
single effect axiom:

VLO, L, S at(r, L0, S) A visuallyConnected(L0, L) =
at(r, L, result(moveto(L), S))

where visuallyConnected(L0, L) means that there is a line
of sight between L and L0. No frame axioms or explanation
closure axioms are needed, as this effect axiom specifies the
value of the only fluent in our theory.

S0 is considered to be the situation the robot is in when
the layer receives the sensory and other input axioms. The
sensory-focused part of the theory includes a representation
of the relationships between landmarks in the world and the
cartesian coordinates supplied by the robot’s odometry sen-
sors. Among other things, the robot knows when it is between
landmarks using the axiom

visuallyConnected(P1, P2) A curr_loc(X,Y)A
cartesian(P1,C1) A cartesian(P2,C2) A C1 # C2A
pos_between(C1,[X,Y],C2) =
current_landmark(between(Pos1, Pos2))

where [X,Y7] is considered between C1,C?2 if it is close
enough to the straight line passing through them.

Axioms for spatial relationships describe the relation-
ships between rooms, room entrances, corridors, floors
and elevators. For example, rooms are visually linked to
their entrances, and locations that are in the same cor-
ridor are visually connected as well. Other axioms de-
scribe invariants of the domain, such as the commutativity
of visuallyConnected and the fact that a position between
two visually connected positions is visually connected to both
positions.

3.2 LAYER 2: Local Action Planning

Layer 2 is responsible for translating target landmarks into
cartesian coordinates for the robot, and for planning and low-
level interaction and control with the elevators. The the-
ory can be seen as comprising of four main parts: sensory-
focused, motion-focused, elevator-focused and spatial rela-
tionships in the world.

The motion-focused subtheory uses a map and a simple ax-
iom to translate landmarks to cartesian locations. The lower
layer, layer 1, does not know about the existence of floors,
and the move command that is to be executed by lower layers
does not include a floor parameter.

target_landmark(L) A —elevator related(L)
Acartesian(L,[X,Y]) = move_emd(X,Y)

The elevator-focused subtheory is a situation calculus the-
ory with four main fluents: the location of the robot, the loca-
tions of the two elevators and whether two locations are visu-
ally connected. There are three action schemas: moveto(L),
which moves the robot to location L; call Elev, which calls
the elevator; and orderElev(floor(F)), which commands
the elevator to go to floor F'. There are three effect axioms
for the three schemas. For example,

VF, S (at(r, front(elev(floor(F))),S) =
352, E temporally_close(result(call Elev, S), S2)A
elevator(E) A at(E, floor(F),S2))

says that at some point after calling the elevator one of the ele-
vators (there are two) would come. For this situation calculus
theory we need some frame or explanation-closure assump-
tions. Since the number of effect axioms and fluents is small,
there is no harm in specifying frame axioms, such as

VF, S (at(r, front(elev(floor(F))),S) =
at(r, front(elev(floor(F))), result(call Elev, S)))

The sensory-focused and spatially-focused theories are
similar to the ones used in layer 3. The main difference from
layer 3 is that the property of two locations being visually
connected is now dependent on the situation (the elevators
may be connected to their entrances or not).

3.3 LAYER 1. Destination-seeking

Layer 1 supports simple movements towards a goal location.
Given the orientation of the robot and the distance and direc-
tion to the goal location, it concludes the existence of a push-
ing object in a particular location close to the robot (later,
layer O will use this extra object to guide the robot in a partic-
ular direction).

The theory can be seen to have two main parts: sensory-
focused and goal-focused. The sensory-focused part trans-
lates the subjective odometry and direction of the robot to a
global view of the robot in the world. The goal-focused part
uses the goal location, the distance to the goal and a set of
quadrants to decide where to place a pushing object (if at all).
For example,

VX,Y,X2,Y2,Qd currloc(X,Y) Adest(X2,Y2)A
quadrant(X—X2,Y-Y2, Qd) = push_object(Qd)

34 LAYER 0: Obstacle-avoidance

Layer 0 is responsible for deciding what low-level action
the robot should perform. The theory has two main parts:
sensory-focused and control-focused. The sensory-focused
part considers sensory input only from the sonars. It
takes its input, asserted in the form of the axiom schema
SonarReading(sonar_number) = dist, from the physical
sonars and translates it into a map of objects, recording their
distance and direction (relative to the robot).

The control-focused part decides which of the actions to
perform, summing up the forces that the different objects
around the robot exert on it (forces that are correlated to the
distances of the objects to the robot). It uses the resulting
force to determine whether the robot should turn or move for-
ward and with what velocities so as to maximally avoid the
objects.

VA, S, Asp heading_angle(A) A need_turn(A)A
heading_speed(S) A need_fwd(S)A
angle_speed(Asp, A) = turn(Asp)

This axiom uses heading_speed(S) and need_fwd(S) to
prevent the robot from turning in one direction and then a
different direction due to sensory noise (only if we need to go
to a particular place will we turn to get there).

35 LAYER-1: Halt or Go

The lowest layer, layer -1, is responsible for sending actions
to the robot or halting the robot. It has a theory similar to
layer 0 but with additional axioms that check if there are ob-
jects that the robot is about to collide with.

object(Obj) A distance(Obj, Dist) A Dist < min_distA
direction(Obj, Dir) A (Dir < 3wV Dir > 12m) =
object_ahead

Li
Input
o L__.

Layer et |
: L3
(AR L4input | Motion
| Sensors Planning upst 7
| Goal 3
3 l L2
L-+---= L3input | Domain
' Sensors Planning T
| Goal 2
1 | L1
r-4--- L2input Seek
! sensors_|Destinatior] ©"™" [|
| Goal 1
3 | LO
L-d---~ Liinput | Avoid
i sensors | Obstacles o
| Goal 0
: | L-1
to - - -~ Loinput Halt

Output
Sensors Sensors Robot Goal-1
Sonar and Odometr Actions
{ ¥ Robot }

Figure 5: Diagrammatic view of an LSA system controlling
a robot.

4 Implementation on a Mobile Robot

4.1 The Software and Dynamics of the System

We have implemented the above architecture using the PTTP
theorem prover ([22]) on a cluster of Sun SuperSparc 1 sta-
tions running SWI Prolog or Quintus Prolog? as the underly-
ing interpreter for PTTP. The system runs on a Nomad 200
robot.

PTTP (Prolog Technology Theorem Prover) is a model-
elimination theorem prover using iterative deepening in the
proof space. Given a theory made of clauses (not necessar-
ily disjunctive) without quantifiers, PTTP produces a set of
Prolog-like Horn clauses, ensures that only sound unification
is produced, and avoids the negation-as-failure proofs that
are produced by the Prolog inference algorithm. It is sound
and complete for refutation in FOL (general first-order sen-
tences are translated into clausal form in the usual way, using
Skolemization).

Our implementation? is written in C++ with classes allow-
ing prover-specific implementation: Layer is the superclass
of Layer_gp (Quintus prolog with PTTP), Layer_swi (SWI

1Quintus Prolog 3.4 has a bug that preventsit from running with
some of thelayerswithout crashing. For some other layersitisfaster
than SWI, though.

2The implementation of this system can be found at http://www-
formal .stanford.edu/eyal/lsa/.

prolog with PTTP) and Layer_input (a layer used in an ex-
ecutable that allows the user to send new axioms to the other
running layers). An executable consists of a Layer object (the
central piece of the executable), objects for communication
(TCP/IP), and an embedded theorem prover (in the case of
PTTP, this means an object file consisting of a prolog imple-
mentation and a compiled PTTP). There is a separate layer
for the communication with the robot that translates layer -1’s
proven goals to robot motion commands, and sends sensory
information to the layers on request.

Each time a layer is run (with whichever theorem prover
implementation) a configuration file specifies the theory it
should initially load and the communication pattern of the
layer. The communications part specifies the layers from
which it should accept axioms, the host/port of that layer, and
the mode of communication, i.e., whether it is synchronous
(request data explicitly) or asynchronous (use the data in the
latch).

After initializing the communication, it initializes the the-
orem prover and loads the body theory into it. Then it runs
the following infinite loop: First, the layer reads the messages
that are on the ports and asserts the latest ones from each port
into the theorem prover; then, the layer attempts to prove the
goal; finally, upon successful conclusion, it sends the result
of the proof to listening layers below it.

The information that the layer reads from the ports over-
rides previous latch data. However, if no information has
arrived on a specific port, it reuses the information that ar-
rived previously. This allows the layers to work at differ-
ent frequencies without confusing delay in communication or
computation for a directive that overrides the latest informa-
tion from that layer. To avoid ambiguity, most layers prove
layer_i_failed if they failed to prove the goal (depending on
the defaults asserted for each layer). In that case, this proved
assertion is sent to the listening layers, which use this mes-
sage to override previously received assertions.

4.2 LiSA’sbehavior

We ran several experiments on LiSA with goals of traveling
to different rooms in the building. Figure 6 presents average
total time measurements for each layer during these experi-
ments (the final paper adds other statistics and a breakdown
of timing according to tasks/scenarios). This figure shows
that the current implementation is somewhat slow for a truly
reactive behavior. Currently we are working on speeding up
several components of the system. We plan to report on the
improved behavior in the final version of this paper.

Each experiment with LiSA starts with running the logical
layers, the nomad layer and the input layer. LiSA has a given
map that is used by layers 2 and 3. We reset the robot in a
position and heading that matches this map. Using the input
layer, we tell the robot that its goal is to navigate to one of
the rooms or across the lab. It takes from a few seconds to
a minute before layer 3 finds a plan from its current location,
and sends a goal landmark to layer 2. Layer 2 instantaneously
translates the landmark into a goal location and sends it to
layer 1. Layer 1 then provides a pushing object to layer 0.
Layer 0 sends a motion command to layer -1, and layer -1
executes it, if there are no direct obstacles in front of it. The

18

1.4r q

1.2r q

0.8 —

0.6

0.4r

0 [] |
-1 0 1 2 3

Figure 6: Average time (in seconds) per cycle for each of the
layers®. The bars for each layer correspond to total cpu-time
per cycle, cpu-time for proofs in a cycle, total clock time per
cycle and clock time for proofs in a cycle, in this order from
left to right.

robot typically starts turning until it faces in the direction that
it intends to go and then proceeds forward towards that target.
The transition between turning and moving forward is smooth
and without delays.

In our experiments, LiSA took from 30 seconds to two
minutes to move from one landmark to the next, with land-
marks that are approximately 4-10 meters apart and with ob-
stacles that are close to its path. When we put obstacles such
as chairs and humans in front of the robot, it managed to go
around them without colliding or hesitating.

In our earlier experiments, before we improved the theory
of layer 3, LiSA sometimes got lost. If an obstacle was put in
LiSA’s path and she had to go around it, the next time layer
3 tried to plan a path to the goal it sometimes did not know
where LiSA was, as she was not close to any landmark (and
may have moved significantly away from the path to the next
landmark). In that case, we were able to use the input layer
and send an axiom into LiSA’s layer 3 telling it that LiSA
was between the two landmarks. Currently, LiSA’s layer 3
re-uses the last proven goal landmark as the default that is
sent to layer 2 if layer 3 fails. This sidesteps the problem, but
is not consistent with our semantics, as our theoretical layers
have no memory or state. We plan to extend the system and
the semantics using models of belief update to allow memory
and belief change in a consistent manner.

“Thereis some discrepancy between these measurements and the
real-time behavior of the system. These measurements are given for
the system running with all logs registering the advance of proofs
and other messages that are required to collect statistics for these
runs. These mechanismstypicaly slow the system down by a factor
of about 4.

4.3 Tuningthe System

Theorem provers are notoriously slow, which is one of the
main reasons they usually are not used for time-sensitive ap-
plications. However, in this implementation we were able to
sidestep this difficulty by using only small and simple theo-
ries and using a fast approximation of nonmonotonic reason-
ing to conclude defaults. We attribute the speed achieved by
our system to several optimizations that we mention below.

During our experiments it became clear to us that much of
the bottleneck in some layers was in concluding that there is
no proof. Without this conclusion, the layer cannot terminate
the cycle and start a new cycle (with new sensory information
and new latch information). For this reason, each layer has an
associated limit on the depth of the search allowed for a proof
of the goal. If no proof is found up to this depth, we conclude
that for any run-time purpose there is no proof. This depth
limit is determined experimentally and is specified together
with the goal formula.

Depth limit is also used to implements a rough approxima-
tion for defaults. For example, layer O implements the CWA
for objects by aggregating all the objects that it can find up
to a specified proof depth. Under the same assumption we
consider the depth limit on the proof of the goal as a default
that says that the goal is false by default.

The same mechanism allows us to provide islands in
the search space of the prover. For example, in layer
3 we first try to prove that the robot is currently at a
particular location. If we succeed, we add the assertion
at(r, Curr Landmark, s0) as a temporary new axiom to
the prover, where Curr Landmark is the landmark that we
found the robot to be at. This sometimes cuts the depth of the
proof search space by 10, which has a significant influence on
the proof time (cuts the proof time in those cases by a factor
of approximately 10).

Applying caching to the proof of get_force has a similar
effect. Since every proof in layer O re-proves get_force many
times, caching improved the performance of Layer 0 signif-
icantly (from approximately 10 seconds to 0.1 seconds per
proof on a Sun UltraSparc 60).

Finally, we use a semantic attachment in Layer O for the
predicate get_force. It is embodied in a C function that re-
turns the force vector [Strength, Direction]. It calls Prolog’s
setof operator to collect all the objects for which existence
proofs can be found, then computes the sum of the forces
contributed by each object. This CWA is achieved by limiting
proofs to be no longer than a specified constant, as described
above.

5 Redated Work

Compared to other approaches to robot-control that use logic,
LiSA is the only one using full FOL theorem provers for rea-
soning. This is the first presentation of a robot-control ar-
chitecture that is built on theorem provers and is suitable for
realizing complex tasks in real time.

Shanahan [21] describes a map-building process using ab-
duction, but then implements his theory in an algorithm that
is proved to have an abductive semantics. Baral and Tran [2]
define control modules to be of a form of Stimulus-Response

(S-R) agents, relating them to the family of action languages
A (e.g., [7]). They provide a way to check that an S-R mod-
ule is correct with respect to an action theory in A or AR
and provide an algorithm to create an S-R agent from an ac-
tion theory. Systems based on the GOLOG project (e.g., [14;
9]) have a planner that computes/plans the GOLOG program
off-line, only later letting the robot execute the nondetermin-
istic GOLOG program on-line. Logic and situation calculus
([19]) are used to give semantics for GOLOG programs. An-
other, somewhat earlier line of work, concentrated on compi-
lation of logical description into control languages (e.g., [11;
12; 13]).

Compared to this work, our system is the first to allow
declarative representation and reasoning in real time, en-
abling the full power of first-order logic. Also, being able
to send logical-formulae advice to the robot at run-time is a
property that has not seen (to our knowledge) since Shakey
the robot [20].

Compared to subsumption systems for robot control (e.g.,
[4; 5; 15; 10; 6]) our system allows the user to send new ax-
ioms to each of the layers as the robot is running. This allows
the user to give advice to the robot and to correct behaviors
in runtime. In addition, our system has no voting scheme for
deciding on the behavior that should be followed. Instead,
the layers work in synergy, sending messages to each other,
together providing the compound behavior.

Clearly, we have not solved the age-old problems with
using theorem provers, and there are limitations to our ap-
proach. However, with proper tuning and given recent ad-
vances in automated reasoning, this kind of system seems to
support high-level reasoning that is still reactive, offering a
major advantage to robotic systems and systems that wish to
perform commonsense reasoning online.

6 Conclusion

We have shown that theorem provers can be used for robot
control by employing them in a layered architecture. \We have
demonstrated that the architecture and the versatility of theo-
rem provers allow us to realize complex tasks, while keeping
individual theories simple enough for efficient theorem prov-
ing.

There are many important avenues for extending this sys-
tem. Memory and state can be added to the system easily, but
they do not fit the current semantics. We plan to use belief
update semantics to extend this framework and allow such
modifications as defaults that change according to the beliefs
of the robot and diagnosis of the robot behavior and where-
abouts for determining its location. Also, we wish to create
such reactive systems automatically from first-order theories
that describe the intended behavior. We plan to pursue these
goals in the near future.

7 Acknowledgments

We wish to thank Mark Stickel for allowing us to use his
PTTP sources (both for PROLOG and LISP) and providing
helpful answers to our inquiries regarding its use. We also
thank Nils Nilsson and Jean-Claude Latombe for allowing

us to use their Nomad 200 robots, and to Héctor Gonzélez-
Bafos for a lot of help and advice with using (and occa-
sionally fixing) the robots. This research was supported by
an AFOSR grant AF F49620-97-1-0207, and by a National
Physical Science Consortium (NPSC) fellowship.

References

[1] E. Amirand P. Maynard-Reid Il. Logic-based subsump-
tion architecture. In Proc. Sixteenth International Joint
Conference on Artificial Intelligence (1JCAI ’99), pages
147-152, 1999.

[2] C.BaralandS. C. Tran. Relating theories of actions and
reactive control. Electronic Transactions on Artificial
Intelligence, 1998. Under Review.

[3] R.A.Brooks. A robust layered control system for a mo-
bile robot. IEEE Journal of Robotics and Automation,
RA-2(1):14-23, March 1986.

[4] R. A. Brooks. Elephants don’t play chess. Journal
of robotics and autonomous systems(1-2), 6:3-15, June
1990.

[5] R.A.Brooksand A. M. Flynn. Robot beings. In Pro-
ceedings of the IEEE/RSJ Int’l Conference on Intelligent
Robotics and Systems (IROS-89), pages 2-10, 1989.

[6] R.A.Brooksand L. A. Stein. Building brains for bod-
ies. Autonomous Robots, 1(1):7-25, 1994.

[71 M. Gelfond and V. Lifschitz. Representing Actions and
Change by Logic Programs. Journal of Logic Program-
ming, 17:301-322, 1993.

[8] M. Gelfond, H. Przymusinska, and T. C. Przymusinski.
On the relationship between circumscription and nega-
tion as failure. Artificial Intelligence, 38(1):75-94, Feb.
1989.

[9] G. D. Giacomo, R. Reiter, and M. Soutchanski. Ex-
ecution monitoring of high-level robot programs. In
A. Cohn, L. Schubert, and S. C. Shapiro, editors, Pro-
ceedings of the 6th International Conference on Knowl-
edge Representation and Reasoning (KR-98), pages
453-464. Morgan Kaufmann, 1998.

[10] 1. Horswill. Polly: A vision-based artificial agent. In
Proceedings of the 11th National Conference on Ar-
tificial Intelligence, pages 824-829, Menlo Park, CA,
USA, July 1993. AAAI Press.

[11] L. P. Kaelbling. REX: A symbolic language for the de-
sign and parallel implementation of embedded systems.
In Proceedings of the AIAA conference on computers in
aerospace, pages 255-260, 1987.

[12] L. P. Kaelbling. An architecture for intelligent reactive
systems. In J. Allen, J. Hendler, and A. Tate, editors,
Readings in Planning, pages 713-728. Morgan Kauf-
mann publishers Inc.: San Mateo, CA, USA, 1990.

[13] L. P. Kaelbling and S. J. Rosenschein. Action and plan-
ning in embedded agents. Robotics and Autonomous
Systems(1-2), June 1990, 6:35-48, 1990.

[14] H. Levesque, R. Reiter, Y. Lesprance, F. Lin, and
R. Scherl. Golog: A logic programming language
for dynamic domains. Journal of Logic Programming,
31:59-84,1997.

[15] M. J. Matari¢. Integration of representation into goal-
driven behavior-based robots. |EEE Transactions on
Robotics and Automation, 8(3):304-312, June 1992.

[16] J. McCarthy. Programs with common sense. In Mecha-
nisation of Thought Processes, Proceedings of the Sym-
posium of the National Physics Laboratory, pages 77—
84, London, U.K., 1958. Her Majesty’s Stationery Of-
fice. Reprinted in McC90.

[17] J. McCarthy. Applications of Circumscription to For-
malizing Common Sense Knowledge. Artificial Intelli-
gence, 28:89-116, 1986. Reprinted in [18].

[18] J. McCarthy. Formalization of common sense, papers
by John McCarthy edited by V. Lifschitz. Ablex, 1990.

[19] J. McCarthy and P. J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, 1969.

[20] N.J. Nilsson. Shakey the robot. Technical Report 323,
SRI International, Menlo Park, California, 1984.

[21] M. P. Shanahan. Robotics and the common sense infor-
matic situation. In Proceedings ECAI 96, pages 684—
688, 1996.

[22] M. E. Stickel. A Prolog Technology Theorem Prover: a
new exposition and implementation in Prolog. Theoret-
ical Computer Science, 104:109-128, 1992.

