
Factored Planning for Controlling a Robotic Arm: Theory

Jaesik Choi and Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{choi31,eyal}@cs.uiuc.edu

Abstract

Controlling robotic arms is important for real, physical
world applications. Such control is hard because move-
ment of one joint affects the position of many of the rest.
In this paper we present an algorithm that finds plans of
motion from one arm configuration to a goal arm con-
figuration. Our algorithm is unique in two ways: (a)
It takes time that is only polynomial in the number of
joints (O(m7 · 2n), with m joints and n island obsta-
cles), thus allowing scaling up to complex arms; and (b)
it decomposes the control problem to that of the sep-
arate joints, thus enabling future development of reac-
tive modules. The algorithm leaves each joint some-
what independent of the rest by reformulating the do-
main description and re-partitioning it. Our algorithm
is exact when the location of the end effector on the op-
timal path approaches to the goal location within finite
steps (depth). Also it has bounded error with respect to
the optimal path in the discretized environment. Our
approach is promising because it leads naturally to a
subsumption-architecture-like control of robotic arms.

1 Introduction
A robotic arm is a manipulator that has revoluting joints
connecting oval-like pegs, much like a human’s shoulder,
elbow, wrist, palm, and fingers. The complexity of motion
planning increases exponentially with the dimensionality of
the space (the number of joints of the arm) (Canny 1987).

Nonetheless, robotic arms are crucial for general purpose
mobile robots, so much work has been invested in studying
their controls (Kuffner. & LaValle 2000), (Kavraki et al.
1996), (Brock & Khatib 2000). Unfortunately, current algo-
rithms still depend exponentially on the dimensionality of
the configuration space (which is proportional to the number
of joints). In addition, the probabilistic approaches are not
complete, and they provide a solution with probability that
depends on the computation time spent.

In this paper we present a path planning algorithm that
can scale to robotic arms with high degrees of freedom. To
reduce the complexity of the planning problem, we focus
on the fact that each angle of a robotic arm is independent
in some sense. That is, the configurations of any joint

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is independent of other joints with the exception of the
adjacent previous joint. Thus, we partition the planning
problem into small subdomains of each joint.

Our approach is composed of two procedures: factoring
and planning. We partition the problem manually into
subdomains that correspond to each joint. Then, in each
subdomain, we find a comprehensive set of plans of action
and process a tree of subdomains in a dynamic programming
fashion. This is done with a modified Factored Planning
algorithm (Amir & Engelhardt 2003).

During manual factoring, the configuration space of
our robotic arm is represented using distinctive groups of
axioms in Propositional Logic (ground predicate calculus).
We represent actions and complex actions on joints with
preconditions and effects in PDDL. The actions are grouped
based on the locations of an end effector. The actions,
which are related to the location of an end effector, are
merged into a group, if there is no obstacle. However, if
there are some obstacles that prevent the actions from being
merged, the actions are split into several groups. Based on
the achieved PDDL actions, a planner finds a path which is
sound and complete 1.

We prove the complexity of our algorithm in various
environments; without any obstacles, with a convex island,
with ‘n’ convex islands, and with an infinite number of
obstacles. As a baseline, we prove that the complexity of the
algorithm without any obstacles is O(m7) (when m is the
number of joints). We also prove both the complexity with
a convex island and the complexity with ‘n’ convex islands.
Although the complexity of our algorithm increases expo-
nentially with the number of convex islands, O(m7 ·2n), we
also prove that the complexity of the algorithm is bounded
by O(m5 · cm) (when n is the number of obstacles, c is
a constant and m is the number of joints). Thus, in many
environments our algorithm is superior computationally to
the previous approaches. Our algorithm is guaranteed to
position the end effector in its target position. Furthermore,
we give a condition that guarantees that the configuration
error (distance from the requested overall configuration
in some norm) in the planned path (with respect to the

1The returned paths of our algorithm are sound, because the
paths always make the arm move to the goal location. The sug-
gested algorithm is complete, because the algorithm returns a path
if there is a path.

configuration in the optimal one) is bounded.
The previous works can be categorized into three

groups; Potential Field (Khatib 1986), Cell Decomposition
(Schwartz & Sharir 1983), and Roadmap (Canny 1987)
(Kavraki et al. 1996). They are based on the configuration
space which is a set of all the possible configurations of all
joints. Thus, the complexity of the methods for complete
planning are exponentially proportional to the number of
joints; the complexity of Potential Field is O(cm), the
complexity of Cell Decomposition is O(22m

), and the
complexity of Roadmap Method is O(2m) (when m is the
number of joints). Although the original Potential Field
approach (Khatib 1986) is not complete, the wavefront-
expansion (Barraquand & Latombe 1991) is a complete
algorithm. While Cell Decomposition approaches group
the adjacent cells in the configuration space, we group the
configurations of which the end effectors indicate the same
location. Probabilistic Roadmap currently dominates the
motion planning literature. Because it generates samples
in the configuration space at random, the complexity is
dramatically reduced. However, it is not complete without
probabilistic assumption.

In the following sections, we specify our algorithm,
analyze the complexity, and prove an error bound. In
section 2, the state definitions in propositional logic, the
PDDL actions and planning algorithm are suggested. At
the section 3, we analyze the complexity of our algorithm.
In section 4, we prove the error bound of the suggested
algorithm comparison to the previous approaches. We
respectively state the related works and conclusion in the
last 2 sections

2 Factored Planning for a Robotic Arm
In this section, we present the state definitions and a path
planning algorithm for a robotic arm. Each subdomain of
the robotic arm corresponds to a subset of the fluents and
actions that are only related to a joint. A fluent represents
the location of any joint of an arm. An action represents the
movement of a joint. The fluents and actions are only shared
by the adjacent joints.

An Illustrative Example
We want to start this section with an illustrative example.
Figure 1 shows a simple movement of the joint. The left side
of Figure 1 represents the Workspace of 2nd joint. Suppose
that the location W1 is (x = 0, y = 0, θ = π/2). That is, x,
y, and θ are respectively 0, 0, and π/2. The location of W2

is (3, 3, π/4). When we move the 1st joint in W1 toward the
right, the location of 2nd joint changes from W2(3, 3, π/4)
to W ′

2(4.1, 1.1, π/12). We call the movement an action
of W2 (act(W2,W1,moveright)). Although there are many
actions which are related to the 2nd joint and the location
(W2), we only consider the unit movement of any previous
joints.

Our task one is relocating joint 3 from one location to
another. Formally, our task is finding a plan for relocating
the location of joint 3 from the start location to a goal one.

act(w2, w1, moveright)

W2(3, 3, π/4)

W1 (0, 0, π/2)
W2´(4.1, 1.1, π/12)

W3

W3´

W3´´

act(w3, w1, moveright)

act(w3, w2, moveleft)

W2

W1

The messages

Workspace 2nd Joint Workspace 3rd Joint

Figure 1: The left side of figure represents the Workspace of the
2nd joint. W2 and W ′

2 are the locations of the 2nd joint. For ex-
ample, x, y, and θ of W2 are respectively 3, 4, and π/4. The
act(W2,W1,moveright) is an action which moves the location of the
2nd joint from the W2(3, 4, π/4) to the W2(4.1, 2.1, π/12). The
right side of figure represents the Workspace of the 3rd joint. W3,
W ′

3, and W ′′
3 are the locations of 3rd joint. The 2nd joint sends the

message to the 3rd joint. An action (act(W3,W1,moveright)) is con-
structed from the received action, act(W2,W1,moveright). More-
over, the 3rd joint makes a new action, act(W3,W2,moveleft).

Suppose that all the possible positions of joint 3 are W3,
W ′

3, and W ′′
3 . A possible task is relocating joint 3 from W3

to W ′
3, from W3 to W ′′

3 , from W ′
3 to W ′′

3 , or the same in the
opposite direction.

We find a plan of movement for the joints using the
following dynamic programming algorithm. We process
each joint separately as follows, starting from joint 1, and
proceeding to joint 2 and finally 3. Processing each joint
involves running a planner on all possible input starting
states and all possible goal conditions. It records those input
and goal conditions that have a valid plan, and transfers
them all as new macro actions to the subsequent joint. For
joint 1, we compute all the possible positions of joint 2 (W2,
W ′

2) that joint 1 movements can entail. Then we record all
those positions as new macro actions that joint 2 can request
from joint 1. The planning problem for joint 2 becomes
finding all the positions that it can entail for joint 3, given
its original actions and its (new) macro actions.

We describe this algorithm more precisely now. Each
joint has an associated subdomain and messages that it
computes and sends to its parent joint subdomain. A
message from joint i includes actions that are constructed
by subdomain i and i’s child subdomains. All messages are
of the form “if X0 holds, then actions of the 2nd joint can
make X1 hold”. In this example, the 2nd joint has a message
“if the first joint is on W1(0, 0, π/2) and the 2nd joint is
on W2(3, 3, π/4), then an action(act(W2,W1,moveright))
can make the 2nd joint be on W ′

2(4.1, 1.1, π/12)”. This
message is sent to the 3rd joint. The 3rd joint can convert
the message into an action, because the 3rd joint has
information for manipulating the shared fluents. From the
message, the 3rd joint constructs a new action “if the first

Actions:
movej-1_left,
movej-1_right
movej-2_1, …

movej-2_|Aj-2|

Fluents:
{endj-2(w1) …
endj-2(w|Wj-2|)}

∪
{endj-1(w1) …
endj-1(w|Wj-1|)}

j-1th joint jth joint
Actions:
movej_left,
movej_right
movej-1_1, …

movej-1_|Aj-1|

Fluents:
{endj-1(w1) …

endj-1(w|Wj-1|)}
∪

{endj(w1) …
endj(w|Wj|)}

Message(Aj-1) ……

Shared
fluents

Figure 2: Subdomains of controlling a robotic arm; Each joint
have actions that includes its movement (movej−1 left and
movej−1 right) and the movement of previous joints (movej−21
... movej−2|Aj−2|); After the actions are converted to the Aj−1,
the set of actions are sent to jth joint as a message.

joint is on W1(0, 0, π/2) and the 3rd joint is on W3, an
action(act(W3,W1,moveright)) can make the 3rd joint be on
W ′

3”.
The right side of Figure 1 represents the Workspace of

the 3rd joint. Because the 2nd joint sends the messages
(the set of actions which are related to the 3rd joint) to the
3rd joint, the 3rd joint can construct some actions from
the received actions. For example, act(W3,W1,moveright) is
constructed from a received action (act(W2,W1,moveright)).
Moreover, the 3rd joint makes new actions which are
caused by the movement of the 2nd joint. For example,
act(W3,W2,moveleft) is a new action of the 3rd joint.

In the general case, we decompose the problem of
controlling a robotic arm into the subdomains in Figure 2.
Each joint (eg. jth) receives the messages from the previous
joint(eg. j − 1th) and sends the messages to the next joint
(eg. j + 1th).

State Definition in Propositional Logic
Here, we formally define the Workspace (W), End-effector
Space (ES) and the set of actions (Act). In the simple
case (without any obstacles), we can represent the state only
with the Workspace and the set of actions without the End-
effector Space. However, in the most general case (with
many obstacles), the End-effector Space is also required for
representing the complex environment, because a location
of Workspace is divided into multiple points of End-effector
Space by the obstacles.

The Workspace of the robot (Wrobot) is the set of dis-
cretized locations that can be occupied by any joint of the
arm. To simplify, we assume a 2-dimensional workspace.
A location in the workspace (W) is represented by the
w = (x, y, θ) (x ∈ X , y ∈ Y , and θ ∈ Θ, when X is
the discretized x axis, Y is the discretized y axis, and Θ is

the discretized angular orientations). That is, the set of all
the locations is Wrobot = {(x, y, θ)|(x ∈ X) ∧ (y ∈ T) ∧
(θ ∈ Θ) } 2.

The End-effector Space of the ith joint (ESi) is the set of
pairs of a location and its representative configuration; es =
(w, 〈cj〉j≤i) when cj is an angular configuration of the jth

joint (the direction of jth joint). Each element is indexed by
loc and conf , that is es(loc) = w and es(conf) = 〈cj〉j≤i.

Ai is the set of actions of ith subdomain. Ai(es) is the
set of actions that are grouped by an element es ∈ ESi. An
action (act(i,es,wj ,moveleft)) of Ai(es) is defined with PDDL
form as following,

pre :endj(wj) ∧ endi(es(loc))

del :endi(es(loc))

add :endi(w
′
i)

when endj() is the predicate for the location of jth joint
and both wj and w′

i are locations in Wrobot.
A complex action (act(i,es,wj ,moveleft) ∈ Ai(es)) means

that a unit left movement of the jth joint at wj changes the
location of ith joint from es(loc) to w′

i. Based on the change
of ith joint, the movement of the next (i + 1th) joint can be
described as following.

pre :endj(wj) ∧ endi(es(loc)) ∧ endi+1(es
′(loc))

del :endi(es(loc)) ∧ endi+1(es
′(loc))

add :endi(w
′
i) ∧ endi+1(w

′
i+1)

The location of i + 1th joint can be described with
the previous location of the joint (es′(loc)) and the
act(i,es,wj ,moveleft) of ith joint. That is, the movement of
the jth joint at wj not only changes the location of ith
joint from es(loc) to w′

i but also changes the location of
i + 1th joint from es′(loc) to w′

i+1. Now, the new action
act(i+1,es′,wj ,moveleft) ∈ Ai+1(es′) can be defined without
endi().

pre :endj(wj) ∧ endi+1(es
′(loc))

del :endi+1(es
′(loc))

add :endi(w
′
i+1)

Figure 3 conceptually explains the reason why two joints
are independent. Suppose that we make an action ‘moveleft’
of jth joint located in wj . The moveleft of jth joint at wj

with configuration ‘a’ moves the location of ith joint from
wi to w′

i. The movement of jth joint at wj with configura-
tion ‘b’ also moves the location of ith joint from wi to w′

i.
Here, we want to note that the specific configuration of the
arm is irrelevant given the location of jth joint (wj) and the
location of ith joint (wi) of an action, act(i,es,wj ,moveleft)

and es(loc) = wi.

2The assumptions of this research can be also adapted to the
3-dimensional workspace environment, w = (x, y, z, α, β, γ)

a

b

…

b´

a´

Δθ
wj

wi

wi ´

Orientation of joint
Unit angle of movement
Joint

Δθ

Δθ

Figure 3: The ‘moveleft’ of a joint; wj . wi, w′
i are the loca-

tions of the ith joint; wj is the location of the jth joint; ∆Θ is the
unit angle of the left movement; the act(i, es, wj , moveleft) with
es(loc) = wi respectively changes the configurations from ‘a’ to
‘a′’ and from ‘b’ to ‘b′’

Modified Factored Planning for the Robotic Arm

Procedure RobotArmPlan is presented in Algorithm 1 and its
subroutines are presented in Algorithms 2 3, 3, 4 and 5. This
path planning algorithm is based on the Factored Planning
(Amir & Engelhardt 2003) which sends messages between
the partitioned domains and has no back-tracking in search-
ing for a plan. However, a characteristic of robotics (a large
amounts of shared fluents between consecutive joints) pre-
vents us using the Factored Planning algorithm, because the
complexity of the algorithm is exponentially proportional to
the number of shared fluents. Thus, we modify the algo-
rithm to reduce the size of messages. For the same reason,
we make a few assumptions, setting both the interaction (k)
and the depth (d) are equal to 1 4.

We reduce the number of messages with the domain
knowledge. In the general-purpose factored planner, sub do-
mains have to find the actions for all the possible combina-
tions of preconditions and effects of shared fluents. Thus,
the number of messages is exponentially proportional to the
number of shared fluents. However, in this special domain,
it is enough to search the actions that are the subset of the
combinations of shared fluents, because the actions of the
domain is limited. Here, we need only a following type
of actions, although all the possible locations of jth joint
(endj(w)) are shared by the jth joint and j + 1th joint.

3trans(wj−1, ang, lengthj) returns the position of next (jth)
joint given the location of j−1th joint (wj−1) and the angle (ang)
and the length of jth link

4The interaction (k) is the maximum interactions between two
subdomains. The depth (d) is the searching depth of planning

Algorithm 1 RobotArmPlan
esstart: the initial location and its configuration
esgoal: the goal location and its configuration
depth: the maximum depth for global path planning
{lengthi}i≤m: the length of each link. RobotArmPlan iterates
from the innermost joint to the outermost joint.

PROCEDURE RobotArmPlan (esstart, esgoal, depth,
{lengthi}i≤m)
1. Insert {(0,0,0), {}} into ES0, j ← 1
2. Do until j = m (m is the last joint)

(a) For each es ∈ ESj−1

i. For each angle, ang, of jth joint
〈es′, act〉 ← SingleJointPlan(es, ang, lengthj , Aj−1)
If act 6= nil,
StorePartPlan(es′, act, ESj , Aj)

(b) j← j+1
3. 〈path〉 ← PathPlan(esstart, esgoal, Am, ESm, depth)
4. Return path

pre :endj(w)

eff :¬endj(w) ∧ endj(w
′)

In the general case, all the possible pairs of preconditions
and effects are 22|W |, because the any location (w) in
W can be TRUE of FALSE. However, the complexity is
reduced, if we focus on the fact that the action requires
one proposition (endj(w)) in precondition and another
proposition (endj(w′)) in effect. When the w and w′ are
locations of jth joint in the working space (W), all the
possible combination of fluents is only |W |2.

The Complexity of this Algorithm
The Factored Planning algorithm (Amir & Engelhardt 2003)
is sound and complete, given the subdomains and certain
parameters, k (interactions) and d (depth). The algorithm
terminates at time O

(
m · 22k+l ·min((a + k)d, k · 2v)

)
with parameters m, a, and v (when m represents the number
of subdomains; a is the largest number of action symbols; v
is the largest number of fluent symbols in any subdomains;
and l is the largest number of shared symbols between the
two subdomains.).

The complexity of our modified Factored Planning
algorithm is reduced as following, because we need only the
part of the truth assignments of shared fluents. Moreover,
we assign both k and d a value of 1.

O(m · l ·min((a + 1)1, 1 · 2v) = O(m · l · a)

Here, m is the number joints, l is the size of discretized
Workspace(|Wrobot|), and a is the number of actions at the
last (mth) joint.

We can simply bound the size of Workspace
W ≡ (X, Y,Θ). Suppose a robotic arm which has m
joints and each joint has c

(
= 2π

∆θ

)
discrete angles. The

space of the end effector can be bounded by [−N..N]
× [−N..N] × [0..2π], if the N is defined by the average
length of the joints (N = mL =

∑m
i=1 lengthi). Thus, the

complexity of Workspace is following

O(l) = O(|W |) = O(c ·N2) = O(m2)

The largest number of actions (a = |Am|) is also
represented by the Workspace(|W |) and End-Effector
Space(|ESm|). All the actions are grouped based on the
each location in |ESm|. In each location, there are at most
2|W | actions, because each action is unit movement (left or
right) of any previous joint in the Workspace (W).

O(a) = O(|Am|) = O(|W | · |ESm|)
The complexity of the modified Factored Planning is

following (when c
(
= 2π

∆θ

)
is the number of discrete orien-

tations, and ∆θ is a unit angular displace.)

O(m·|W |·|Am|) = O(m·|W |2·|ESm|) = O

�
m5

(∆θ)2
· |ESm|

�

Algorithm 2 SingleJointPlan
es: a point in the end effector space
ang: the direction to the next link
lengthj : the length of jth link
Aj−1(es): the actions of es

SUBROUTINE SingleJointPlan(es, ang, lengthj , Aj−1(es))
1. Let es′ new position and configuration of jth joint, and
act← ∅

es′(loc) ← es(loc) + trans(es(loc), ang, lengthj)
3

es′(conf) = es(conf)
S

ang
2. For each actj−1 ∈ Aj−1(es)

(a) Make actnew from actj−1 (The endi(wi) is in the pre-
condition of actj−1)

pre: endi(wi) ∧ endj(es
′(loc))

eff : ¬endj(es
′(loc)) ∧ endj(w

′
j)

(b) If jth joint of actnew do not collide with any obstacle
Insert actnew into act

3. For each leftmove and rightmove of jth joint by ∆θ
(a) Make actnew as following

pre: endj−1(es(loc)) ∧ endi(es
′(loc))

eff : ¬endj(es
′(loc)) ∧ endj(w

′′
j)

(b) If jth joint of actnew do not collide with any obstacle
Insert actnew into act

4. Return 〈es′, act〉

Grouping the Set of Actions
We reduce the complexity of the planning problem by
grouping the actions based on the location of joint. That is,
we don’t consider a specific configurations of joints of an
arm, if the location of end effector are same. If we sepa-
rately store the set of actions for the specific configuration,
the complexity is same with the configuration space which
is exponentially proportional to the number of joints.

We group the set of actions, because storing the sets of
actions for every configurations is not only expensive but
also redundant. Thus, we merge some sets of actions into a
large group, when the locations of end-effector are on the
same location. Our grouping method may loss some data,
because a specific configuration only contributes to the part
of actions. This prevent our algorithm finding an optimal
path in some case. However, this method is beneficial for

…
a

b c

Figure 4: The Homotopic relationship among the configurations;
‘a’, ‘b’ and ‘c’ are the configurations of the arm; ‘a’ and ‘b’ are
not Homotopic configurations; ‘a’ and ‘c’ are Homotopic configu-
rations

reducing complexity.
For grouping the sets of actions, we define the Ho-

Algorithm 3 StorePartPlan using any local planner
es′: a point in the end effector space
act: the set of actions related to the es′

ESj : the current end effector space of jth joint
Aj : the current set of actions of jth joint

SUBROUTINE StorePartPlan(es′, act, ESj , Aj)
1. For each es ∈ ESj when es(loc) = es′(loc)

(a) If there is a path from es′(conf) to es(conf) with a local
planner then

Add act to Aj(es)
Exit

2. Aj(es
′) = act {Assign new action set}

motopic Configurations. Two configurations with the
same endpoints are homotopic if one can be continuously
deformed into the other. The concept of the Homotopic
Configurations is based on the Homotopic Paths (Brock
& Khatib 2000) 5. Although it is similar to the concept
with Homotopic Paths, we adapt the notion of Homotopic
to the configuration. For example, in Figure 4, the two
configurations ‘a’ and ‘c’ are Homotopic and ‘a’ and ’b’ are
not Homotopic.

In our algorithm, the grouping is decided by a local
planner. The local planner could find a path from one
configuration to another, if the two configurations are
Homotopic. This can be achieved by any inverse-kinematics
algorithm which avoids obstacles. There are many local

5Two paths with the same endpoints are homotopic if one can
be continuously deformed into the other

path planning algorithms for such a calculation (Zlajpah
& Nemec 2002). The local planner is used for finding
the Homotopic Configurations which are deformable each
other. However, in the real environment, two Homotopic
configurations are not always continuously deformable each
other, due to the rigid body of link6.

Soundness and Completeness

Algorithm 4 PathPlan
esstart: the initial location and its configuration
esgoal: the goal location and its configuration
Am: the set of actions of mth joint
ESm: the end effector space of mth joint
depth: the depth for searching path

SUBROUTINE PathPlan(esstart, esgoal, Am, ESm, depth)
1. es′start← FindES(esstart, Am, ESm)
2. es′goal← FindES(esgoal, Am, ESm)
3. j ← 1, R0← {es′start}, Rtotal = ∅, A′

m = ∅
4. Do until j=depth

(a) For each es ∈ Rj−1

i. For each act(m,es,wi,...) ∈ Am(es)
If the act(m,es,wi,...) is valid for es
es0← moved es by the act(m,es,wi,...)

es′← FindES(es0, Am, ESm)
If es′ 6∈ Rtotal then

Make new Action(move(es,es′)) as following
pre: es ∧ donej−1 ∧ ¬donej

eff : es′ ∧ donej

Add move(es,es′) to Actglobal

Add es′ to Rtotal

(c) j← j + 1
5. Init(es′start, done0, ¬done1, ..., ¬donedepth)
6. Goal(es′goal, done0, done1, ..., donedepth)
7. Search for plans (Φ) in Init, Goal, Actglobal

8. return Φ

We prove this path planning algorithm is sound and com-
plete. Our planning algorithm is sound, because all the re-
turned paths are valid. That is, we can control the robotic
arm along the returned path. Moreover, the planning algo-
rithm is complete. If there is a path from the start to the goal,
the algorithm finds a path that can reach to the goal position.

Lemma 1.1: With the robotic arm, we can find movements
for every move(es, es′) ∈ Actglobal in PathPlan

Proof. Suppose that there is a move(es, es′) ∈ Actglobal

and an act(m,es,wi,...) contributes to the movement. We
can assign a location es0 which is moved from es by the
act(m,es,wi,...) in the PathPlan. There are movements from
es0 to es′, because the FindES(es0, ...) returns an es′ only if
the local planner finds a path from es0 to es′.

6We check the Homotopic relationship with local planner. To
reduce the complexity of this algorithm we allow the end point
can be moved, if the movement can be managed by the local plan-
ner. This makes the algorithm require a verification function in the
PathPlan, because the transition between the configurations may
cause collision at the outer link, if the location of end point is not
fixed.

Theorem 1.1:(Soundness of RobotArmPlan) When a path
〈es0, es1, es2, ..., esn〉 is returned by the algorithm, there is
a path that passes through the configurations 〈es0(conf),
es1(conf), es2(conf), ..., esn(conf)〉 with the robotic arm
(when es0 is esstart and esn is esgoal)

Proof. By the Lemma 1.1, we can find movements for any
consecutive es points. For any esj−1 and esj pair, we
can find movements that control the robotic arm from an
esj−1(conf) to an esj(conf). Thus, we can use mathemat-
ical induction for the whole path.

Theorem 1.2:(Completeness of RobotArmPlan) If there
exist a unique path whose number of movements is less than
depth, our algorithm finds a path.

Proof. We use the mathematical induction to prove the com-
pleteness.
For the 1st step, if the path is a movement of robotic arm,
we can simply find it. It is because we have all the actions
for each point (es ∈ ESm). That is, if there exists a unit
movement from a location es to a location es1, we have a
complex action for the movement in A(es).
For the n − 1th step, we assume that if there exist n − 1
movements from a location es to a location esn−1, we can
find a path.
For the nth step, suppose that a path 〈es0, es1, ..., esn−1,
esn〉 is unique from es0 to esn. Based on the assumption of
mathematical induction, we already have a path from es0 to
esn−1. Moreover, we have an action (act(m,esn−1,...)) from
esn−1 to esn

7, because a unit movement of the arm really
exists from esn−1 to esn. Thus, the algorithm finds a path
〈es0, es1, ..., esn−1 〉, act(m,esn−1,...) , esn.

Algorithm 5 FindES
es: a configuration
Act: the set of actions
ES: the end effector space

SUBROUTINE FindES(es, Act, ES)
1. For each es′ ∈ ES for es′(loc) = es(loc)

(a) If es′(conf) and es(conf) are Homotopic Configurations
i. If local planner find a path from es′ to es

return es
2. Make a new es′′(≡ es)
3. Add es′′ to ES
4. Act(es′′)← Act(es)
5. return es′′

3 Complexity Analysis
Here we analyze the complexity of the suggested algorithm.
We prove the complexity of this algorithm in various envi-
ronments; without obstacles; with a convex island obstacle;
with ‘n’ convex island obstacles; and with infinite number

7Here, the action does not always guarantee the optimal path,
because we don’t store the actions of a specific configuration.

of obstacles.
If we find the path with an exact path planning algorithm

(Khatib 1986) (Brock & Khatib 2000) in the dimensional
space, the complexity is

O
(
min (cm,mdepth)

)
Without Obstacles
We have |W |(= cN2 = 2π

∆θ mL2) axioms representing the
positions of the end effector of the robotic arm. Moreover,
we have all the possible “move” actions between the axioms
(positions). At the tth step, we can find the reachable posi-
tion with, at most, t actions through dynamic programming
in Algorithm 4. If we execute further depth steps, we can
find all the possible paths whose lengths are shorter than
depth. Even if there are certain non-valid paths, which are
caused by the incomplete previous step, we can locate a
path from the returned paths.

Lemma 2.1: Without any obstacles, the complexity of
RobotArmPlan is following given m links.

O(m · |W |2 · |ESm|) = O(m · |W |3) = O(m7)

Proof. For the one positions in ESm, we have maximum
(|W | = cN2) neighbor positions which are reachable with
a move action. Because we have a total of cN2 positions
and visit each position once, the total step is not more than
cN2. Moreover, there are no two es0 and es1, which are
in ESm and es0(loc) = es1(loc). In the StorePartP lan,
es1 merges into the es0, if the es0 is already added to the
ESm. Without obstacles, the local planner 8 finds a path
between two configurations if they are Homotopic Configu-
rations.

With a Convex Island
Lemma 2.2: If there exists a convex island, the size of end
effector, |ESm|, is bounded by

O(|ESm|) = O(2 · |W |).

That is, for each position, w ∈ W (when es0(loc) =
es1(loc) = w and es0 6= es1) there are at most 2 distinct
elements (es0 and es1) for the location w.

Proof. Suppose that there are 3 (or more) distinctive groups
(a, b, and c) whose end effector locate on the same location,
and there is an convex island obstacle are blocked by each
other. That is, ‘a’ and ‘b’ are blocked by the island; ‘b’ and
‘c’ are blocked by the island; and ‘c’ and ‘a’ are blocked by
the island.

Given the two distinct groups, we can label that one as
‘left-side’ of the island the other as ‘right-side’ of the island.
Without loss of generality, suppose that ‘a’ is the left-side
and ‘b’ is the right-side. In that case, ‘c’ can be assigned to
neither left-side nor right-side. There is no ‘c’ in the given
space.

8We assume that the local planner terminates within a constant
time.

With ‘n’ Convex Islands
Lemma 2.3: The search space for n convex islands is
bounded by O(2n · |W |).

Proof. Suppose the search space with n − 1 convex is-
lands is bounded by O(2n−1 · |W |) for mathematical in-
duction. Assume that each location (w) in the n − 1
convex islands environment can have up to 2n−1 dis-
tinct groups of configurations. That is, |ESm,n−1(w)| ≤
2n−1, when ESm,n−1(w) = {es|es(loc) = w ∧ es ∈
ESm with n-1 convex islands}. With an additional island,
On, each distinct group can be divided into two (and no
more than two) groups, which would be either left-side or
right-side with respect to On. Thus, the distinctive groups
for each position, w ∈ W , can be bounded by O(2n)

With an Infinite Number of Obstacles
Lemma 2.4: If there is an infinite number of obstacles, the
search space of the end effector, |ESm|, is bounded by

O

(
(
2π

∆θ
)
m)

= O(cm).

Proof. The size of |ESm| cannot be greater than all possible
configurations of m joints (O((2π

∆θ)m)) when ∆θ is the unit
angles and c is 2π

∆θ .

The Size of |ESm|
Theorem 2: If there are n convex islands (obstacles), the
search space of the end effector, |ESm|, is bounded by

O
(
min

(
2n ·m2, cm

))
.

When n is the number of obstacles, c is (
2π)(∆θ) , and m is

the number of joints.

Proof. by Lemma 1.1, 1.2 and 1.3

4 Error Bound
Here, we examine the error of the suggested algorithm with
respect to the discretized configuration space algorithm. 9

Our algorithm approximately discretized the position of
each joint, at (x, y, θ). That is, if the position of the nth

joint of an arm is close enough to a position (x′, y′, θ′),
we assumed that the nth joint of arm is located on the
(x′, y′, θ′). The position error of inner joints cumulatively
influences the position of the end effector, due to the
dynamic programming fashion of our algorithm.

The error can be divided into two categories: (1) the
displacement of location; and (2) the difference of angles.
When we assume that the size of cell in the discretized
Workspace is small, relative to the length of joints, the error

9Here, we use the discretized configuration space in contrast
to the continuous configuration space. That is, all the algorithms,
which uniformly split the configuration space into the cells of a
configuration, are included in the definition

of x and y is simply additive to the position of the last
link. At each step, the maximum error of x axis (∆xpos)
increases 1

2size(cell) at each joint. Thus, the maximum
error is m

2 size(cell). Similarly, the maximum error of y
axis (∆ypos) is also m

2 size(cell).
To analyze the angular error, suppose that ∆θ is a

unit angular displacement (2π
c) and c is the number of

discretized angles. The maximum difference of angles with
respect to the original configuration can be described as
m∆θ

2 . When the maximum error of angle at each joint
is bounded by ∆θ

2 , the angular error of the last joint is
bounded by m∆θ

2 . 10 This is because the angular error is
also additively accumulated. If the length of m joints is N ,
the maximum displacement of x (∆xang) is N sin (m · ∆θ

2).

Theorem 3: Given a path, p, of discretized configu-
ration space algorithm, the path that is generated by
RobotArmPlan has, at most,

√
2r distance, when the

size(cell) is less than r
m and ∆θ is less than 2

m · sin−1 (r
N).

Proof. The maximum error of ∆x is sum of ∆xpos and
∆xang because ∆xpos and ∆xang are respectively bounded
by 1

2size(cell) and L sin (m · ∆θ
2). To bound ∆x to r, we

simply bound both the ∆xpos and ∆xang to 1
2r.

5 Related Work

The problem of finding an optimal path from the current
position to a goal position at the configuration space of a
robotic arm received the attention of many works in the
robotics and planning literature. Potential Field (Khatib
1986), Probabilistic Roadmap (Kavraki et al. 1996) and
Rapidly-Exploring Random Trees (Kuffner. & LaValle
2000) are currently used for solving this problem (Ghallab,
Nau, & Traverso 2004). Although wavefront-expansion Po-
tential Field algorithm (Barraquand & Latombe 1991) pro-
vides completeness, the algorithm have to search huge con-
figuration space. Though the efficiency of these approaches
is dramatically improved when Probabilistic Roadmap is
used, the solutions still depend on the large dimensionality
of the configuration space.

In contrast, this paper modified a Factored Planning algo-
rithm (Amir & Engelhardt 2003) to solve this problem. Our
algorithm takes advantage of the fact that each angle of a
robotic arm is independent of the rest, given some parame-
ters. That is, the configuration space of a joint is indepen-
dent of other joints with exception of previous joint. The
configuration space of an joint depends on the location in
the workspace. This allow us to partition the planning prob-
lem into small subdomains, and the resulting algorithm has a
running time that depends on the dimensionality of the space
only polynomially.

10The worst case is occurred when the outermost link is very
larger than the inner joints.

6 Conclusion
Two contributions of our work are (1) an algorithm whose
complexity is polynomial to the number of joints, and (2)
the decomposition of the control problem into sub prob-
lems. When the optimal path approaches the goal location
within finite steps (depth), the planning algorithm is sound
and complete. Although the complexity is exponential in
the number of obstacles, it is only polynomial to the num-
ber of joints. Our theoretical results show that the planning
algorithm scales well in planning the path of a robotic arm.

7 Acknowledgment
This material is based upon work supported by the National
Science Foundation under Grant No. 0546663

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Gottlob, G., and Walsh, T., eds., IJCAI, 929–935. Morgan
Kaufmann.
Barraquand, J., and Latombe, J.-C. 1991. Robot motion
planning: a distributed representation approach. Int. J. Rob.
Res. 10(6):628–649.
Brock, O., and Khatib, O. 2000. Real-time replanning in
high-dimensional configuration spaces using sets of homo-
topic paths. In IEEE International Conference on Robotics
and Automation (ICRA), 550–555.
Canny, J. 1987. The Complexity of Robot Motion Planning.
Cambridge, MA: MIT Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning. Morgan Kauffman.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. 1996. Probabilistic roadmaps for path planning in high
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4):566–580.
Khatib, O. 1986. Real-time obstacle avoidance for manip-
ulators and mobile manipulators. International Journal of
Robotics Research 5(1):90–98.
Kuffner., J. J., and LaValle, S. M. 2000. Rrt-connect:
An efficient approach to single-query path planning. In
IEEE International Conference on Robotics and Automa-
tion (ICRA), 995–1001.
Schwartz, J. T., and Sharir, M. 1983. On the Piano Movers’
Problem: I. The case of a two-dimensional rigid polygonal
body moving amidst polygonal barriers. Communications
on Pure and Applied Mathematics 36:345–398.
Zlajpah, L., and Nemec, B. 2002. Kinematic control algo-
rithms for on-line obstacle avoidance for redundant manip-
ulators. In IEEE/RSJ/ International Conference on Intelli-
gent Robots and Systems, 1898–1903. Lausanne, Switzer-
land: IEEE/RSJ.

