EYAL AMIR

TOWARD A FORMALIZATION OF
ELABORATION TOLERANCE:
ADDING AND DELETING AXIOMS

ABSTRACT: When creating a knowledge base, a knowledge engineer faces design and
modeling choices. The decisions taken may later affect the evolution of the knowledge
base. Indeed, when new knowledge needs to be integrated, the knowledge base may have
to undergo some rewriting and redesign, in order to incorporate the new information.
Creating the Knowledge Base such that future changes are made easier is a major concern
of the knowledge engineer. We refer to the ease of change as Elaboration Tolerance.

In order to implement and evaluate Elaboration Tolerance in formal systems, it is neces-
sary to give a formal definition and to provide evaluation tools. These definition and tools
constitute the major contribution of this paper. We propose a formal definition for one
syntactic aspect of the problem of Elaboration and supply tools for comparing Knowl-
edge Bases with respect to their Elaboration Tolerance. These definitions approximate
the problem of Elaboration from below. We supply examples illustrating the intuitions
captured by these definitions and tools. We then demonstrate the use of these definitions
and tools by applying them to examples of language expansion and monotonic versus
nonmonotonic reasoning, and examine the limits of the approach.

1 INTRODUCTION

The notion of Elaboration Tolerance was proposed by McCarthy [McCarthy,
1988] for the problem of extending a logical theory, with the intuition that a
logical system should have the ability to absorb additions the way Natural
Language allows. Several intuitions coincide in this description: axiomatiz-
ing a theory in a flexible way; not needing to rebuild one’s ontology when
new features and facts are added; Being able to modify one’s axioms rela-
tively easily; and needing only a small amount of recomputation, given new
information. Elaboration Tolerance is important for Knowledge Base con-
struction and development, as well as for scaling up results and techniques in
Knowledge Representation. Past treatments of the concept referred only to
intuitive accounts. In order to investigate Elaboration Tolerance, however,
we need formal definitions and comparison tools. The major contribution
of this work is supplying such tools.

In this paper, we propose a formal definition for a syntactic aspect of the
property of Elaboration Tolerance. We refer to Elaborations as sequences of
actions as executed on a certain Knowledge Base. In this paper, we restrict
our treatment to Knowledge Bases that are formal systems and to actions
that add or delete axioms (other possible actions that we ignore here are

OThe author can be reached at the Department of Computer Science, Gates
2A, Stanford University, Stanford, CA 94305-9020, USA; and electronically at
eyala@cs.stanford.edu, http://www-formal.stanford.edu/eyal

ii EYAL AMIR

adding constants to the language, adding preconditions to axioms, etc., de-
pending on what is allowed by the knowledge base). We intuitively say that
a Knowledge Base is elaboration-tolerant to the extent that elaborations
are representable and require “short” sequences of actions for these elabo-
rations. The Problem of Elaboration (as examined in this paper) is, given
an intended elaboration (e.g., using semantics to specify these intentions),
finding a sequence of actions that will give us the intended result.

To keep our discussion simple, we restrict our treatment in this paper in
two ways: we allow the addition and deletion of disjunctive clauses only,
and we restrict the formal systems to have a propositional language. The
reason for the first restriction will become clear in section 2.3. The second
restriction simplifies most of the theorems but most of them follow for the
general First-Order case.

Using this framework, we show the following (some intuitive and some
surprising) results. On the intuitive side, we show that a propositional
knowledge base with a larger set of constant symbols is more elaboration-
tolerant than an equivalent one with fewer symbols. On a somewhat less
intuitive angle, we show that some nonmonotonic theories are not more
elaboration-tolerant than some equivalent monotonic theories. We then
show that, despite this fact, from a monotonic theory there is a way to
construct an equivalent nonmonotonic theory that is more elaboration-
tolerant than the original one. Finally, we show that there is no one most
elaboration-tolerant system.

A few authors have informally discussed Elaboration Tolerance in the
past. [McCarthy, 1998] gives some examples and discusses intuitions of
Elaboration Tolerance. It attributes the creation of Nonmonotonic Rea-
soning techniques to Elaboration Tolerance. [Shanahan, 1996] further dis-
cusses Elaboration Tolerance and shows how the desire for Elaboration
Tolerance invigorates major portions of the Knowledge Representation en-
deavor. [Costello, 1997] and [Amir, 1997] showed how different theories
of action relate with respect to certain elaborations. Other relevant ma-
terial is [Giunchiglia and Walsh, 1992] and the work on abstraction. This
work is relevant in supplying both elaborations (reverse abstractions') and
translation functions (used in comparing systems).

In contrast to these discussions, we try to define a region on which some
formal work can be done. We seek guidelines for choosing a formal machin-
ery and writing the theory so that extensions are simple. The theory that
we provide in this paper aids in finding these guidelines by focusing on the
number of actions that need to be performed in order to amend the knowl-
edge base. Consequently, we wish to minimize the length of that sequence
of actions.

1A proposal made by Alon Levy in a personal communication.

FORMALIZING ELABORATION TOLERANCE iii

2 THE ELABORATION MODEL

This section is the core of the paper. Here we will first go through an intu-
itive explanation, then define our notions and eventually explore a detailed
example using these notions.

2.1 Intuitions & Intentions

We want to compare knowledge base design decisions, preferring those deci-
sions that give us more Elaboration Tolerance. One simple intuitive example
is the following. Assume that we are given the logical theory

Rain = Cold (1)
Wet = Cold (2)

Now, we want to add the fact that in the tropics it is not cold but it may
rain and it is wet. One way to do that is to rewrite the theory from scratch:

Rain = (ColdV Tropics)
Wet = (ColdV Tropics)

Consider the following theory, which is similar to the original theory
above.

Rain = Preconditions (3)
Wet = Preconditions (4)
Preconditions = Cold (5)

In this theory we added the observation that being wet and having rain are
two properties that share preconditions. In this case, instead of rewriting
the entire theory from scratch, we can simply replace the third sentence (5)
with

Preconditions = (Cold V Tropics)

We would like to prefer compact changes, like the last one, over rewriting
extended sections of our knowledge base, as seen in the first case.

Coming up with a complete characterization of the set of possible tricks
one might pull seems like an open-ended task. These “tricks” may in-
clude design decisions like Object-Oriented design (e.g., using Frames (see
[Minsky, 1975] and [Brachman and Levesque, 1985])), but may also include
simple aggregations such as the one demonstrated in the example just de-
scribed.

To understand the tradeoffs and to find new ways of enhancing the Elab-
oration Tolerance of a knowledge base, we now turn to introduce a formal
account of the comparisons that we wish to make and the qualifications that
we want to measure.

iv EYAL AMIR

2.2 A Model of Knowledge-Base Change

In this section we describe a model for knowledge-base change. We take a
syntactic approach to knowledge-base change since, as the example above
demonstrated, the actions done by a human knowledge engineer are syn-
tactic (for relations to Belief Revision, see section 5). This treatment cor-
responds to the approach taken by researchers working on Theory Revision
(see [De Raedt, 1992], [Adé et al., 1994] and [Koppel et al., 1994]). For
now, we ignore the decisions that the knowledge engineer may face and
their complexity, and focus on the final product of her changes.

We restrict our discussion to knowledge bases that are Aziomatic Formal
Systems. In later sections we will see the reason we need such a broad
definition.

DEFINITION 1 (From [Shoenfield, 1967]). An Aziomatic Formal System
¥ is a triple (£, |~,T') where £ is the language, I is the set of axioms and
b~ is the inference relation? of X.

In this paper, we treat the language as its set of sentences and we use the
notation |£| to represent the set of propositional symbols of the language
L. For ¥ = (L, ~,T'), we take C(X) to be the theory entailed by the formal
system’s axioms (C' comes for the completion of X):

CE)Z{pel|T o}
We define an equivalence relation between formal systems as follows:
T=Y <= C(E)=CE).

Notice that C(X) = C(X') is determined extensionally (equality of sets).
Also, notice that although this definition allows different languages in X
and X', the equality of languages is in fact implied for all logics that entail
tautologies.

In what follows we describe actions for changing the knowledge base. In
fact, each action transforms a formal system into another formal system. In
this paper we restrict our attention to adding and deleting axioms.

If ¢ C £ is an additional axziom, then we write add(p)(X) for the result
of adding ¢ to ¥, i.e.,

add(p)(Z) £ (L, I~ T U {p}).

To delete an aziom from the knowledge base, we use the action delete(y)(X):

delete(p)(Z) Z (L, ~, T\ {¢}).

Notice that because of the syntactic nature of these actions, deleting an
axiom that does not exist in the knowledge base (even though it may be

2Possibly nonmonotonic.

FORMALIZING ELABORATION TOLERANCE v

entailed by the knowledge base) results in the original knowledge base (we
prefer this definition over leaving it undefined).

To represent the result of a sequence of actions performed on the knowl-
edge base, we shall use the convention that applying the sequence of actions
a = (a1, ...,an) (Where each of the actions {a;}i<, is of the form add(y) or
delete(y) for a sentence ¢ in the relevant language) is written as

a(®) € an(an_1(...(ar(%))...)-

Thus, if a = (delete(v)),add(p)) then a(X) = add(yp)(delete(y)(X)). Fi-
nally, we write Actions(L) for all the sequences a of actions that can be
performed in L.

The reason we chose to focus on the actions of adding and deleting ax-
ioms is two-fold: first, these action seem to be the simplest, yet extremely
common, operations done during knowledge base construction and expan-
sion, and second, in this stage of inquiry, constraining ourselves to only two,
very simple, actions, helps in clarifying and focusing the investigation and
explanation.

2.8 Comparing Elaboration Tolerance

Now we turn to define a simplified account of Elaboration Tolerance. Intu-
itively, we ignore the difficulties encountered in formalizing the process of
conceptualization, and focus only on the syntactic work that has to be done
(possibly after long deliberation) to change the knowledge base to its target
meaning.

To compare two systems, we first have to translate them to some “com-
mon ground”. Somewhat similar to the approach taken by [Giunchiglia
and Walsh, 1992], we first define a translation between two formal systems
([Giunchiglia and Walsh, 1992] call their function an abstraction function,
but this name is not necessarily appropriate in our context).

DEFINITION 2 (Translation). A translation t is a partial function that
accepts a formal system and returns a formal system. In other words,
t: S — S a partial function, where S is a set of axiomatic formal systems.

We can now use the equivalence relation defined by t:
Def DY = Yy &= C’(t(El)) = C(t(EQ))

Notice that this is indeed an equivalence relation. Also, notice that the
translation ¢t does not translate ¥; to X5 but rather translates both formal
system to one (possibly different than both) common ground.

Now we define the problem of elaboration to be the problem of finding a
sequence of actions that transforms an original knowledge base to a desired
knowledge base (modulo our equivalence relation =;).

vi EYAL AMIR

DEFINITION 3 (Elaboration Problem). We are given two axiomatic formal
systems, 3, X¢4rge¢ and a translation t. The problem of elaboration is to find
an elaboration (i.e., a sequence of actions) a such that a(X) =; Ziarget-

Given this definition, we would like to give a criterion for ¥’ to be more
elaboration-tolerant than ¥ with respect to the target Xigrg¢¢. The fol-
lowing measure tries to capture the difficulty encountered in the syntactic
operations performed on the knowledge base.

DEFINITION 4 (Syntactic Distance). Let X, X444t be two axiomatic for-
mal systems. The Syntactic Distance® of Yiarget from ¥ is

. dof . o € Actions(L)

disti (X, Biarger) = min {len(a) ‘ A a(Z) =t Srarget

where len(a) is the number of actions in a. We take disti (X, Etqrget) to be
oo in the case that there is no sequence of actions that will transform ¥ to
Etarget-

Intuitively, we wish dist;(X,Xiqrge¢) to measure the minimal work we
need to do in order to change ¥ into something equivalent (modulo =;) to
Liarget- Syntactic Distance (in the case where there is an elaboration (i.e.,
dist (X,%') < 00)) is useful when we want to compare two systems that
can both represent the same elaborations. Recalling the intuition that we
wish to minimize the work done in changing the knowledge base, the weight
function (len(a)) that we use here does not seem convincing. Why does
this dist; capture our intuition of difficulty of expanding the theory?

First, it is reasonable to say that the less you have to add to your theory,
the more robust it was to begin with, so this measure approximates some
of our intuitions of Elaboration Tolerance. The real problem in choosing a
weight function for this case is that many people have different intuitions for
it. One would rather have it be either 0 (there is an elaboration) or co (there
is no such elaboration). Another would rather have the weight measure the
difficulty of finding the elaboration (however that might be formulated). I
propose this function as a quick-and-dirty measure that one can do with for
some time. Most of the results (e.g., theorems 10 and 11) are independent
of which measure we take (given that, if there is no elaboration, we get co).

To compare two systems ¥ and Yo, we use the translation ¢ to give ¥
and ¥, a common ground. It is important to notice that the comparison is
highly dependent on our choice of ¢ (one possible choice of ¢ is demonstrated
in section 4).

DEFINITION 5 (Elaboration Comparison). Let ¥ = (L1, }v1,T1), X2 =
(L2, p2,'2) be two axiomatic formal systems and ¢ a translation such that
21 =¢ 22.

3This is a quasi-distance measure, i.e., it is not symmetric.

FORMALIZING ELABORATION TOLERANCE vii

Given t, define ¥ to be more syntactically elaboration-tolerant (abbr.
elaboration tolerant) than ¥ on a € Actions(L1), by

Y1 <t B2 = disty(S1,a(21)) < disty (D2, a(S1)).
Given t, define ¥; to be more elaboration-tolerant than X, by

< 8 Z Vae Actions(L1) L1 <g,a T2 A
Va € Actions(Lz) o' € Actions(L1)(a' (Z1) =¢ a(T2))

For the strict cases, we require that there is a € Actions(L;) such that
disty(X1,a(X1)) < disty(X2,a(X1)). For that case, we say strictly more
elaboration-tolerant and write the corresponding strict inequality sign.

We postpone the re-examination of the example covered in beginning of
this section to section 4.2, where we prove a general theorem that captures
this example.

2.4 FEzamples

Let us look at a variant of the example given in section 2.1. Assume that we
have a theory describing some aspects of weather. For simplicity, assume
that the theory has the following axioms:

Rain = Preconditions (6)
Preconditions = Cold (7

Let ¥ = (£,F,{(6),(7)}) where L is the propositional language of the propo-
sitional symbols Rain, Preconditions, Cold, Tropics and I is the classical
propositional entailment relation.

Now we wish to say that it is possible that there will be rain without
being cold if we are in the tropics. We will have to perform the sequence
of actions a = (delete((7)), add(“Preconditions => (Cold V Tropics)")).
The resulting formal system «(X) then has the same language £, the same
entailment relation F and the following set of axioms:

Rain = Preconditions (®)
Preconditions = (Cold V Tropics)

Thus, a(X) = Ziarger = (L£,1, {(8)}). Because of the monotonicity of propo-
sitional logic, this change cannot be done if we allow only the addition ax-
ioms (without deletion), and thus there is no way to perform the change
with only one action.

There are other systems that will allow for that elaboration in a shorter
manner. Take, for example, the following nonmonotonic system. Assume

viii EYAL AMIR

that, instead of the original set of axioms, we have

Rain — Preconditions
Cold = Preconditions

The system is X' = (£, e, {(9)}), where
T e ¢ < Circll'; Preconditions; L] F ¢

Here, Circ[A; P; Q)] is the circumscription formula A(P, Q) A Vpg[A(p, q) =
=(p < P)], as defined in [McCarthy, 1980], which intuitively says that P is
minimized even at the price of changing @. In our context, that means (in-
tuitively) that the proposition Preconditions take the truth value FALSE,
unless it “must” be TRUE. We can get the result required by X¢qrge¢ (Our
target system above) by simply adding sentence

Tropics => Preconditions (10)

Basically, what we are saying is that every formula is assumed to be true,
given no contradictory information. Without the knowledge (10), a result
of minimizing the preconditions would be that Preconditions <= Cold.
Given the additional knowledge (10), we conclude that Preconditions <=
(Cold V Tropics).

If we take ¢ to be the identity translation ¢(X) = X, then we can conclude
¥ =; ¥ and that

EI St,a b

for a = {add(“Tropics = Preconditions")). Notice, that « itself can be
applied to X, but it will yield a different result than ¥4, ge:-

3 SOME INTERMEDIATE RESULTS

We prove a few basic properties of the above relations. Notice that we put
no restriction on ¢.

PROPOSITION 6. If ¥ St,oq Yo and pN St,ag PP and ag (21) = (12(22),
then X1 <t o, X3. For the strict case, if any of the two preconditions is a
strict inequality, the result is also a strict inequality.

Proof. By the definition, we get dist;(X1,01(21)) < disty (X2, a1(X1))
and diStt(Ez,OLQ(EQ)) < distt(Z3,a2(Eg)). Since al(El) = 012(22), the
first inequality implies that dist;(X1,01(21)) < disti(Ea, a2(X3)) and so
disty(X1,01(31)) < disty (B3, a2(X2)) and finally

distt(El, a1 (21)) S distt(zg, (6731 (21))

FORMALIZING ELABORATION TOLERANCE ix

For the strict cases, assume first that ¥; <o, ¥2. By the defini-
tion, we get dist; (X1, a1(X1)) < disty (2, a1(X1)) and disty (X2, aa(Xs)) <
distt(23, (12(22)). Since 041(21) =¢ Qin (22), we get that diStt(Zl, aq (21)) <
distt(22,a2(22)) and so distt(El,al(El)) < distt(Eg,a2(E2)) and ﬁnally
disty(X1,01(21)) < disty(X3,a1(X1)). The other strict case is treated iden-
tically. |

COROLLARY 7. If 21 St Eg and 22 St 23, then 21 St 23.

Proof. We first prove the first requirement of ¥; <; ¥3. Let a; €
Actions(L1). We distinguish between two cases: In the first case, there
is as € Actions(Ls) such that a1 (21) =¢ @2(X2). In this case, by proposi-
tion 6 and from ¥; <; o, Y2 and ¥y <4, X3, we get that X1 <; oy 3.

If there is no such ay (this is the second case) then we can show that there
is no such aj either (i.e., az € Actions(L3) such that a;(X1) = a3(E3)).
The reason is that if there is as € Actions(L3) such that az(33) =
a1(X1), then, because of the second requirement of <; (definition 5), there is
0a3(X2) =t a3(E3). Thus, a2(X2) =; @1(21). Contradiction to our assump-
tion that there is no ay as above. Therefore, if there is no as € Actions(Ls)
as above, then there is no a3 € Actions(L3) as above. Thus, 1 <; 4, X3.

To prove the second requirement of ¥; <; X3, notice that if as €
Actions(L3), then Jay € Actions(L3) such that a3(X3) =; az(X2) and
Jda; € Actions(L1) such that ax(X2) = a1 (). []

COROLLARY 8. <; is a pre-order. <; s a strict partial order.

Proof. The reflexivity for <; is obvious, and thus <; is a pre-order.

For the irreflexivity of <;, assume that ¥ <;, X for a € Actions(L).
Then dist; (2, a(X)) < disty(X,a(X)). Contradiction. Thus, we have ir-
reflexivity.

For transitivity of <;, assume ¥; <; ¥y <; ¥3. Then, o131 <; 0, 2.
If there is no as € Actions(Ly) such that a;(X1) =¢ as(X3), then there
is no as € Actions(L3) such that aq(X1) =; a3(X3) and Iy <;q4, X3. If
there is such as, then ¥y <;,, ¥3 and by proposition 6 (the strict case),
¥ <t,ai ¥3. |

The following lemma will become useful in the next section.

LEMMA 9. Let %1,%5 be formal systems such that X, =; Yo. Assume
Lo C Ly and Va € Actions(Lz2) a(X1) = a(X2). Then, X1 <z Xs.

Proof. Take a € Actions(Ly). We need to show ¥y <;, X5. Let o €
Actions(Ls2) such that a(X1) =; o'(3s) (if there is no such o' then we
are done, since then we showed £, <;, X,). Since o' € Actions(L1) and
o' (32) =¢ o'(Z1) (by the lemma’s conditions), '(21) =¢ a(X;). Thus,
disty(X1,a(X1)) < disty(X2,a(X1)), and since a was arbitrary, the first
condition is proved. The second requirement is supplied by the premises of
the lemma. |

X EYAL AMIR

4 COMPARISONS USING CONSEQUENCE TRANSLATIONS

In this section, we describe various knowledge bases and compare their
elaboration tolerance using translations ¢ that are consequence translations.
Recall that a translation is used to compare knowledge bases by mapping
both to some common-ground on which they agree.

The consequence translation to L, |~ is t((Lo, l~o, o)) = (L, }~,T) for T =
C((Lo, 0, To)) N £ ([Giunchiglia and Walsh, 1992] have somewhat similar
mappings they call Predicate Abstractions and ABSTRIPS abstractions).
Intuitively, a consequence translation maps a formal system to a new formal
system that has a preset language and a preset entailment relations (both
“preset” for that consequence translation). The set of axioms of the new
formal system is exactly the set of consequences of the axioms of the original
formal system (using the original entailment relation).

Throughout this section we give special treatment to the case that only
adding-azioms actions are allowed. This special case turns out to have
some nice intuitive properties (some of the theorems proved below are true
only for that case) and contrasting these properties with those of the general
case is instructive.

4.1 Different Languages

Next, we show that adding a constant symbol to a propositional theory
increases the Elaboration Tolerance.
Let us look at the following theory.

Rain = Clouds (11)
Clouds = —Sun (12)

the language includes the propositional symbols Rain, Clouds, Sun and the
entailment relation is the propositional entailment relation F. Assume now
that we added the propositional symbol Moon to our language. Every
elaboration that we could do before is still a valid elaboration here. More
importantly, it yields the same results that it had in the original system
(see the proof of the theorem below). Aside from that, there are some new
elaborations that we can include, such as adding the axiom Moon <=
—Sun.

THEOREM 10. Lett be the propositional entailment relation. Let Lo C L4
be two propositional languages and t be the consequence translation to Lo, .
If 31 = (L£1,F,T1), Bs = (La,F,Ts) such that ¥y =; X1 and only aziom-
adding actions are allowed (for both systems), then X1 <; Xy (X1 is more
elaboration-tolerant than X,).

Proof. Let ay € Actions(L2). We want to prove that ax(X2) = a2(Xy),
which will allow us to use lemma 9 to complete the proof.

FORMALIZING ELABORATION TOLERANCE xi

¥, = ¥, implies that L2 N C(X;) = C(X3). a2 adds a sentence (or a
conjunction of sentences), ¢ € Lo. Since p € Ly, L3N (C(E1)U{p}) = LaN
C(X1 Ap). This is because we can replace every axiom £ € C'(X; Ap) N L,
in a proof in the system on the right, with the two axioms ¢, ¢ — &, both
in (C(21) U{¢}) N Ly. Our ability to do this replacement is a direct result
of the deduction theorem.

Since C(E2) U {9} = C(Z2 A p), we get that (L2 N C(E1)) U {p} =
C(X2) U {¢}, which implies that C(Z2 A ¢) = C(Z1 A ¢) N Lo. Thus,
Ya A = Z1 A p and az(X2) =; aa(X1). Now, all that is left is to use
lemma 9 and get X1 <; 3. [|

Notice that, as a result of this theorem, two logically equivalent propo-
sitional formal systems have the same elaboration tolerance (given that we
allow only axiom additions and no deletions). Of course, this is true under
the assumptions that the translation is a consequence translation to £, .

If we allow actions that delete axioms then the theorem above is not
true. If the theorem held in the general case, we would have concluded
that equivalent monotonic systems with the same language have the same
elaboration tolerance (allowing both adding and removing axioms). An
example that this is not the case was seen in section 2.1.

The proof reveals the pleasant surprise that the last theorem is not in
general true for nonmonotonic entailment relations (even if we allow only
axiom-adding actions). This is hinted at by the use of the deduction theorem
in the proof above and is illustrated by example 12 in section 4.2.

4.2 Propositional Monotonic and Nonmonotonic Systems

Our exposition in this section is stated using the nonmonotonic system of
Circumscription that we already used in section 2.4. The same results can
be stated for the nonmonotonic systems of Default Logic [Reiter, 1980],
Autoepistemic Logic [Moore, 1987] and possibly others, but for simplicity,
we restrict ourselves and discuss only the case of Circumscription.

Let ¥y = (£4,F,T1), with £; a propositional language, | the proposi-
tional entailment and I'; a set of axioms in £;. The associated abnormality
theory of ¥y is ¥y = (L, v, T2), with Ty = {ab, = (| ¢ € T'1}, Ly the
propositional language £1 U {ab,|p € 1} (i.e., L3 = L1 U L(T2)) and |~¢
an entailment relation that first circumscribes the ab,’s in parallel (varying
the propositions of £1) and then treats the result propositionally. More
precisely,

I'he ¢ < Circlaby,, ..., abg, ;P1, -y Pm] F ¥

The following theorem says that the associated abnormality theory of a
propositional theory is strictly (under some assumptions) more elaboration-
tolerant than the original propositional theory:

xii EYAL AMIR

THEOREM 11. Let ¥y = (£L1,F,T1) and ¥y be the associated abnormality
theory of X1. Assume that X1 is not a contradiction (If it is a contradic-
tion, then s Z; ¥1) and assume that we are allowed only the addition of
azioms (no aziom-deleting actions). Then Yo <; X1, for t the consequence
translation to L1,+. If, in addition, 31 is not a tautology, then Yo <; Xj.

Proof. First, notice that X5 =; 3;. It is also simple to see that for all a; €
Actions(Ly), that does not cause inconsistency (i.e., a1 (X1) is consistent),
a1(X3) =¢ @1(X1). The reason is that, if the axioms are consistent, then
the circumscription will simply entail that all the ab’s are false, leading to
an equivalent theory £ Nay(T2) = a1(21).

In the case of inconsistency in a;(X1), take® as = {{}}. a2 causes
inconsistency in Xo. Thus, we have shown the second condition of ¥y <; ¥;.

To show the first condition of X5 <; Xy, take a € Actions(L2). We need
to show that disty(X2,a(X2)) < disty (X1, @(X2)). Assume that this is not
the case. Then there is o/ € Actions(L1) such that a(X2) =; o/(£1) and
for all 8 € Actions(L2) such that a(Xs) = 8(22), len(a’) < len(B). If
o/(X1) is not inconsistent, then o' € Actions(Ls) and o' (E2) = o' (Zy),
contradicting our claim about o'. If o/(X;) is inconsistent, then a(Xs)
is inconsistent, thus having 8 = {{}} with a(X2) = B(X2) and again
disty (X2, a(X2)) < disty(X1,t(a(X2))). So the first condition of ¥y <; ¥y
is proved. Thus, ¥y <; ¥;.

To show that X5 is in fact strictly more elaboration-tolerant than ¥,
assuming ¥; is not a tautology, it is enough to show an elaboration that
is expressible in 35 but is not expressible (under the translation ¢) in ;.
Let a = {ab, | ¢ € I'1}. Since X; is assumed not to be a tautology, there
is no addition to ¥; that will cause it to accept all the interpretations of
L, (because of monotonicity). This set of interpretations® is yet implied by
t(a(X2)). Thus, in this case, Yo <; ;.]

It is important to notice that the above theorem is not in general true for
nonmonotonic theories and their equivalent monotonic counterparts. The
following example demonstrates that.

EXAMPLE 12. Let I'y = {r V(p < q)}, ~¢ an entailment relation defined
by A o ¢ < Clirc4;p;q] F ¢. An equivalent monotonic theory is
'y = {-pA (g — r)}. With the elaboration {¢} to I'; we get r A—=pAgq. To
get the equivalent theory for the nonmonotonic case, we must add both —p
and ¢. Adding only g will result in

Circ[(rV(p+ @) Agp;al =g A (rVp)

and there is no use in trying to add either r or —p by themselves.

4We assume that the empty clause is a possible addition.
5Notice that the set of interpretations of a(¥2) is not the entire set of interpretations
of Ls.

FORMALIZING ELABORATION TOLERANCE xiii

4.3 Limats

The last two sections describe example applications of our definitions from
section 2.2. We shall now examine some of the limits of our system. The
following theorem intuitively says that there is no formal system that is
the most elaboration-tolerant (Again, given a certain translation). Notice
that here we allow both axiom-adding and axiom-deleting actions.

THEOREM 13. Let L be a propositional language and t the consequence
translation to L,F. Let ¥ = (L, }~,T) be an aziomatic formal system. Then
there is another aziomatic formal system X' = (L, M, T") (same language
as X) and an elaboration o € Actions(L) such that ' <4 o X.

Proof. We use a combinatorial argument to show that there is a system
Ytarget such that dist(X, Xiqrger) > 1, and then find ¥’ =; ¥ such that
dist(E’, Etarget) =1.

Take ¢ to be the cardinality of the set of propositions in £. Since Every
proposition may either not show, show positively or show negatively, in
every clause, there are 3° possible clauses in £ (if £ is infinite, take the
appropriate cardinals). Also, there are 2¢ possible propositional models
(each clause may either be true or not in each), and so there are exactly 2%
non-equivalent (equivalence measured using F) propositional theories in L.
Thus, we have at most 2 x 3¢ possible actions at our disposal (either adding
or removing one of the clauses) and 22° possible Ytarget’s. So, there is at
least one (in fact there are many) elaboration a € Actions(L£) such that
disty(Z, a(X)) > 1.

Take ¢ a clause in « that is not entailed by X (i.e., ¢ € a\ C(X)). Define
k' as follows:

M= (L) |y eC(D)U
{TU{e}) | ¥ € Cla(X))}

Notice that we did not have any problem defining this entailment relation,
as we did not put any restrictions on it, and most importantly, it is a relation
between sets of axioms in £. Now, define ¥/ = (£, ', T') and sure enough,
disty(X', (X)) = 1. [|

The theorem intuitively says that for every formal system ¥ there is a
target formal system X;4,4¢¢ that is not easy to reach (there is an equivalent
formal system to X that reaches X4 g¢; €asier).

This proof used the fact that we put no restrictions on the entailment
relation |~', but it is not too difficult to come up with a “conservative”
nonmonotonic example that will give the same proof.

xiv EYAL AMIR

5 RELATION TO BELIEF REVISION AND ILP

A close issue to our presentation of Elaboration Tolerance is Belief Revision.
Belief Revision is the process that a logical theory T' goes through when we
wish to incorporate some new information ¢ (see [Alchourrén et al., 1985),
[Katsuno and Mendelzon, 1991], [Lehmann, 1995], [Antoniou, 1997]). The
main difference between the work done on Belief Revision and the Elabora-
tion Tolerance treatment we presented here is that the latter is interested
in the sequence of actions (e.g., syntactic additions to the knowledge base)
necessary to reach a target Knowledge Base, while Belief Revision theory is
interested in the change that result from adding or retracting some knowl-
edge from the Knowledge Base.

As a result of the different motivations, there are several practical differ-
ences. Our treatment of Elaboration Tolerance is interested in any action
for the Knowledge Base change, while Belief Revision is restricted to the
actions of add and remove and their variances. Furthermore, Elaboration
Tolerance is interested in the difficulty of specifying the set of actions, the
length of the specification and the difficulty of executing the given change,
only the last of which is interesting from the Belief Revision perspective.
Another practical difference is that in Belief Revision, the underlying the-
ory is always taken to be monotonic, and nonmonotonicity is introduced
through the semantics of the revision and contraction operators. In our
exposition of Elaboration Tolerance we explicitly allowed our base theory
to be nonmonotonic. The work on syntactic forms of Belief Revision (e.g.,
[Nebel, 1991]) has mostly focused on Theory Base Change [Fagin et al.,
1983] and the information that can be elicited from the syntactic form of
the theory.

Some authors interested in syntactic Belief Revision and Inductive Logic
Programming and especially Theory Revision/Refinement (see [Abiteboul,
1988], [Koppel et al., 1994], [De Raedt, 1992]) are more closely related
to our treatment. The major differences here come in our measurement
of the difficulty of change between specific theories, our ignorance of the
algorithm for choosing the modification, our ability to compare theories that
are neither similar nor have the same ontological background and our ability
to talk about higher-level constructs (such as Object-Oriented designs).

6 CRITICISM AND DISCUSSION

Elaboration Tolerance may be a philosophical notion but its ramifications
touch the everyday life of knowledge engineers. How does our treatment
here relate to knowledge engineering efforts? In this section we criticize the
current work and try to show where it may link to practical considerations.

The main criticism we wish to raise is that the notion of syntactic elab-

FORMALIZING ELABORATION TOLERANCE bias

oration tolerance does not correspond to our intuitions of elaboration tol-
erance. For example, the system presented in section 4.2 is nonmonotonic.
Is it more readable than the monotonic equivalent? Is the question of the
computational complexity of inference irrelevant to elaboration tolerance?
Also, how do propositional results reflect the difficulties of building first-
order theories?

What about the knowledge held by the engineer? It should be relevant
to our task of KB expansion. Proficiency in the utilized knowledge rep-
resentation influences the ease with which the KB is expanded and the
representation picked by the knowledge engineer. And who picks Xiarget?
The problem of finding this Yi4rge: is in fact the most important one and
is seemingly ignored in our setting. Finally, our intuition says that the
difficulty of changing a KB for a human is more than a syntactic one.

Our syntactic elaboration tolerance does not account for these considera-
tions by itself, but there is a context in which it serves as one among several
acting forces: If we view the problem of elaboration as one that is posed to
a computer agent rather than a human agent.

Briefly, if the computer agent knows what it wants another agent to
believe (the other agent is presumably a knowledge base), then the problem
it faces is a problem of search: what sequence of actions on the other agent’s
KB will lead to an “acceptable” KB (i.e., a KB that is “=;” to our first
agent’s goal)? In such a search problem there are several playing factors:
(1) the depth of the search (our syntactic distance); (2) the breadth of the
search (our limit to disjunctive clauses rather than arbitrary axioms keeps
this breadth manageable); (3) the complexity of checking for the goal (in
the general classical propositional case, NP-complete); and (4) heuristic
information.

Although we did not create a single comprehensive formula for “mea-
suring” elaboration tolerance, our syntactic elaboration tolerance plays a
significant role for such an “elaborating” agent. We will treat the larger
problem as a whole in future works.

7 CONCLUSIONS

Restricting our attention to propositional languages and the actions of
adding and deleting axioms to/from a knowledge base, we were able to
compare systems with respect to their Elaboration Tolerance (with these al-
lowed actions and language restrictions). For the case where only additions
of axioms are allowed, we found that propositional systems with more propo-
sitional symbols are more Elaboration Tolerant, nonmonotonic systems are
sometimes not more Elaboration Tolerant than an equivalent monotonic
theory, there are ways to build nonmonotonic theories from monotonic ones
such that the former are more Elaboration Tolerant than the latter and that

xvi EYAL AMIR

there is no one most elaboration tolerant system (in our restricted scope).

Continuing the work on Elaboration Tolerance, we are currently working
in three major directions. First, we wish to extend the model of knowledge-
base evolution to include the fact that the knowledge engineer is not aware
of the exact properties of the knowledge base when he changes it. Despite
this lack of knowledge/awareness on the part of the knowledge engineer, he
still manages to change the knowledge base to some degrees of success. It is
our hope that this extended model will better approximate the uncertainty
and difficulty of changing a knowledge base. Second, we try to make the
comparison between knowledge bases more qualitative (possibly without
using a distance measure). The quantitative model has its virtues but it
seems that we can get a different point of view when we have a qualitative
model. Third, we work on finding new ways to write theories so that they
are more Elaboration Tolerant. This direction benefits directly from the
theorems proved in this and similar articles.

A generalization of the above definition to arbitrary languages and to
arbitrary actions can become useful in comparing first-order systems or
systems with other actions (adding preconditions to axioms, adding constant
symbols, generalizing an axiom, specializing an axiom and changing the
entailment relation are only a few of the possibilities). These tools promise
to give us new insights into the process of knowledge base construction and
expansion and this work is just an initial step in that direction.

8 ACKNOWLEDGMENTS

This work benefited greatly from discussions with Josefina Sierra, Berthe
Choueiry, Alon Levy, Sasa Buvac, John McCarthy, Tom Costello, Leora
Morgenstern, Ray Reiter, Fausto Giunchiglia and Shlomit Pinter. This
work would not be the same without their help in various stages of the
work. Leora Morgenstern, Tom Costello, Mary-Anne Williams, Fausto
Giunchiglia, Alon Levy, Shlomit Pinter and Erika Henik read drafts of this
work, and I am grateful for their remarks. I also wish to thank the anony-
mous referees whose remarks helped me shape the final form of this work.
Last, I wish to thank Josefina Sierra again for reading many versions, lis-
tening to many complaints and difficulties and commenting during various
stages of the ongoing work. Without her support I am doubtful this work
would have been in the shape it is now.

This research was supported by an ARPA (ONR) grant N00014-94-1-0775
and an Air Force grant F49620-97-1-0207.

FORMALIZING ELABORATION TOLERANCE xvii

REFERENCES

[Abiteboul, 1988] Serge Abiteboul. Updates, A new frontier. In M. Gyssens,
J. Paredaens, and D. Van Gucht, editors, ICDT’88, 2nd International Conference
on Database Theory, volume 326 of Lecture Notes in Computer Science, pages 1-18,
Bruges, Belgium, 31 August—2 September 1988. Springer.

[Adé et al., 1994] H. Adé, B. Malfait, and L. De Raedt. RUTH: an ILP theory revision
system. In Zbigniew W. Ra§ and Maria Zemankova, editors, Proceedings of the 8th
International Symposium on Methodologies for Intelligent Systems, volume 869 of
LNAI pages 336-345, Berlin, October 1994. Springer.

[Alchourrén et al., 1985] Carlos E. Alchourrén, Peter Gardenfors, and David Makinson.
On the logic of theory change: Partial meet contraction and revision functions. Journal
of Symbolic Logic, 50:510-530, 1985.

[Amir, 1997] Eyal Amir. Machinery for elaborating action — Preliminary Report. In
NRAC-97’ and in http://www-formal.stanford.edu/eyal /nmr/machinery-ea.ps, 1997.

[Antoniou, 1997] Grigoris Antoniou. Nonmonotonic Reasoning. MIT Press, Cambridge,
Massachusetts, 1997.

[Brachman and Levesque, 1985] Ronald Brachman and Hector Levesque. Readings in
Knowledge Representation. Morgan Kaufmann, 1985.

[Costello, 1997] Tom Costello. Beyond minimizing change. In Proceedings of AAAI-97,
1997.

[De Raedt, 1992] L. De Raedt. Interactive Theory Revision: An Inductive Logic Pro-
gramming Approach. Academic Press, New York, 1992. De Raedt, L.

[Fagin et al., 1983] Ronald Fagin, Jeffrey D. Ullman, and Moshe Y. Vardi. On the
semantics of updates in databases. In Proceedings of the Second ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, pages 352-365, Atlanta,
Georgia, 21-23 March 1983.

[Giunchiglia and Walsh, 1992] F. Giunchiglia and T. Walsh. A theory of abstraction.
Artificial Intelligence, 57(2-3):323-389, October 1992.

[Katsuno and Mendelzon, 1991] H. Katsuno and A. O. Mendelzon. Propositional knowl-
edge base revision and minimal change. Artificial Intelligence, 52(KRR-TR-90-3):263—
294, 1991.

[Koppel et al., 1994] Moshe Koppel, Ronen Feldman, and Alberto Maria Segre. Bias-
driven revision of logical domain theories. Journal of Artificial Intelligence Research,
1, 1994.

[Lehmann, 1995] Daniel Lehmann. Belief revision, revised. In IJCAI-95, pages 1534~
1540, 1995.

[McCarthy, 1980] John McCarthy. Circumscription—A Form of Non-Monotonic Rea-
soning. Artificial Intelligence, 13:27-39, 1980.

[McCarthy, 1988] John McCarthy. Mathematical logic in artificial intelligence. Daedalus,
117(1):297-311, 1988.

[McCarthy, 1998] John McCarthy. Elaboration Tolerance. In CommonSense ’98 and in
http://www-formal.stanford.edu /jmc/elaboration.html, 1998.

[Minsky, 1975] M. Minsky. A framework for representing knowledge, 1975. Winston.

[Moore, 1987] Robert C. Moore. Possible-world semantics for autoepistemic logic. In
Matthew Ginsberg, editor, Readings in nonmonotonic reasoning, pages 137-142. Mor-
gan Kaufmann, San Mateo, CA, 1987.

[Nebel, 1991] B. Nebel. Belief revision and default reasoning: syntax-based approaches.
In kr91, pages 417-428. MK, SF, 1991.

[Reiter, 1980] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13
(1-2):81-132, 1980.

[Shanahan, 1996] M. P. Shanahan. Robotics and the common sense informatic situation.
In Proceedings ECAI 96, pages 684-688, 1996.

[Shoenfield, 1967] Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, Duke
University, 1967.

