
Building Knowledge about Buildings

Matthew T. Young and Eyal Amir

University of Illinois, Urbana-Champaign
3314 Siebel Center

201 N Goodwin Ave, Urbana, IL 61801
mtyoung@uiuc.edu, eyal@cs.uiuc.edu

Abstract
The ability to encode information about the structure of
buildings is essential for the development of applications
which are able to reason about buildings and answer queries
concerning their design and function. Currently, the only
methods of encoding structural information are bloated,
inconsistent, and poorly defined, making the development
of these applications impossible. In this paper, we outline a
new language for encoding this knowledge using
description logic. This language is designed to be both
simplistic and powerfully expressive.

Introduction

Buildings represent a unique challenge for knowledge
engineers. Encoding all the information about a single
building involves not only describing the materials which
compose it, but also the ways these materials are
combined, along with higher-level architectural details.
CAD programs typically represent buildings purely as
geometric objects, with no information about the
underlying structure (such as “this is a wall”). The IAI has
developer the IFC building model, but this model is
incredibly complex and meant to be used for the creation
of blueprints and details for the actual construction of a
building. This is a much greater level of detail than most
applications require.
A simple representation language for buildings allows
knowledge engineers to quickly encode information, and
allows automated reasoners to quickly extract this
information in order to answer queries. Also, a simple
model enables content providers to more easily share
information, allowing the creation of very powerful
searching, aggregation, and classification tools.
We have developed a simple model by stripping away all
of the material details from the representation. This model
purely represents architectural features such as doors,
rooms, staircases, etc, and how they are connected to each
other. While the model does allow the user to describe
what something is made of, this is in a purely semantic
sense and carries no explicit restrictions. This
simplification allows the model to be extremely expressive,
encompassing the entire domain of buildings, without the
need for domain experts and hours of time to enter data.

The Building Language

We wish to specify the building representation language in
such a way that it stores the structure of the building
compactly and answer queries quickly. We also want to
ensure that each building is physically possible and that all
buildings are encoded consistently. Description logic is a
natural choice for this task, as it has been used to build
ontologies for representing knowledge for many years.
The specific description logic language we chose to use is
OWL. OWL was chosen because it is being used for the
Semantic Web, and there are many useful web-based
applications for a building representation language (such as
a house-hunting website). The flavor of OWL we are
using is OWL DL, which is computationally complete and
decidable (Smith, 2004), and therefore should give good
performance.
The hierarchical bulleted list below (Figure 1) defines all
the classes in the building language. Indented bullets are
subclasses of the class above them. The classes are
described in more detail in the next section.
● Building
● External_Feature
○ Exterior_Wall
○ Roof
○ Roof_Fixture
○ Wall_Feature
■ Door
■ Window

● Internal_Feature
○ Floor
○ Fixture
○ Interior_Wall
○ Room
○ Stairwell

● Material
○ Aesthetic_Material
○ Complex_Structure
○ Construction_Material

Figure 1 – List of Classes

Description of Classes in Building Language
Each class contains many properties describing the features
of that class. In this paper, properties are written as
Property_Name (number Type). For example, to say that
the property named Has_Internal_Features can filled by a
list of multiple instances of the type Internal_Feature, it is

written Has_Internal_Features (multiple Internal_Feature).
The “number” component can either be “single”
(functional), or “multiple”, (a list).
As can be seen from Figure 1, there are four top-level
classes in the building language. Each of these classes and
the subclasses they contain is described in a separate
subsection below.

Building: Serves to connect all features together into a
single unit. It has two properties: Has_Internal_Features
(multiple Internal_Feature) and Has_External_Features
(multiple External_Feature), that identify the internal and
external features that are ascribed to this building.

External_Feature: Includes building elements that are a
part of the exterior of a building. It has one property:
Ext_In_Building (single Building), that identifies the
building containing this feature. Its subclasses are
particular types of external features. “Exterior_Wall” is a
wall with at least one face on the outside of the building.
“Roof” is a roof on a building, which could be an
overhang. “Roof_Fixture” is a fixture that is found on a
roof, such as a satellite dish, chimney, etc. “Wall_Feature”
is a feature that can be found in a wall; it has two
subclasses: “Door” and “Window”. The properties of all
these subclasses are detailed in Table 2 (For brevity,
'Construction' is abbreviated 'C').

Class Name Properties

Exterior_Wall Attached_To (multiple Interior_Wall,
Exterior_Wall): The walls sharing a joint
with this wall.

C_Made_Of (multiple C_Material): The
materials that make up this wall.

Has_Wall_Features (multiple
Wall_Feature): The features (windows
and doors) in this wall.

Roof C_Made_Of (multiple C_Material): The
materials that make up this roof.

Has_Roof_Fixtures (multiple
Roof_Fixture): All objects attached to the
roof.

Spans_Walls(multiple Exterior_Wall):
The walls to which this roof is attached.

Roof_Fixture General_Made_Of (multiple Material):
The materials or structures that make up
this roof fixture.

On_Roof (single Roof): The roof on
which this fixture is located.

Wall_Feature C_Made_Of (multiple C_Material): The
materials that make up this wall feature.

In_Wall (multiple Exterior_Wall): The
wall in which this feature is embedded.

Table 2 – Properties of External_Feature Subclasses
Internal_Feature: Includes building elements which are
contained entirely within the building's interior. It has one
property: Int_In_Building (single Building), that identifies
the building containing this feature. Its subclasses are
particular types of internal features. “Fixture” is a
permanent or semi-permanent user of floor space, such as a
bathtub, counter, or large piece of furniture. “Floor” is a
level of the building, typically a surface meant to be
walked on. “Interior_Wall” is a wall contained entirely
within a building. “Room” is a room in a building; it may
be completely compartmentalized or a division of a larger
area. “Stairwell” is a connection between multiple floors;
in spite of the name a Stairwell may be a set of stairs,
elevator, or escalator. The properties of all these
subclasses are detailed in Table 3 (For brevity,
'Construction' is abbreviated 'C').

Class Name Properties

Fixture General_Made_Of (multiple Material):
The materials or structures that make up
this fixture.

In_Room (single Room): The room
containing this fixture.

Floor Above_Floor (single Floor): The floor this
floor is above. It may be non-existent.

Below_Floor (single Floor): The floor this
floor is below. It may be non-existent.

C_Made_Of (multiple C_Material): The
materials that make up this floor.

Has_Interior_Walls (multiple
Interior_Wall): The interior walls that exist
on this floor.

Has_Rooms (multiple Room): The rooms
whose floor is this floor. Some rooms may
have empty space continuing upward for
several floors, but they are not considered
to be on those floors.

Interior_Wall Attached_To (multiple Interior_Wall,
Exterior_Wall): The walls sharing a joint
with this wall.

C_Made_Of (multiple C_Material): The
materials that make up this wall.

Wall_On_Floor (multiple Floor): The
floors on which this wall is present.

Room Bounding_Walls (multiple Interior_Wall,
Exterior_Wall): The walls which define
the boundaries of this room.

Ceiling (single Floor, Roof): The ceiling
for this room. May be non-existent.

Has_Exits (multiple Door): The exits from
this room to the outside of the house. Note
the difference between this property and
Shares_Doorway_With.

Has_Fixtures (multiple Fixture): The
fixtures located in this room.

Has_Windows (multiple Window): The
windows for this room.

Room_On_Floor (multiple Floor): The
floors that this room is located on. Note
that a room can have multiple floors, such
as a theater which has a seating area and a
stage.

Shares_Doorway_With (multiple Room):
The other rooms which share a doorway
with this room.

Stairwell Connects_Floors (multiple Floor): The
floors connected by this stairwell.

Connects_Rooms (multiple Room): The
rooms connected by this stairwell.

Table 3 – Properties of Internal_Feature Subclass
Material: Includes the substances and structures that the
various features of the building are made of. It has no
properties. This is because Materials are only used to add
richness to the description of a building, not for reasoning
about physical properties. Its subclasses are specific sets
of substances or structures. “Aesthetic_Material” is a
material which is used to make objects more appealing to
humans, such as cloth, or paper. “Complex_Structure” is a
structure that cannot be represented as a few materials,
such as a dishwasher or AC unit. “Construction_Material”
is a material which is generally used to define the structure
of something, such as wood, concrete, drywall, or glass.

Language Constraints
The classes and properties define the structure of the
building representation language. Constraints ensure that a
user can only encode buildings that are consistent with the
rules of spatial geometry and the general principles of
building design.
Constraints in description logic are asserted conditions in
the form of logical statements. For example,
∃Has_External_Feature (Door) means the property
Has_External_Feature must contain at least one Door in
its fillers. Each of the top-level classes and the subclasses
they contain is described in a separate subsection below
(For brevity, 'Construction' is abbreviated 'C').

Building: ∃Has_External_Feature (Door, Roof,
Exterior_Wall), ∃Has_Internal_Feature (Floor, Room).

External_Feature: ∃Ext_In_Building (Building).

● Exterior_Wall: ∃C_Made_Of (C_Material).

● Roof: ∃C_Made_Of (C_Material),

∃Spans_Walls (Wall).

● Roof_Fixture: ∃General_Made_Of (Material),
∃On_Roof (Roof).

● Wall_Feature: ∃C_Made_Of (C_Material),
∃In_Wall (Exterior_Wall).

Internal_Feature: ∃Int_In_Building (Building).

● Fixture: ∃General_Made_Of (Material),
∃In_Room (Room).

● Floor: ∃C_Made_Of (C_Material), ∃Has_Rooms
(Room).

● Interior_Wall: ∃C_Made_Of (C_Material),
∃Wall_On_Floor (Floor).

● Room: ∃Room_On_Floor (Floor), ∃[Has_Exits
(Door) U Shares_Doorway_With (Room)],
∃Bounding_Walls (Inter_Wall U Exter_Wall).

● Stairwell: Connects_Floors ≥ 2 (Floors),
Connects_Rooms ≥ 2 (Rooms).

Material: No asserted conditions.

Constraints that Cannot be Encoded
Several more complicated constraints would be useful to
include in the building representation language, but simply
cannot be encoded due to the limitations of OWL. A
couple of examples are “A Floor cannot have an
Above_Floor which is above its Below_Floor” and “A
Stairwell cannot have more than one Room on the same
Floor in Connects_Rooms.” The reason these and many
other rules cannot be encoded is that no constraint can
inspect the actual values of any property. Constraints can
only enforce type and cardinality.

Example of How to Enter Data: Simple House

To demonstrate how easy it is to build knowledge using the
building language, this section contains a set of steps
detailing how to encode a Simple Two Story (STS) house.
Figure 4 shows a simplified blueprint of this house, with
one possible labeling for the walls (note that interior and
exterior walls are labeled separately). Solid lines are walls
(except for the stairwell) and dotted lines are doorways.
1. Create a “Building” named STS_House.
2. Create four “Exterior_Walls” named Ext_Wall1
through Ext_Wall4. Set Ext_In_Building for each to
STS_House.
3. Create two “Doors” named Front_Door and
Back_Door. Set Ext_In_Building for each to STS_House.
Set In_Wall for Front_Door to Ext_Wall3 and In_Wall for
Back_Door to Ext_Wall1.
4. Create a “Window” for each window on the outside of
the house. There could be many windows, so they are not
all individually detailed here. For each, set
Ext_In_Building to STS_House and In_Wall to the
appropriate Ext_Wall.
5. Create a “Roof” named STS_Roof. Set
Ext_In_Building to STS_House and Spans_Walls to

Ext_Wall1, Ext_Wall2, Ext_Wall3, and Ext_Wall4.
6. Create a “Roof_Fixture” named AC_Unit. Set
Ext_In_Building to STS_House, On_Roof to STS_Roof.
7. Create two “Floors” named First_Floor and
Second_Floor. Set their Int_In_Building to STS_House.
8. Set Below_Floor for First_Floor to Second_Floor and
set Above_Floor for Second_Floor to First_Floor.
9. Create ten “Interior_Walls” named Int_Wall1 through
Int_Wall10. Set Int_In_Building for each to STS_House.
Set Wall_On_Floor for Int_Wall1 through Int_Wall5 to
First_Floor and set Wall_On_Floor for Int_Wall6 through
Int_Wall10 to Second_Floor.
10. Fill in the Attached_To lists for Int_Wall1-Int_Wall10
and Ext_Wall1-Ext_Wall4, using Figure 4 for reference.
For example, Int_Wall1 should have (Ext_Wall1,
Int_Wall2).
11. Create ten “Rooms” named as shown in Figure 4. Set
Int_In_Building for each Room to STS_House. Set
Room_On_Floor for Study, Living_Room, Kitchen, and
Laundry_Room to First_Floor and set Room_On_Floor for
all the other rooms to Second_Floor. Set Ceiling for
Study, Living_Room, Kitchen, and Laundry_Room to
Second_Floor and set Ceiling for all the other rooms to
STS_Roof. Set Has_Exits for Living_Room to
Front_Door and for Laundry_Room to Back_Door. Set
Has_Windows for each Room to the appropriate list of
Windows.
12. Fill in the Bounding_Walls lists for all Rooms with the
appropriate Int_Wall1-Int_Wall10 and Ext_Wall1-
Ext_Wall4. For example, Study should have (Ext_Wall1,
Ext_Wall4, Int_Wall1, Int_Wall2).
13. Fill in the Shares_Doorway_With lists for all Rooms
with the appropriate other Rooms. For example,
Living_Room should have (Study, Kitchen).
14. Create a “Stairwell” named Main_Stairwell. Set
Int_In_Building to STS_House.
15. Fill in Connects_Floors for Main_Stairwell with

First_Floor and Second_Floor. Fill in Connects_Rooms for
Main_Stairwell with Living_Room and Hallway.
16. Create a “Fixture” for each permanent fixture or large
piece of furniture in the building. There may be many of
them, so they are not detailed individually here. Set
Int_In_Building for each Fixture to STS_House. Set
In_Room for each Fixture to the appropriate Room.
17. Create five “Construction_Materials” named Brick,
Drywall, Glass, Shingles, and Wood. Create two
“Aesthetic_Materials” named Cloth and Foam. Create a
“Complex_Structure” named Rooftop_AC_Unit.
18. Fill in the Construction_Made_Of lists for all
Interior_Wall, Exterior_Wall, Roof, Floor, and
Wall_Feature instances with the appropriate combinations
of Brick, Drywall, Glass, Shingles, and Wood.
19. Fill in the General_Made_Of lists for all Fixture and
Roof_Relief_Feature instances with the appropriate
combinations of Brick, Drywall, Glass, Shingles, Wood,
Cloth, Foam, and Rooftop_AC_Unit.

References

[1] Cuenca-Grau, Bernardo; Parsia, Bijan; Sirin, Evren;
Kalyanpur, Aditya. Modularity and Web Ontologies.
International Conference on Knowledge Representation
and Reasoning, 2006.
[2] Haarslev, V.; Möller, R.; Wessel, M. Description Logic
Inference Technology: Lessions Learned in the Trenches.
In I. Horrocks, U. Sattler, and F. Wolter, editors, Proc.
International Workshop on Description Logics, 2005.
[3] Noy, Natalya F.; McGuinness, Deborah L. Ontology
Development 101: A Guide to Creating Your First
Ontology. Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical
Informatics Technical Report SMI-2001-0880, Mar. 2001.
[4] Smith, Michael K.; Welty, Chris; McGuinness,
Deborah L. 2004. OWL Web Ontology Language Guide.
W3 Consortium. http://www.w3.org/TR/owl-guide/

