
Knowledge-Gathering Agents in Adventure Games

Brian Hlubocky and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{hlubocky,eyal}@uiuc.edu

Abstract

Computer text-based adventure games are virtual
worlds in which humans or artificial agents act to-
wards a specified goal through a text-based inter-
face. In this paper we describe progress towards
an agent that can interact with a game world in
a human-like fashion. Precisely, we present the
first accurate knowledge-gathering software agent
that can track the state of the world in a text-
based adventure game. This is nontrivial because
such games are characterized by large, partially ob-
servable domains that include many objects, ac-
tions, and relationship between them. To test our
agent, we developed a text-based adventure game
world built by augmenting the LambdaMOO code
base. We translated this game world into First-
Order Logic, and used a logical filtering algorithm
to allow the agent to track itself and the world effi-
ciently. We expect that the development of software
agents that act intelligently in such games will give
rise to new types of games and will contribute to
research on human-level artificial intelligence.

1 Introduction
We are interested in creating an agent that can play a text-
based adventure game using well-founded, knowledge-based
principles. Our motivation for this project is twofold. In the
short term, we seek to create smart games in which intelli-
gent agents interact believably in the world. Looking into the
future, we expect the technology that will come out of this re-
search to contribute to building human-level AI software that
can act in rich, large domains.

Having a world populated by agents that learn and act like
humans makes games more realistic, interesting, and enjoy-
able. Also, one can envision games in which an intelligent
agent collaborates with a human player to achieve certain
goals, and successfully playing the game becomes dependent
on experiencing it together with the agent. In contrast, cur-
rent agents fill a few narrowly defined roles in most games,
never acting outside of those roles.

The technical problems faced when building such agents
are not simple. A typical domain in text-based adven-
ture games consists of a partially observable and poten-

tially nondeterministic world, with an extremely large state
space (greater than240 states). This renders unusable tradi-
tional planning and learning algorithms, such as reinforce-
ment learning[Kaelbling et al., 1996] and POMDPs. New
algorithms for tracking the world, learning, and exploration
are required.

In this paper, we describe our experiences, including cur-
rent progress and difficulties encountered in creating an intel-
ligent agent that plays computer text-based adventure games.
Currently, our agent is able to track itself and the evolving
world efficiently in response to the agent’s actions and obser-
vations. We present the overall architecture for our agent,to-
gether with the current state of our algorithms and this archi-
tecture. Currently, the architecture also includes a hand-made
translation of the text interface into a logic-based interface
that the agent receives and outputs. Our translation serves
as a test case for natural-language processing (NLP) theories,
and we expect that it will serve to guide future NLP research
and act as a training corpora for future NLP applications.

We are not the first to examine the use of text-based ad-
venture games in the context of cognitive robotics. The
challenges associated with using adventure games for AI re-
search are explored in[Amir and Doyle, 2002]. The use of
a description logic knowledge base as the core for a text-
based adventure game is investigated by[Gabsdil et al., 2001;
Koller et al., 2002]. One example of a text-based adventure
agent implemented using a MUD is[DePristo and Zubek,
2001], which focuses mostly on the selection of actions nec-
essary for survival in a combat-oriented world.

This paper is organized as follows. In section 2, we intro-
duce text-based adventure games and describe the particular
game we chose as a research platform. Section 3 details the
process used to translate (by hand) our game world into First-
Order Logic. Logical filtering is described in section 4, along
with a discussion of our choice of an efficient filtering algo-
rithm. Section 5 describes the desired agent architecture and
our current progress toward that goal.

2 Text-Based Adventure Games

Computer text-based adventure games appeared about25
years ago, reaching a high-point commercially in the late
1980s. They are promising for a new frontier in computer
games in the manner that we describe in the rest of the paper.



In the following we describe some characteristics of text-
based adventure games and list factors that make them useful
for research in cognitive robotics. We also introduce a spe-
cific text-based adventure that was used in our research.

The text-based adventure is a computer game in which the
player interacts with the world by entering natural language
commands using a text-based interface. Some of the text-
based adventure’s most distinctive characteristics as identi-
fied by[Amir and Doyle, 2002] are:
• The game world is relatively static
• Effects of actions are local and immediate
• Actions are discrete
• There is no uncertainty in acting or sensing
• Finishing the game generally involves lots of exploration
• No action can make the game unbeatable
• The player is assumed to possess a required amount of

commonsense knowledge
The characteristics of these games make them a fruitful

platform for AI research in cognitive robotics.[Amir and
Doyle, 2002] describes several factors that make text-based
adventures challenging research problems. At the beginning
of the game, only a small amount of information is known
about the world. The number of transitions from any given
state is unknown to the player, as the environment is only
partially observable. An agent must simultaneously learn ac-
tion effects and preconditions while tracking the world. An-
other challenge is the large state and action space presented
by most text-based adventures. A game with100 objects and
100 rooms has210,000 different states, necessitating efficient
algorithms for learning and filtering.

Multi-User Dungeons (MUDs) are a unique type of text-
based adventure game that have multiple players interacting
simultaneously with each other and their environment. The
natural separation between the game world (server) and its
occupants (clients) make MUDs an ideal platform for agent
building. MUDs are also programmable, enabling the easy
creation of new environments, objects, and actions. In most
cases, these programming languages allow almost any situa-
tion to be modeled in the game world. As agents are being
built, nearly all of the previously described characteristics of
text-based adventure games can be relaxed, making the world
more challenging. For example, non-local action effects and
noise in sensing and perceiving can be added.

In 1990, Xerox PARC scientist Pavel Curtis created Lamb-
daMOO, a MUD whose focus was social interaction and the
creation of new environments. After considering several dif-
ferent MUD code bases, we chose LambdaMOO as our re-
search platform for several reasons. First, the MUD is easy to
install and run. Second, it separates the details of the world
from the core MUD code. This allows us to make changes
to the game world without having to recompile the code. It
also makes it easy to backup and transmit the database to
different computers. Third, the provided database is feature
rich. It contains support for most natural actions as well as
commands to easily create new rooms, objects, and actions.
Fourth, it focuses heavily on player-world and player-player
interaction. Many MUDs are combat oriented and are not of
interest to us. Finally, it provides a powerful programming
language. This language is similar to C and can be used to

create just about any behavior imaginable.

3 Text Translation into Logic
In this section we describe the need for text translation, the
steps we took to translate the game world into logic, and the
difficulties we encountered. For an agent to be able to rea-
son about its environment, it must either have sensors that
transmit information in a form it can understand, or be able
to convert the sensed information after the fact. Because our
work is not concerned with conversion of natural language
sentences into logic, we modified our game engine to output
logical sentences directly. This requires the translationof all
aspects of the game world into logic.

To accomplish this, we first created a small game world
(just a few rooms), that was representative of the kinds of
objects and actions we required. Then we created all of the
predicates needed to fully describe this world in logic. Using
these predicates, we defined STRIPS-like actions (precondi-
tions and effects) that were required to interact with the game
world. Finally, the MUD was modified to output logical sen-
tences composed of the previously defined predicates.

Although the translation of a game world into logic is a
very straightforward procedure, we encountered several dif-
ficulties along the way. First, some of the predefined Lamb-
daMOO actions behaved in a manner that contradicted com-
monsense assumptions. For example, theopenaction, when
performed on a locked container, would only succeed if the
actor was carrying the required key. When successful, the
container would automatically unlock and open, and would
lock again when closed. We expect to have to explicitly issue
an unlockcommand (specifying the correct key), before the
container can be opened. In these situations, the offending
actions were redefined to better match commonsense expec-
tations.

Another difficulty we experienced was the underestimation
of the number of different action outcomes. Whenever an
action succeeds or fails, the agent makes an observation. If
the action succeeds, then the action’s effects are observed. If
the action fails however, any number of different observations
might be seen, related to the complexity of the preconditions
that must hold on the action for it to succeed. Because a hu-
man would be able to observe all of these causes of failure,
each needs to be converted to logic and presented to the agent
after the action is executed.

4 Logical Filtering
Logical filtering is the process whereby an agent updates its
belief state, or knowledge of the state of the world (repre-
sented in logical formulae), from a sequence of actions and
observations. In our case, the agent receives observations
from the game server, and performs actions that the server
executes. At every point in time, the agent has knowledge
that is represented in ground First-Order Logic (this is equiv-
alent to propositional logic). When it performs an action in
the world or receives an observation, it uses a logical filter-
ing algorithm to update its knowledge with this information.
At any point in time, the knowledge of our agent is about
the current state alone, and not about past or future states.



The agent has knowledge about the effects of actions that is
separate from the knowledge about the state (currently, this
knowledge is given by the user).

The features of our game that most affect our choice of fil-
tering algorithm are: 1) a nondeterministic and 2) partially
observable world. Under these conditions, efficient updating
of the agent’s belief state can be achieved using theNNF-filter
algorithm of[Amir and Russell, 2003]. This algorithm main-
tains a compact belief state representation indefinitely for our
game, which is critical when working with game worlds with
large state spaces (when we haven propositional features,
this isO(2n) states). This algorithm has a linear runtime per-
formance for an individual action in the number of propo-
sitions of the current belief state. Currently, our implemen-
tation of NNF-filter (written in Lisp) is quite slow, and we
expect to benefit greatly from a future reimplementation.

5 Agent Architecture
One of our goals is to create an intelligent agent that interacts
with the game world much like a human player would. This
section first describes our progress toward reaching that goal,
then discusses the desired agent architecture.

5.1 Current Architecture
Of the planned architecture, we currently have an agent that
is able to track the world through the use of the telnet MUD
client and filtering modules. The Python programming lan-
guage was used to create the MUD client, filtering wrapper,
and graphical interface. The filtering algorithm was imple-
mented in Lisp and is executed by the filtering wrapper.
 

 

MUD 
Server 

Telnet 
Client 

Module 

Filtering 
Module 

Knowledge 
Base 

Figure 1: Our current implementation

To illustrate the operation of our system, we provide an ex-
ample of our agent acting and observing in the game world.
First, the agent code parses the output of the game server and
constructs an observation. Below is a description of a room
with an exit leading down, a tree trunk, and a key. This de-
scription is automatically generated by the MUD and sent to
the agent.

(AT ME Tree Branches) (AND (EXIT TreeBranches down)
(INDIRECTION TreeBranches down Baseof the Waterfall))
(AND (AT tree trunk TreeBranches) (AT goldkey TreeBranches))

These observations are added to the agent’s current knowl-
edge base through the use of the (observe) action, which is
the equivalent of issuing a “look” command to the MUD. We
assume the agent is curious about the tree trunk, so it issuesa
“look tree trunk” command to the MUD, which produces the
following observations:

(CONTAINER treetrunk)
(AND (NOT (CONTAINER-OPEN treetrunk))
(CONTAINER-HASLOCK treetrunk))

Filtering with the (observe) action again adds this new in-
formation to the agent’s knowledge base. Now the agent
knows that the tree trunk is an open container that has a lock
on it. Next, the agent attempts to open the container by is-
suing the “opencontainer treetrunk” command. In response,
the MUD informs the agent that the action failed because the
container was locked:

(ACTION-FAILED)
(CONTAINER-LOCKED treetrunk)

Next, the agent adds this new information to its knowledge
base and attempts to pick up the key in the room. To do this, it
issues the “get goldkey” command. On seeing the action suc-
ceeded, the agent filters using the “(GET ME TreeBranches
gold key)” action with the following observations:

(AND (PLAYER-HAS ME gold key)
(NOT (AT gold key TreeBranches)))

The final belief state then becomes:
(AND (NOT (CONTAINER-OPEN TREETRUNK)) (NOT (AT
GOLD KEY TREE BRANCHES)) (AT ME TREEBRANCHES)
(EXIT TREE BRANCHES DOWN) (INDIRECTION
TREE BRANCHES DOWN BASEOF THE WATERFALL) (AT
TREE TRUNK TREE BRANCHES) (CONTAINER TREETRUNK)
(CONTAINER-HASLOCK TREETRUNK) (CONTAINER-LOCKED
TREE TRUNK) (PLAYER-HAS ME GOLD KEY))

In the current system, the agent must know about all of
the actions, their preconditions, and their effects to track the
world, however, in the future, the agent will be able to learn
action preconditions and effects as it explores.

5.2 Planned Architecture
A human playing a text-based adventure game performs
many important functions that help him/her to reach the goal
(win the game). First, the player must track the world. This
means the player’s knowledge of the world must be kept up to
date as a result of performing actions and receiving observa-
tions. This requires the player to learn which actions can be
performed in a given situation (preconditions), as well as their
effects once executed. In addition to learning, the player must
be able to explore and make decisions that will help him/her
reach the goal.
 
 

MUD 
Server 

Telnet 
Client 

Module Learning 
Module 
Filtering 
Module 

Decision 
Making 
Module 

Knowledge 
Base 

Commonsense 
Extraction 

Figure 3: Our planned architecture

All of these functions are a part of our planned agent ar-
chitecture. The telnet client module handles communication



Figure 2: A screen capture of our current user-interface

with the MUD server. The MUD output is used by the fil-
tering and learning modules to update the agent’s knowledge
base. The exploration and decision-making module combines
the agent’s knowledge of the world with a source of common-
sense knowledge to plan and take action. These actions are
then returned to the telnet MUD client module to be sent to
the game server.

Our filtering algorithm enables our agent to track itself and
the world, but it currently has no capability to learn about
actions and their effects. There are many solutions to the
learning problem, but in the context of text-based adventure
games, none are well suited. In the game world, the agent
is assumed to have no a priori knowledge of action effects
or preconditions. It needs to be able to simultaneously filter
(track) and learn with a partially known action model.

The second problem that needs to be addressed is that of
exploration (planning). Traditional planning algorithmswill
not work with text-based adventure games, whose worlds are
partially observable and whose state space is exponentially
large. Also, the number of potential actions that can be ap-
plied in a given state is very large, making the problem even
more challenging. External commonsense knowledge from
projects such as OpenMind and Cyc can be used to aid in
planning.

6 Conclusions

In this paper, we presented the first accurate knowledge-
gathering software agent that can track the state of the world
in a text-based adventure game. We described the prob-
lems associated with using text-based adventure games for

research in artificial intelligence. We also discussed the pro-
cess of translating the game world into First-Order Logic, our
specific logical filtering algorithm, and our current and de-
sired agent architecture. Our work thus far shows that our
goal is feasible. We are in the process of developing the the-
ory and implementation that are needed for a software agent
that interacts on the level of a human with its environment.

References
[Amir and Doyle, 2002] Amir, E. and Doyle, P. (2002). Adven-

ture games: A challenge for cognitive robotics (full version).
AAAI’02 workshop on Cognitive Robotics. Also, available at the
author’s website (http://www.cs.uiuc.edu/˜eyal/papers).

[Amir and Russell, 2003] Amir, E. and Russell, S. (2003). Logical
filtering. In IJCAI ’03, pages 75–82. MK.

[DePristo and Zubek, 2001] DePristo, M. and Zubek, R. (2001).
being-in-the-world. InProc. of the 2001 AAAI Spring Symp. on
AI and Interactive Entertainment.

[Gabsdil et al., 2001] Gabsdil, M., Koller, A., and Striegnitz, K.
(2001). Building a text adventure on description logic. InPro-
ceedings of KI-2001 Workshop on Applications of Description
Logics, Vienna.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and
Moore, A. W. (1996). Reinforcement learning: a survey.JAIR,
4:237–285.

[Koller et al., 2002] Koller, A., Debusmann, R., Gabsdil, M., and
Striegnitz, K. (2002). Put my galakmid coin into the dispenser
and kick it: Computational linguistics and theorem proving in a
computer game. Journal of Language & Computation. To appear.


