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Abstract. Craig’s interpolation theorem [3] is an important theorem known for
propositional logic and first-order logic. It says that if a logical formula

�
logi-

cally follows from a formula � , then there is a formula � , including only symbols
that appear in both ��� � , such that

�
logically follows from � and � logically

follows from � . Such theorems are important and useful for understanding those
logics in which they hold as well as for speeding up reasoning with theories in
those logics. In this paper we present interpolation theorems in this spirit for
three nonmonotonic systems: circumscription, default logic and logic programs
with the stable models semantics (a.k.a. answer set semantics). These results give
us better understanding of those logics, especially in contrast to their nonmono-
tonic characteristics. They suggest that some monotonicity principle holds despite
the failure of classic monotonicity for these logics. Also, they sometimes allow
us to use methods for the decomposition of reasoning for these systems, possi-
bly increasing their applicability and tractability. Finally, they allow us to build
structured representations that use those logics.

1 Introduction

Craig’s interpolation theorem [3] is an important theorem known for propositional logic
and first-order logic (FOL). It says that if ���	� are two logical formulae and ��
�� , then
there is a formula �������������������� such that ��
� and �
�� (“ 
 ” is the classical
logical deduction relation; ������� is the language of � (the set of formulae built with
the nonlogical symbols of � , ��� �!� )). Such interpolation theorems allow us to break
inference into pieces associated with sublanguages of the language of that theory [2,
21], for those formal systems in which they hold. In AI, these properties have been used
to speed up inference for constraint satisfaction systems (CSPs), propositional logic and
FOL (e.g., [6, 4, 21, 7, 2, 5]) and to build structured representations [4, 1]

In this paper we present interpolation theorems for three nonmonotonic systems:
circumscription [19], default logic [23] and logic programs with the Answer Set se-
mantics [12, 10]. In the nonmonotonic setup there are several interpolation theorems
for each system, with different conditions for applicability and different form of inter-
polation. This stands in contrast to classical logic, where Craig’s interpolation theorem
always holds. Our theorems allow us to use methods for the decomposition of reason-
ing (a-la [2, 21]) under some circumstances for these systems, possibly increasing their



applicability and tractability for structured theories. We list the main theorems that we
show in this paper below, omitting some of their conditions for simplicity.

For circumscription we show that, under some conditions, ��������� �
	��	������ � � iff
there is some set of formulae ���� � �!� � ��� � � such that ����  and ��������� �	��	������ � � .
For example, to answer ��������� ������� �"!#	�$%�����&�'	 �����(�)��� �"! �*�+� �,��- ��. ��� � , we can com-
pute this formula  � � �*/�$0����� � �1��-���. ���32 � from ������� �4! without applying circum-
scription, and then solve ���5����� �	1$%�)��� �'	 ����������� �"! �*��� �6��- ��. ��� � (where  may be
significantly smaller than ������� �4! ).

For default logic, letting �7�8:9 � mean that every extension of ; ����<>= entails �
(cautious entailment), we show that, under some conditions, if �?�8@9�� , then there is
a formula  ����� �BAB< � � ��� � � such that �C�8:9� and D�8�9 � . For logic programs
we show that if �FE �1�HG are two logic programs and I � � ����G � such that �FE+A��G(� 8:JFI ,
then there is ���� ��� E � � � ��� G � such that � E � 8:J  and � G A K�8:JLI (here � 8:J is the
brave entailment for logic programs).

This paper focuses on the form of the interpolation theorems that hold for those
nonmonotonic logics. We do not address the possible application of these results to the
problem of automated reasoning with those logics. Nonetheless, we mention that direct
application of those results is possible along the lines already explored for propositional
logic and FOL in [2, 21].

No interpolation theorems were shown for nonmonotonic reasoning systems before
this paper. Nonetheless, some of our theorems for default logic and logic programs are
close to the splitting theorems of [17, 26], which have already been used to decompose
reasoning for those logics. The main difference between our theorems and those split-
ting theorems is that the latter change some of the defaults/rules involved to provide
the corresponding entailment. Also, they do not talk about an interpolant  , but rather
discuss combining extensions.

Since its debut, the nonmonotonic reasoning line of work has expanded and several
textbooks now exist that give a fair view of nonmonotonic reasoning and its uses (e.g.,
[8]). The reader is referred to those books for background and further details. [Most
proofs are shortened or omitted for lack of space. They are available from the author.]

2 Logical Preliminaries

In this paper, we use the notion of logical theory for every set of axioms in FOL or
propositional logic, regardless of whether the set of axioms is deductively closed or
not. We use ���)M � to denote the signature of M , i.e., the set of non-logical symbols.
����M � denotes the language of M , i.e., the set of formulae built with ����M � . ��- ��M � is
the set of logical consequences of M (i.e., those formulae that are valid consequences
of M in FOL). For a first-order structure, N , in � , we write O �5N � for the universe of
elements of N . For every symbol, P , in � , we write P�Q for the interpretation of P in N .

Theorem 1 ([3]). Let ���	� be sentences such that � 
�� . Then there is a formula 
involving only nonlogical symbols common to both � and � , such that � 
  and
 
 � .



3 Circumscription

3.1 McCarthy’s Circumscription: Overview

McCarthy’s circumscription [19, 20] is a nonmonotonic reasoning system in which in-
ference from a set of axioms, . , is performed by minimizing the extent of some predi-
cate symbols �

�
� , while allowing some other nonlogical symbols, �

� �
to vary.

Formally, McCarthy’s circumscription formula

��������� . ��� �
�

�%	1�	
�
� �C. ��� �

�
������� �
	 ��. ��� ��	 ���� ����� � �	� (1)

says that in the theory . , with parameter relations and function vectors (sequence of
symbols) � �

�
, � is a minimal element such that . �)� �

�
� is still consistent, when we

are allowed to vary
�

in order to allow � to become smaller.
Take for example the following simple theory: � � $%�����&� ���(E ���@$%�)��� � �)� G � . Then,

the circumscription of $0����� � in � , varying nothing, is

��������� �(	1$%�)��� �'	 � ��������� � ��� J����
���! #"%$ �� ���&� $%�)��� � �*�('
Roughly, this means that $0����� � is a minimal predicate satisfying � . Computing circum-
scription is discussed in length in [16] and others, and we do not expand on it here.
Using known techniques we can conclude

���5����� �@	�$%����� � 	 �*)+�-, �5$%�����&� �., �0/ �., �,� E012, � ��G �	�
This means that there are no other blocks in the world other than those mentioned in the
original theory � .

We give the preferential semantics for circumscription that was given by [15, 20, 9]
in the following definition.

Definition 1 ([15]). For any two models N and 3 of a theory � we write N547698 :�3
if the models N��
3 differ only in how they interpret predicates from � and

�
and if the

extension of every predicate from � in N is a subset of its extension in 3 . We write
N;� 698 : 3 if for at least one predicate in � the extension in N is a strict subset of its
extension in 3 .

A model N of � is 4 698 : -minimal if there is no model 3 of � such that 3<� 698 : N .

Theorem 2 ([15]: Circumscript. Semantics). Let � be a finite set of sentences. A
structure N is a model of ���5����� �@	1�	

�
� iff N is a 4=6>8 : -minimal model of � .

This theorem allows us to extend the definition of circumscription to set of infinite
number of sentences. In those cases, ���5����� �@	1�	

�
� is defined as the set of sentences

that hold in all the 4?698 : -minimal models of � . Theorem 2 implies that this extended
definition is equivalent to the syntactic characterization of the original definition (equa-
tion (1)) if � is a finite set of sentences. In the rest of this paper, we refer to this extended
definition of circumscription, if � is an infinite set of FOL sentences (we will note those
cases when we encounter them).

Circumscription satisfied Left Logical Equivalence (LLE): �@)��BA implies that
���5����� �@	1�	

�
�*),��������� �?A�	1�	

�
� . It also satisfies Right Weakening: ��������� �@	��	

�
�H� �,I

and ICED implies that ��������� �@	��	
�
��� ��D ).



3.2 Model Theory

Definition 2. Let N��
3 be � -structures, for FOL signature � and language � . We say
that 3 is an elementary extension of N (or N is an elementary substructure of 3 ),
written N��+3 , if O �)N � �CO � 3�� and for every I � �

� , � � � and vector of elements �
� �

of O �)N � , N � �,I � �
� �

� iff 3 � �CI � �
� �

� .
For FOL signatures �C� ��� , and for 3 an ��� -structure, we say that 3�� � is the

reduct of 3 to � , the � -structure with the same universe of elements as 3 , and the same
interpretation as 3 for those symbols from � � that are in � (there is no interpretation
for symbols not in � ). For A theory � in a language of ��� , let ��-	���.��� be the set of all
consequences of � in the language of � .

3.3 Interpolation in Circumscription

In this section we present two interpolation theorems for circumscription. Those theo-
rems hold for both FOL and propositional logic. Roughly speaking, the first (Theorem
4) says that if � nonmonotonically entails � (here this means ��������� � 	1�	1����� � � ), then
there is C� ��������� ����� A � � such that � classically entails  ( � � �  ) and  non-
monotonically entails � ( ��������� �	1�	1����� � � ). In the FOL case this  can be an infinite
set of sentences, and we use the extended definition of Circumscription for infinite sets
of axioms for this statement.

The second theorem (Theorem 7) is similar to the first, with two main differences.
First, it requires that ������� � ���KA3� � . Second, it guarantees that  as above (and some
other restrictions) exists iff � nonmonotonically entails � . This is in contrast to the first
theorem that guarantees only that if part. The actual technical details are more fine than
those rough statements, so the reader should refer to the actual theorem statements.

In addition to these two theorems, we present another theorem that addresses the
case of reasoning from the union of theories (Theorem 6). Before we state and prove
those theorems, we prove several useful lemmas.

Our first lemma says that if we are given two theories ��E � � G , and we know the set
of sentences that follow from �+G in the intersection of their languages, then every model
of this set of sentences together with � E can be extended to a model of � E A2� G .
Lemma 1. Let � E ��� G be two theories, with signatures in � E � � G , respectively. Let  be
a set of sentences logically equivalent to ��-
�������� �.� G � . For every � E -structure, � ,
that satisfies � E�A  there is a � �LE�A � G � -structure, �� , that is a model of �HE�A2�'G such
that � � �� � � E .

Our second lemma says that every � 698 � -minimal model of � that is also a model
of � A is a � 698 � -minimal model of � A2� A .
Lemma 2. Let � be a theory and � �1� vectors of nonlogical symbols ( � includes only
predicate symbols). If � � �#��������� �(	��	1�:� and � � � �DA �7A , then � � �#��������� � A
�?A 	1�	1��� .

The following theorem is central to the rest of our results in this section. It says that
when we circumscribe � �1� in �HE A7� G we can replace �+G by its consequences in � �.�HE � ,
for some purposes and under some assumptions.



Theorem 3. For �HE � � G theories and � �1� vectors of symbols from ���.��E � A ���.� G � such
that � � ���.� E � , let  be a set of sentences logically equivalent to ��-
����� ��� ������ ��� �.� G � .
Then, for all I � ��� � E � , if ��������� � EFA � G�	��	����H� �CI , then ��������� �HE�A �	��	����H� �CI .

PROOF We show that for every model of ��������� � E A �	��	1�:� there is a model of
���5����� � E A � G 	1�	1��� whose reduct to ��� � E � is an elementary extension of the reduct of
the first model to ���.� E � .

Let � be a ���.� E A � G � -structure that is a model of ��������� � E A��	��	���� . Then,
� � � � E A  . From Lemma 1 we know that there is a � � E A � G � -structure, �� , that is
a model of � G such that � � ���.� E ��� �� � ���.� E � .

Thus, �� is a 4 698 � -minimal model of � EHA  . To see this, assume otherwise. Then,
there is a model � A for the signature ���.�HE A��'G � such that � A � 698 � �� and � A
� �
�+E�A� . Take � A A such that the interpretation of all the symbols in ��� ��E � is exactly the
same as that of � A and such that the interpretation of all symbols in ���.� G �
	 ��� � E � is
exactly the same as that of � . Then, � A A � � �+E
A  because � E A  � ��� � E � . Also,
� A A7� 698 ��� � , for � A � � �����.� E � because � � ���.� E � and � � �� agree on the

interpretation of symbols in ���.� E � ( � � ���.� E � � �� � ��� � E � ). Thus, � A A � 698 � � ,
since � A A�� � agree on all the interpretation of all symbols in ��� � G �	 ��� � E � . This
contradicts � � � ��������� �HEFA �	1�	1��� , so �� is a 4 698 � -minimal model of � E�A� .

Thus, �� � � ���5����� � E A �	��	1�:� , and �� � � � E A �'G . From Lemma 2 we get that
�� � � ���5����� � E A�� G 	��	���� . Now, let I � ��� � E � such that ��������� � E A � G 	1�	1���L� � I .
Then every model of ��������� � E A � G 	��	���� satisfies I . Let � be a model of ��������� � E A
�	1�	1��� in the language � �.�HEFA � G � . Then there is �� as above, i.e., �� � � ��������� � E A
� G 	��	���� and � � ��� � E � � �� � ���.� E � . Thus, �� � � I . Since � � ��� � E � � �� �
���.� E � , � � �CI . Thus every model of ���5����� � E A �	1�	1��� is a model of I .

Theorem 4 (Interpolation for Circumscription 1). Let � be a theory, � �1� vectors of
symbols, and I a formula. If ��������� �@	��	������ �?I , then there is  ����� ��� � ���)IBA � �
such that

� � �� and ��������� �	��	����H� �CI '
Furthermore, this holds for every  that is logically equivalent to the consequences of
� in ��� ��� � ����I A � � .

PROOF We use Theorem 3 to find this  . For � �1I as in the statement of the
theorem we define � E � � G as follows. We choose � E such that I � ��� � E � and � �
���.� E � : Let � E � / I 1 ��I
2@A�� E for � E a set of tautologies such that ������E � � � .
We choose �+G such that it includes � and has a rich enough vocabulary so that � �1�#�
���.� E �&A ���.� G � . Let � G � ��A�� G , for � G a set of tautologies such that ����� G � � ��	 ��� �+E � .
Let � E � ��� �+E � , �
G � ���.� G � .

Theorem 3 guarantees that if � � �LE then  from that theorem satisfies ��������� �HEFA
�'G�	��	������ � D  ��������� � ELA �	��	����:� � D for every D �����.�HE � . This implies that
for every D � ��� / I
2 A���E � , ���5����� �@	1�	1��� � � D  ���5����� �	��	1��� � � D . In particular,
���5����� �	��	1�:��� �CI , and this  satisfies our current theorem.



Example 1. For example, if � � block ��. � � block ��� �0� � $ � clear �)$ � / � block �)$ � �
�*,*� on �., �1$ � �	� , � � clear ��. � , � � on, � � clear, then one possible interpolant is
 � clear ��.�� / �*,-� on �., ��. � because � � �  and ���5����� �	��	1�:� � � � (because
���5����� clear �).�� / �*,*� on �., ��.��0	 on 	 clear �-)+�-, �1$ � �., ��$ � � clear ��. � ).

This theorem does not hold if we require  ����� ��� � � ��I�� instead of �� ���.� � �
����I A � � . For example, take I � � , � �#/ ���  � 2 , where � �1� are propositional
symbols. ���5����� �@	1�	1��� � � I . However, every logical consequence of � in ����I�� is a
tautology. Thus, if the theorem was correct with our changed requirement,  would be
equivalent to � and ��������� �	��	������� �CI .

Theorem 5. Let � E ��� G be two theories, � ��� two vectors of symbols from ���.��E �LA
���.� G � such that � � ���.� E � and � AB������� � G � . Let  be a set of sentences logically
equivalent to ��- ����� ��� ������ � � � �'G � . Then, for all I�� � �.� E � , if ���5����� � E�A �	��	1�:�H� �,I ,
then ��������� � EFA�� G�	��	1�:��� � I .

From Theorem 3 and Theorem 5 we get the following theorem.

Theorem 6 (Interpolation Between Theories). Let � E � � G be two theories, � ��� vec-
tors of symbols in ���.� E � A ���.� G � such that � �����.� E � and � A �������.� G � . Let  be a
set of sentences logically equivalent to ��-
����� � � ������ � � �.� G � . Then, for every I�� ���.�HE � ,

���5����� � E A��	1�	1���H� �CI��� ��������� � E A � G 	��	����H� �CI
Theorem 7 (Interpolation for Circumscription 2). Let � be a theory, � �1� vectors of
symbols such that ���DA � �	� ���.��� . Let � G be a set of nonlogical symbols. Then, there
is  � ���.� � � � � � G A � � such that � � �� and for all I�� ��� � G � ,

��������� �@	��	����H� �CI
�  ��������� �	1�	1����� �CI '
Furthermore, this  can be logically equivalent to the consequences of � in ���.�����
� � G A>� � .

PROOF Let � E be a set of tautologies such that ��� �HE � � � G:AK� . Also, let
�'G ��� A � G , for �&G a set of tautologies such that ��� �&G � �,� 	 ��� � E � . Let �LE �����.� E � ,
� G �����.� G � . Theorem 6 guarantees that  from that theorem satisfies ���5����� �	��	1�:�H� �
D��� ��������� �(	��	1�:�H� ��D for every D�� � E ��� G A>� .

Example 2. If ���	� and � are taken as in Example 1, and � � / clear,block,A,B 2 , then
one interpolant for Theorem 7 is  � clear �).�� / �*,*� on �., ��.�� .

The theorems we presented are for parallel circumscription, where we minimize all
the minimized predicates in parallel without priorities. The case of prioritized circum-
scription is outside the scope of this paper.

4 Default Logic

In this section we present interpolation theorems for propositional default logic. We
also assume that the signature of our propositional default theories is finite (this also
implies that our theories are finite).



4.1 Reiter’s Default Logic: Overview

In Reiter’s default logic [23] one has a set of facts ! (in either propositional or FOL)
and a set of defaults < (in a corresponding language). Defaults in < are of the form��� � � 8������ 8 ���� with the intuition that if � is proved, and �+E � '�' ' �	�
	 are consistent (throughout
the proof), then � is proved. � is called the prerequisite, �4��� �� � � / � 2 ; � E � ' ' ' � �
	 are
the justifications, ���'P�� �� �L� / � E � ' ' ' � � 	 2 and � is the consequent, �0��- P �� � � /�� 2 . We
use similar notation for sets of defaults (e.g., � ��- P �)<�� ������� 9 � ��- P �� � ).
Definition 3. An extension of ;5! ��<>= is a set of sentences � that satisfies ! , follows
the defaults in < , and is minimal. More formally, � is an extension if it is minimal (as
a set) such that � ��� � ��� , where we define � ��� � � to be � , a minimal set of sentences
such that

1. ! �!� ; � �,��- ��� � .
2. For all

��� � � 8������ 8 � �� �B< if � �"� and � � ���
#%$�"�&� , then � �'� .

The following theorem provides an equivalent definition that was shown in [18, 24]
and others. A set of defaults, ( is grounded in a set of formulae ! iff for all ��)( ,
�4��� �� � � ��- Q�� 	 ��* � �)! � , where N ��- ��(!���?/ ",+.- � � ���� 	0/ � � � �� �1( 2 .

Theorem 8 (Extensions in Terms of Generating Defaults). A set of formulae � is
an extension of a default theory ;5! ��<>= iff � � ��- �5! A /��0��- P �� � �� �K< A)2 � for a
minimal set of defaults <2A � < such that

1. <�A is grounded in ! and
2. for every  �B< ,  � <2A if and only if �4��� �� � � ��- �5! A��0��- P ��<2A��	� and every D��

���'P�� �� � satisfies � D2$� ��- �)! A �0��- P ��<2A � �%'
Every minimal set of defaults <2A��C< as mentioned in this theorem is said to be a

set of generating defaults.
Normal defaults are defaults of the form

�3� �� . These defaults are interesting because
they are fairly intuitive in nature (if we proved � then � is proved unless previously
proved inconsistent). A default theory is normal, if all of its defaults are normal.

We define ! � 8 9 I as cautious entailment sanctioned by the defaults in < , i.e.,
I follows from every extension of ;�! ��< = . We define ! � 8@J9 I as brave entailment
sanctioned by the defaults in < , i.e., I follows from at least one extension of ;�! �1<>= .

4.2 Interpolation in Default Logic

In this section we present several flavors of interpolation theorems, most of which are
stated for cautious entailment.

Theorem 9 (Interpolation for Cautious DL 1). Let �#� ;5! ��< = be a propositional
default theory and I a propositional formula. If ! � 8 9 I , then there are 4E �  G such
that 4E�� ���5! � � ���)< A /�I
2 � ,  G � ���5! A <�� ��� ��I�� and all the following hold:

! � ��"E "E@� 8�9� G  G@� �,I ! � 8�9� G "E:� 8�9 I



PROOF Let 4E be the set of consequences of ! in � ��< A�/ I
2 � ��� �)! � . Let �
be the set of extensions of ;)! �1<>= and ��A the set of extensions of ;  E �1<>= . We show that
every extension � A ��� A has an extension � ��� such that ��- ��� A A ! � � ��- ��� � .
This will show that  E is as needed.

Take � A ��� A and define � � � ��- ��� A'A ! � . We assume that ����� A � � ����(��
because otherwise we can take a logically equivalent extension whose sentences are in
��� ( � . We show that � � satisfies the conditions for extensions of ;)!���<>= (Definition 3).
The first condition holds by definition of � � . The second condition holds because every
default that is consistent with � � is also consistent with � A and vice versa.

For the first direction (every default that is consistent with � � is also consistent
with � A ), let

��� � � 8������ 8 � �� �B< be such that � �"� � . We show that � �"� A . By definition,
� � � ��<�� . � � � � implies that � A A ! � � � because ��- ��� A A ! ��� � � . Using
the deduction theorem for propositional logic we get ! � � � A  � (taking � A here
to be a finite set of sentences that is logically equivalent to � A in � � ( � (there is such a
finite set because we assume that ����(�� is finite)). Using Craig’s interpolation theorem
for propositional logic, there is  � ���)! � � ����� A� ��� such that ! � �  and
6�� � A  � . However, this means that  E � �  , by the way we chose  E . Thus
 E � � � AB � . Since � A(�  E we get that � A � � � . Since � A@� ��- ��� A � we get
that � � � A . The case is similar for � : if � � � � then � � � A by the same argument
as given above for � � � �  � � � A . Finally, if �'� ��� # $� � � then � � ��� # $� � A
because � A�� � � . The opposite direction (every default that is consistent with � A is
also consistent with � � ) is similar to the first one.

Thus, � � satisfies those two conditions. However, it is possible that � � is not a
minimal such set of formulae. If so, Theorem 8 implies that there is a strict subset of
the generating defaults of � � that generate a different extension. However, we can apply
this new set of defaults to generate an extension that is smaller than ��A , contradicting
the fact that � A is an extension of ;  E ��< = .

Now, if I logically follows in all the extensions of ;)! �1<>= then it must also follow
from every extension of ;  E ��<>= together with ! . Let � �!��E 1 ' ' ' 1 � 	 , for ��E � ' ' ' � � 	
the (finite) set of (logically non-equivalent) extensions of ;5! ��< = (we have a finite set
of those because ���5! �+A ���)<�� is finite). Then, � � � I . Take  G � ����� � � ���)I�� such
that �,��  G and  G � �CI , as guaranteed by Craig’s interpolation theorem (Theorem 1).
These  E �	 G are those promised by the current theorem: ! � �  E ,  G � �,I , ! � 8 9  G ,
 E � 8 9  G and  E � 8 9 I .

Theorem 10 (Interpolation for Cautious DL 2). Let � �#;5! ��< = be a propositional
default theory and I a propositional formula. If ! � 8@96I , then there are 4E �  G �
���)! � ��� ��<�� , and all the following hold:

! � �� E  E � 8 9  G /  G 2
A ! � �CI ! � 8 9  G
Example 3. If � ��� ��� � ��� ��� 
	1�  � , �?� � �

�
��-  � ��� �  P �  �0�)� �  P , < �

/��� � � +�� # 	+�� # 	 2 , then one possible pair of interpolants is  E ��	 �  ,  G �C�
�
�5- .

For another example, if the only objects are . ��� , and � � block ��. � � block ��� � �
� $ � clear �5$ � / � block �)$ ��� �*,-� on �., �1$ � �	� , �D� clear �).�� and < � / � � � 	 ��� 8 J �� � 	 ��� 8 J � 2 , then
one possible pair of interpolants is  E � TRUE,  G:� � on ������. � � � on �). �1.�� . To see



that 4E �  G satisfy Theorem 10 notice that ; ����<>= has one extension: �6� / block �).�� �
block �)� � � � on ��. �1� � �
� on ��� �1.�� �
� on ��. �1.�� �
� on ��� �1� � � clear �).�� � clear �)� �%2 .

Corollary 1. Let ;5! ��<>= be a default theory and I a formula. If ! � 8 9 I , then there
is a set of formulae,  � ���5! A < � � ����I�� such that ! � 8:9� and  � 8�9DI .

We do not get stronger interpolation theorems for prerequisite-free normal default
theories. [14] provided a modular translation of normal default theories with no prereq-
uisites into circumscription, but Theorem 4 does not lead to better results. In particular,
the counter example that we presented after Theorem 4 can be massaged to apply here
too.

Theorem 11 (Interpolation Between Default Extensions). Let ;)! E ��< E = �&;5! G ��< G =
be default theories such that ���)�0��- P ��< G �	� � ��� �4��� ��< E � A%���'P�� �)< E � A ! E � � � . Let I
be a formula such that I�� ���5! G A < G � . If there is an extension � of ;)! E A3! G �1< E A
< G = in which I holds, then there is a formula  � � �)! E A�< E ��� ���5!�G A�<G � , an
extension ��E of ;5! E �1< E0= such that ��- ��� E � � � �)! G A < G � �  , and an extension � G
of ;5! G A�/ �2 �1< G0= such that � G@� �,I .

It is interesting to notice that the reverse direction of this theorem does not hold. For
example, if we have two extensions � E � � G as in the theorem statement, it is possible
that � E uses a default with justification � , but ! G � � ��� . Strengthening the condition of
the theorem, i.e., demanding that ���)! G A � ��- P �)<G � � � ����� � � �)<3E � A ���'P�� ��< E �&A ! E � �
� , is not sufficient either. For example, if < E includes two defaults "E>� �

��� ��� , and

 G � � �
� , ! E � � , < G includes no defaults and ! G � /

�
2 then there is no extension of

;)! E A ! G ��< E A < G = that implies I , for I � / ��2 .
Further strengthening the conditions of the theorem gives the following:

Theorem 12 (Reverse Direction of Theorem 11). Let ;�! E �1< E = � ;5! G �1< G = be default
theories such that ���)! G A �0��- P ��<G �	� � ���)<3E'A(! E � � � . Let I be a formula such that
I � � �)! G A < G � . There is an extension � of ;)! E
AB!�G ��< E A < G = in which I holds
only if there is a formula  � ���5! E A:< E � � � �)! G A:<G � , an extension ��E of ;5! E ��< E =
such that ��- ����E ��� ���5!�G AB<G � �  , and an extension � G of ;)! G A / �2 �1<G0= such
that � G(� � I .

Corollary 2 (Interpolation for Brave DL). Let ;5! E ��< E%= �&;5!�G ��<G = be default the-
ories such that �����0��- P �)<G �	� ����� �4��� ��< E � A1��� P�� ��< E � A ! E �� � . Let I be a for-
mula such that I ��� �)! G A < G � . If ! E A ! G � 8:J9 � � 9 � I , then there is a formula,
 � � �)! E A < E � � ���5!�G A < G � , such that ! E@� 8:J9 �  and !�G
A / H2(� 8:J9 � I .

Finally, Corollary 2 and Theorem 11 are similar to the splitting theorem of [26],
which is provided for default theories with ! � � (there is a modular translation that
converts every default theory to one with ! ��� ). A splitting set for a set of defaults
< is a subset . of ����<�� such that � � � �)<�� � �0� P�� ��<�� ���0��- P �)<��L������. � A �������)<�� 	 . �
and �& �B< ���0��- P �� � $� � � ���)<���	 . �� ���� � � .�� . Let � � ����< � 	 . . The base of
< relative to . is $�� �)<�� � /��� < � ���� �:� .�� . For a set of sentences

� �����).�� ,



we define � � �)< � � � to be�� ��� � /
� # 2 #�� 	 ��� ��� �	�	� /�$ # 2 #
� � �����)� �

�

������
� ��� � �  � J � 8������ 8 J��� � < 	L$ � �)<�� �
�'� 4 - �

� # � ����. �� � # � ��- � � � � � �
�'� 4 	��(�F$ # $� ��- � � � �	�

� �
�

Theorem 13 ([26]). Let . be a splitting set for a default theory < over � �5O � . A set �
of formulae is a consistent extension of < iff � � ��-
��� 9 � � � A�� � , for some consis-
tent extension

�
of $ � �)<�� over ���).�� and � a consistent extension of � � �)< � � � over

��� ����<�� 	 .�� .
Roughly speaking, this theorem finds an extension

�
of the base ( $ � ��<�� ) and

converts < 	�$ � �)<�� using this
�

into a theory � � ��< � � � . Then, an extension � for
� � �)< � � � completes the extension for < if

� A�� is consistent. In contrast, our theo-
rem does not change < 	 $ � ��< � , but it is somewhat weaker, in that it only provides a
necessary condition for < � 8 J I . (however, notice that this weaker form is typical for
interpolation theorems).

5 Logic Programs

In this section we provide interpolation theorems for logic programs with the stable
models semantics. We use the fact the logic programs are a special case of default logic,
and the results are straightforward. An extended disjunctive logic program [10–12, 22]
is a set of rules. Each rule, � , is written as an expression of the form

�LE�� '�' ' � � ��� .:E � ' ' ' �1. 	 ��-+� � �:E � ' '�' � -+� � � �
where �LE � ' ' ' � � � ��.:E � '�' ' �1. 	 �1�:E � ' '�' ��� � are literals, that is, atomic formulae or their
(classic) negations, � E � '�' ' � � � are the head literals, �
� �  � � � , .:E � ' '�' ��. 	 are the positive
subgoals, � ��P � � � , and �@E � '�' ' ��� � are the negated subgoals, - ��� � � � .

[25] showed that disjunctive logic programs (no classic negation) with the stable
model semantics can be translated to prerequisite-free default theories as follows:

1. For a rule . E � '�' ' � . � � � E � ' '�' ��� � ��-+� �H� E � '�' ' �H-+� �H� 	 in � , we get the default� �F� E � '�' ' �
�F� 	
� E �&' ' ' � � �  . E 1&' '�' 1 . �

2. For each atom . appearing in � , we get the default
� � �� �

Each stable model of � is the set of atoms in some extension of < 6 , and the set of atoms
in an extension of < 6 is a stable model of � (notice that, in general, an extension of
< 6 can include sentences that are not atoms and are not subsumed by atoms in that
extension). [25] provide a similar translation to extended disjunctive logic programs by
first translating those into disjunctive logic programs (a literal ��. is translated to a new
symbol, .=A ), showing that a similar property holds for this class of programs.

We define � � 8 I as cautious entailment sanctioned from the logic program � , i.e.,
I follows from stable model of � . We define � � 8@J I as brave entailment sanctioned
from the logic program � , i.e., I follows from at least one stable model of � .

From the translation above we get the following interpolation theorems.



Theorem 14 (Interpolation for Stable Models (Cautious)). Let � be a logic program
and let I be a formula such that � � 8#I . Then, there is a formula ���� ��� �!� � ��I��
such that �#� 8� and  � �CI .

PROOF Follows if  G in Theorem 9 corresponding to our needed  .

Theorem 15 (Interpolation for Stable Models (Brave)). Let � E ����G be logic pro-
grams such that �
� �  ����G � � $%���� ���FE �3� � . Let I � ������G � be a formula such that
��E A ��G � 8:J I . Then, there is a formula  � � ��� E �!��������G � such that �FE � 8:J� and
 A �HG@� 8:J I .

PROOF Follows from the reduction to default logic and Corollary 2.

The last theorem is similar to the splitting theorem of [17]. This theorem finds an
answer set

�
of the bottom ( � E ) and converts ��G using this

�
into a program � AG . Then,

an answer set � for � AG completes the answer set for �FE A��HG if
� A � is consistent.

In contrast, our theorem does not change �FG , but it is somewhat weaker, in that it does
only provides a necessary condition for � ELA��HG � 8:J I (this is the typical form of an
interpolation theorem).

6 Summary

We presented interpolation theorems that are applicable to the nonmonotonic systems
of circumscription, default logic and Answer Set Programming (a.k.a. Stable Models
Semantics). These results are somewhat surprising and revealing in that they show par-
ticular structure for the nonmonotonic entailments associated with the different sys-
tems. They promise to help in reasoning with larger systems that are based on these
nonmonotonic systems.

Several questions remain open. First,  promised by our theorems is not always
finite (in the FOL case). This is in contrast to classical FOL, where the interpolant is
always of finite length. What conditions guarantee that it is finite in our setup? We
conjecture that this will require the partial order involved in the circumscription to be
smooth. Second, are there better interpolation theorems for the prioritized case of those
systems? Also, what is the shape of the interpolation theorems specific for prerequisite-
free semi-normal defaults? Further, our results for default logic and logic programs are
propositional. How do they extend to the FOL case?

Finally, the theorems for default logic and Logic Programming promise that � � 8@9
� implies the existence of  such that � � 8:9� and  � 8�9 � . However, we do not know
that the other direction holds, i.e., that the existence of  such that �D�8@9� and  � 8�9 �
implies that �D�8:9�� . Can we do better than Theorem 12 for different cases?
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22. T. Przymusiński. Stable semantics for disjunctive programs. New Generation Computing,

9:401–424, 1991.
23. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13 (1–2):81–132, 1980.
24. V. Risch and C. Schwind. Tableau-based characterization and theorem proving for default

logic. Journal of Automated Reasoning, 13:223–242, 1994.
25. C. Sakama and K. Inoue. Relating disjunctive logic programs to default theories. In LP-

NMR’93, pages 266–282, 1993.
26. H. Turner. Splitting a default theory. In Proc. AAAI ’96, pages 645–651, 1996.


