Knowledge-Gathering Agentsin Adventure Games

Brian Hlubocky and Eyal Amir
Computer Science Department
University of lllinois at Urbana-Champaign
Urbana, IL 61801, USA

{hlubocky,eya} @uiuc.edu

Abstract tially nondeterministic world, with an extremely large tsta
space (greater tha2i® states). This renders unusable tradi-
tional planning and learning algorithms, such as reinforce
ment learningKaelbling et al., 1995and POMDPs. New
algorithms for tracking the world, learning, and explovati
are required.

In this paper, we describe our experiences, including cur-
rent progress and difficulties encountered in creating &akin
ligent agent that plays computer text-based adventure game
Currently, our agent is able to track itself and the evolving
world efficiently in response to the agent’s actions and obse
vations. We present the overall architecture for our agent,
gether with the current state of our algorithms and thisiarch
tecture. Currently, the architecture also includes a haade
translation of the text interface into a logic-based iraeef
that the agent receives and outputs. Our translation serves
as a test case for natural-language processing (NLP) gori
and we expect that it will serve to guide future NLP research
and act as a training corpora for future NLP applications.

We are not the first to examine the use of text-based ad-
venture games in the context of cognitive robotics. The
challenges associated with using adventure games for Al re-
search are explored imir and Doyle, 200R The use of
] a description logic knowledge base as the core for a text-
1 Introduction based adventure game is investigated®sbsdil et al., 2001;

We are interested in creating an agent that can play a texSoller et al., 2002. One example of a text-based adventure

based adventure game using well-founded, knowledge-baségent implemented using a MUD [®ePristo and Zubek,

principles. Our motivation for this project is twofold. lhe 2001, which focuses mostly on the selection of actions nec-

short term, we seek to create smart games in which intelli€ssary for survival in a combat-oriented world.

gent agents interact believably in the world. Looking itet ~ This paper is organized as follows. In section 2, we intro-

future, we expect the technology that will come out of this re duce text-based adventure games and describe the particula

search to contribute to building human-level Al softwaratth game we chose as a research platform. Section 3 details the

can act in rich, large domains. process used to translate (by hand) our game world into-First
Having a world populated by agents that learn and act likédrder Logic. Logical filtering is described in section 4,r&jo

humans makes games more realistic, interesting, and enjoy\lith a discussion of our choice of an efficient filtering algo-

able. Also, one can envision games in which an intelligenfithm. Section 5 describes the desired agent architechde a

agent collaborates with a human player to achieve certaifUr current progress toward that goal.

goals, and successfully playing the game becomes dependent

on experienc.ing it together with the agent. I.n contrast; curp Text-Based Adventure Games

rent agents fill a few narrowly defined roles in most games,

never acting outside of those roles. Computer text-based adventure games appeared ajout
The technical problems faced when building such agentgears ago, reaching a high-point commercially in the late

are not simple. A typical domain in text-based adven-1980s. They are promising for a new frontier in computer

ture games consists of a partially observable and potergames in the manner that we describe in the rest of the paper.

Computer text-based adventure games are virtual
worlds in which humans or artificial agents act to-
wards a specified goal through a text-based inter-
face. In this paper we describe progress towards
an agent that can interact with a game world in
a human-like fashion. Precisely, we present the
first accurate knowledge-gathering software agent
that can track the state of the world in a text-
based adventure game. This is nontrivial because
such games are characterized by large, partially ob-
servable domains that include many objects, ac-
tions, and relationship between them. To test our
agent, we developed a text-based adventure game
world built by augmenting the LambdaMOO code
base. We translated this game world into First-
Order Logic, and used a logical filtering algorithm
to allow the agent to track itself and the world effi-
ciently. We expect that the development of software
agents that act intelligently in such games will give
rise to new types of games and will contribute to
research on human-level artificial intelligence.

In the following we describe some characteristics of text-create just about any behavior imaginable.
based adventure games and list factors that make them useful
for research in cognitive robotics. We also introduce a spe3 Text Translation into Logic
cific text-based adventure that was used in our research.
The text-based adventure is a computer game in which th
player interacts with the world by entering natural langriag

@ this section we describe the need for text translatioa, th
Steps we took to translate the game world into logic, and the

commands using a text-based interface. Some of the texg_ifficulties we encountered. For an agent to be able to rea-

based adventure’s most distinctive characteristics astiide S°" about its environment, it must either have sensors that
fied by[Amir and Doyle, 200 are: transmit information in a form it can understand, or be able

to convert the sensed information after the fact. Because ou
work is not concerned with conversion of natural language
sentences into logic, we modified our game engine to output
logical sentences directly. This requires the transladiball
aspects of the game world into logic.
To accomplish this, we first created a small game world
just a few rooms), that was representative of the kinds of
Objects and actions we required. Then we created all of the
o ... predicates needed to fully describe this world in logic.ndsi
pla-Ll;Poernﬁhfzrra,CAﬁe:lesstg;rgg Eﬂesggg%r\?:?cgggg s[t/lj\(r_:‘nniqr an(;unf hese predicates, we defined STRIPS—}lke actions (preeondi
i ons and effects) that were required to interact with thega

Doyle, 2002 describes several factors that make teXt'b.aS.eavorld. Finally, the MUD was modified to output logical sen-
adventures challenging research problems. At the beg]nn'ntences composed of the previously defined predicates.

of the game, only a small amount of information is known Although the translation of a game world into logic is a

zg?gti;hﬁnvﬁgg\?\}n -I;Qethneumlge;rOf;rsa?hsét'gﬂ\sli:g?]rpnsgtyig“éi?very straightforward procedure, we encountered sevefal di

. player, . ¥iculties along the way. First, some of the predefined Lamb-
partlally observable. An agent must S|mulltaneously learn a daMOO actions behaved in a manner that contradicted com-
tion effects and preconditions while tracking the world.-An monsense assumptions. For example,dpenaction, when

other challenge is the large state and actic_)n space prelser]tﬁerformed on a locked container, would only succeed if the
by most text-based adventures, A game with objects and actor was carrying the required key. When successful, the

10,000 H;j i i el
100 rooms hag different states, necessitating efficient container would automatically unlock and open, and would

algorithms for learning and filtering. lock again when closed. We expect to have to explicitly issue

Multi-User Dungeons (MUDs) are a unique type of text- e
based adventure game that have multiple players inter‘:yalctinan unlockcommand (specifying the correct key), before the

. ; : - container can be opened. In these situations, the offending
simultaneously with each other and their environment. Th ctions were redefined to better match commonsense expec-
natural separation between the game world (server) and itt%tions
occupants (clients) make MUDs an ideal platform for agent f
building. MUDs are also programmable, enabling the eas N
creation of new environments, objects, and actions. In mos
cases, these programming languages allow almost any situ
tion to be modeled in the game world. As agents are bein
built, nearly all of the previously described charactérgsbf
text-based adventure games can be relaxed, making the Wor{

more challenging. For example, non-local action effects an man would be able to observe all of these causes of failure,

noise in sensing and perceiving can be added. -
In 1990, Xerox PARC scientist Pavel Curtis created Lamb-eaCh needs to be converted to logic and presented to the agent

daMOO, a MUD whose focus was social interaction and theafter the action is executed.
creation of new environments. After considering severfal di . . .

ferent MUD code bases, we chose LambdaMOO as our reA-' L ogical Filtering

search platform for several reasons. First, the MUD is easy tLogical filtering is the process whereby an agent updates its
install and run. Second, it separates the details of thedworlbelief state, or knowledge of the state of the world (repre-
from the core MUD code. This allows us to make changessented in logical formulae), from a sequence of actions and
to the game world without having to recompile the code. Itobservations. In our case, the agent receives observations
also makes it easy to backup and transmit the database foom the game server, and performs actions that the server
different computers. Third, the provided database is featu executes. At every point in time, the agent has knowledge
rich. It contains support for most natural actions as well aghat is represented in ground First-Order Logic (this isiequ
commands to easily create new rooms, objects, and actionalent to propositional logic). When it performs an action in
Fourth, it focuses heavily on player-world and player-play the world or receives an observation, it uses a logical filter
interaction. Many MUDs are combat oriented and are not ofng algorithm to update its knowledge with this information
interest to us. Finally, it provides a powerful programming At any point in time, the knowledge of our agent is about
language. This language is similar to C and can be used tthe current state alone, and not about past or future states.

e The game world is relatively static

Effects of actions are local and immediate

Actions are discrete

There is no uncertainty in acting or sensing

Finishing the game generally involves lots of exploration
No action can make the game unbeatable

The player is assumed to possess a required amount
commonsense knowledge

Another difficulty we experienced was the underestimation
the number of different action outcomes. Whenever an
ction succeeds or fails, the agent makes an observation. If
flie action succeeds, then the action’s effects are obselfved
%e action fails however, any number of different obseoregi

ight be seen, related to the complexity of the precondition
at must hold on the action for it to succeed. Because a hu-

The agent has knowledge about the effects of actions that is Filtering with the (observe) action again adds this new in-
separate from the knowledge about the state (currently, thiformation to the agent’s knowledge base. Now the agent
knowledge is given by the user). knows that the tree trunk is an open container that has a lock
The features of our game that most affect our choice of fil-on it. Next, the agent attempts to open the container by is-
tering algorithm are: 1) a nondeterministic and 2) pastiall suing the “opencontainer tréeunk” command. In response,
observable world. Under these conditions, efficient updati the MUD informs the agent that the action failed because the
of the agent’s belief state can be achieved using\iNE-filter ~ container was locked:
algorithm of[Amir and Russell, 2003 This algorithm main- (ACTION-FAILED)
tains a compact belief state representation indefinitelpto (CONTAINER-LOCKED treetrunk)
game, which is critical when working with game worlds with Next, the agent adds this new information to its knowledge
large state spaces (when we havepropositional features, base and attempts to pick up the key in the room. To do this, it
this isO(2") states). This algorithm has a linear runtime per-issues the “get golétey” command. On seeing the action suc-
formance for an individual action in the number of propo- ceeded, the agent filters using the “(GET ME TBmanches
sitions of the current belief state. Currently, our impleme gold_key)” action with the following observations:

tation of NNF—fi.Iter (written in Lisp) is q_uite slow, al’_]d we (AND (PLAYER-HAS ME gold key)
expect to benefit greatly from a future reimplementation. (NOT (AT goldkey TreeBranches)))
) The final belief state then becomes:
5 Agent Architecture (AND (NOT (CONTAINER-OPEN TREETRUNK)) (NOT (AT
One of our goals is to create an intelligent agent that istera EgE?('[T[”TﬁEEYET;REAE,\,%i/*E'\éC;gV?,ﬁ)(QL'\SEQEEEE)BNRANCHES)
with the game world much like a human player would. This TREE BRANCHES DOWN BASEOF.THE WATERFALL) (AT
i H i i TREE-TRUNK TREE.BRANCHES) (CONTAINER TREETRUNK)
SeCtIOn first describes qur progress tovyard reaChmg thﬂt go (CONTAINER-HASLOCK TREETRUNK) (CONTAINER-LOCKED
then discusses the desired agent architecture. TREE TRUNK) (PLAYER-HAS ME GOLDKEY))
5.1 Current Architecture In the current system, the agent must know about all of

e actions, their preconditions, and their effects tokthe
orld, however, in the future, the agent will be able to learn
action preconditions and effects as it explores.

Of the planned architecture, we currently have an agent th {
is able to track the world through the use of the telnet MUD
client and filtering modules. The Python programming lan-
guage was used to create the MUD client, filtering wrapper5.2 Planned Architecture
and graphical interface. The filtering algorithm was imple- o hyman playing a text-based adventure game performs
mented in Lisp and is executed by the filtering wrapper. 31y important functions that help him/her to reach the goal
U . (win the game). First, the player must track the world. This
| ‘ means the player’s knowledge of the world must be kept up to

date as a result of performing actions and receiving observa

3 Telnet iteri !
MUD ! : Filterin Knowledge ! R X . . .
Server —* Client —> Modmg A Baseg { tions. This requires the player to learn which actions can be
Module . performed in a given situation (preconditions), as welhasrt

effects once executed. In addition to learning, the play@stm
be able to explore and make decisions that will help him/her
reach the goal.

Figure 1: Our current implementation

To illustrate the operation of our system, we provide an ex- Rt ;

ample of our agent acting and observing in the game world. c
First, the agent code parses the output of the game server and Erocton
constructs an observation. Below is a description of a room 1
with an exit leading down, a tree trunk, and a key. This de- 1 L_ .
scription is automatically generated by the MUD and sent to | DJCI'(S.'O” || Knowledge
the agent i I aKing Base
: ; Module —
(AT ME Tree.Branches) (AND (EXIT TreeBranches down) MUD | ¢ Telnet
(INDIRECTION TreeBranches down Basef_the Waterfall)) Server —* Client -
(AND (AT tree_trunk TreeBranches) (AT goldkey TreeBranches)) Module Learning |,
. i Module
These observations are added to the agent’s current knowl- ‘ Filtering
edge base through the use of the (observe) action, which is 1 Module
the equivalent of issuing a “look” command to the MUD. We ; :
assume the agent is curious about the tree trunk, so it issues

“look tree_trunk” command to the MUD, which produces the
following observations:

(2D (NOT (CONTAINER-OPEN tredruni) Al of these functions are a part of our planned agent ar-

(CONTAINER-HASLOCK treetrunk)) chitecture. The telnet client module handles communioatio

Figure 3: Our planned architecture

A WNFFiltering Demmo
M U D C I - Welcome to the LambdaCore database [« (AND (INDIRECTICN BASE_OF_THE_WATERFALL UP
le nt TREE_BRANCHES) (EXIT BASE_OF_THE WATERFALL UP)
Type 'connect wizard' 1o log in (INDIRECTION BASE_OF _THE_WATERFALL NORTH
'WATERFALL CAVE) (EXIT BASE OF THE WATERFALL NORTH)
The M U D C“ent con nects to the You will probably want lo change this text and the output of the “help' (AT ME BASE_OF_THE_WATERFALL))
= command, which are stored in $login.welcome_message and $login
game server using telnet. help_message, respeciively.)
Observati ived from the | [ees o e wa
servations are received trom tne Base_of_the_Wateriall M K I d g B
s e (AT ME Base_of_the_Waterfall) nowie e ase
game and actions are sent to it via (AND (EXIT Base_of_the_Walerfall north) (INDIRECTION
" Base_of the Waterall north Waterfall_Cave) (EXIT

the MUD Client. Base_ol_the_Walerfall up) (INDIREGTION Base_of_the_Walertall up The knowledge base represents the
Tree_Branches)) ' i i 3
Last connected Thu Apr 22 2022:03 2004 CDT from localhost agent s current belief state, which is

s There is new news. Type “news' to read all news or ‘news new' to .

read just new news assembled as the agent acts in and
Tree_Branches
(AT ME Tree_Branches) observes the world.
(AND (EXIT Tree_Branches down) (INDIRECTION Tree_Branches
down Pase of the Wataralli v y,
MUD Command: | u || Gol |
DOWN observe [AND (AT ME TREE_BRANCHES) (NOT (AT ME
TREE_TRUNK open-container BASE_OF_THE WATERFALL)) (EXIT TREE_BRANCHES DOWN)
TREASURE_ROOM_KEY close-container (INDIRECTION TREE_BRANCHES DOWN
BASE _OF THE WATERFALL lock-container (= = = »
NORTH move
WATERFALL_CAVE get A
urP drop -
TREE SRANGHES gt Observations

The execution of an action produces

observations that are used by the
Observed Symbols Action List filtering algorithm to update the
/ agent's knowledge of the world.

Filter Action: [imove ME BASE_OF WATERFALL UF TRE| Gol T

Figure 2: A screen capture of our current user-interface

with the MUD server. The MUD output is used by the fil- research in artificial intelligence. We also discussed tioe p
tering and learning modules to update the agent’s knowledgeess of translating the game world into First-Order Logig, 0
base. The exploration and decision-making module combinespecific logical filtering algorithm, and our current and de-
the agent’s knowledge of the world with a source of common-sired agent architecture. Our work thus far shows that our
sense knowledge to plan and take action. These actions ag®al is feasible. We are in the process of developing the the-
then returned to the telnet MUD client module to be sent toory and implementation that are needed for a software agent
the game server. that interacts on the level of a human with its environment.
Ouir filtering algorithm enables our agent to track itself and
the world, but it currently has no capability to learn aboutRefer ences

actions and their effects. There are many solutions to th?Amirand Doyle, 2002 Amir, E. and Doyle, P. (2002). Adven-
learning problem, but in the context of text-based adventur re games: A challenge for cognitive robotics (full version).

games, none are well suited. In the game world, the agent AaAA'02 workshop on Cognitive Robotics. Also, available at the
is assumed to have no a priori knowledge of action effects author's website (http://www.cs.uiuc.edu/ eyal/papers).

or preconditions. It needs to be able to simultaneouslyrfilte[Arnir and Russell, 2003 Amir, E. and Russell, S. (2003). Logical
(track) and learn with a partially known action model. filtering. In 1JCAI '03, pages 75-82. MK.

The second problem that needs to be addressed is that
exploration (planning). Traditional planning algorithmvl
not work with text-based adventure games, whose worlds are
partially observable and whose state space is expongntiall[
large. Also, the number of potential actions that can be ap-
plied in a given state is very large, making the problem even
more challenging. External commonsense knowledge from
projects such as OpenMind and Cyc can be used to aid i

ﬁISePristo and Zubek, 20p1DePristo, M. and Zubek, R. (2001).
being-in-the-world. InProc. of the 2001 AAAI Spring Symp. on
Al and Interactive Entertainment

Gabsdil et al., 2001 Gabsdil, M., Koller, A., and Striegnitz, K.
(2001). Building a text adventure on description logic. Plro-
ceedings of KI-2001 Workshop on Applications of Description
Logics Vienna.

FKaerIing etal., 1996 Kaelbling, L. P., Litman, M. L., and

planning. Moore, A. W. (1996). Reinforcement learning: a survépiR,
4:237-285.
6 Conclusions [Koller et al., 2002 Koller, A., Debusmann, R., Gabsdil, M., and

Striegnitz, K. (2002). Put my galakmid coin into the dispenser
and kick it: Computational linguistics and theorem proving in a
computer game. Journal of Language & Computation. To appear.

In this paper, we presented the first accurate knowledge-
gathering software agent that can track the state of thedworl

in a text-based adventure game. We described the prob-
lems associated with using text-based adventure games for

