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Abstract

We present four novel approximation algorithms
for finding triangulation of minimum treewidth.
Two of the algorithms improve on the running
times of algorithms by Robertson and Seymour,
and Becker and Geiger that approximate the op-
timum by factors of 4 and 3 23 , respectively. A
third algorithm is faster than those but gives an
approximation factor of 4 12 . The last algorithm
is yet faster, producing factor-O(lgk) approxi-
mations in polynomial time. Finding triangula-
tions of minimum treewidth for graphs is central
to many problems in computer science. Real-
world problems in artificial intelligence, VLSI
design and databases are efficiently solvable if
we have an efficient approximation algorithm for
them. We report on experimental results confirm-
ing the effectiveness of our algorithms for large
graphs associated with real-world problems.

1 INTRODUCTION

Given an undirected graph, G, and an inte-
ger k, TREEWIDTH is the problem of decid-
ing whether the treewidth of G is at most k
[Robertson and Seymour, 1986]. An equivalent con-
structive problem is finding a triangulation of G with a
clique number that is at most k + 1 (the clique number
of a graph is the size of the largest clique in this graph).
This is also equivalent to finding a tree decomposition or a
junction tree of G with width at most k.

An efficient solution to this problem is key in many applica-
tions in artificial intelligence, databases and logical-circuit
design. Exact inference in Bayesian networks using the
junction tree algorithm [Lauritzen and Spiegelhalter, 1988,
Jensen et al., 1990] requires us to first find a junction tree
and then perform inference using that tree. The time com-
plexity of the junction tree algorithm depends exponen-
tially on the width of the tree, so it is important to try to find

a close to optimal clique tree. Reasoning with structured
CSPs, propositional SAT and FOL problems also benefits
from efficiently finding close-to-optimal tree decomposi-
tions [Dechter and Pearl, 1989, Amir and McIlraith, 2000].
The solution time of many graph-related NP-hard prob-
lems is possible in polynomial time if the graph has low
treewidth and a triangulation of minimum treewidth is
given (e.g., [Arnborg et al., 1991]).

In this paper we present four approximation al-
gorithms for finding triangulations of minimum
treewidth. The first algorithm improves an algorithm
of [Robertson and Seymour, 1995] and produces factor-4
approximations in time O(24.38kn2k), where n, k are the
number of nodes and the treewidth of the given graph, G,
respectively. The second algorithm improves an algorithm
of [Becker and Geiger, 1996] and produces factor-3 23
approximations in time O(23.6982kn3k3lg4n). The third
algorithm produces factor-4 12 triangulations in time

O(23kn2k
3

2 ). The last algorithm produces a factor-O(lgk)
approximation in time O(n3lg4nk5 lgk).

The time bounds achieved by the first and second algo-
rithms are faster by factors ofO(20.4k) andO(2kpoly(n)),
respectively, than previously available algorithms for these
approximation factors. The third algorithm has faster
combined n, k time than any known algorithm that pro-
duces a constant-factor approximation. The last algo-
rithm is the first polynomial-time algorithm that approx-
imates the optimal by a factor that does not depend on
n. We have implemented the 4-approximation and 4 12 -
approximation algorithms and used them to find tree de-
compositions of graphs used in the a subset of the HPKB
project [Cohen et al., 1999], a subset of the CYC knowl-
edge base [Lenat, 1995], and several CPCS Bayesian net-
works [Pradhan et al., 1994]. These graphs have between
100 and 600 nodes and between 400 and 4000 edges.
Our results compare favorably with the algorithms of
[Becker and Geiger, 1996, Shoikhet and Geiger, 1997].

Optimally solving TREEWIDTH is known to be NP-hard
[Arnborg et al., 1987], and so is the closely related op-



timal decomposition of Bayesian Networks [Wen, 1990].
It is an open question whether a constant-factor approx-
imation can be found in polynomial time. Neverthe-
less, several algorithms with guaranteed optimal solutions
(e.g., [Bodlaender, 1996, Shoikhet and Geiger, 1997]) or
constant-factor approximations to the optimal (e.g.,
[Robertson and Seymour, 1995, Reed, 1992, Kloks, 1994,
Becker and Geiger, 1996]) were found. These algorithms
take time that depends polynomially on n but exponentially
on k, the treewidth of the graph. Most of them cannot solve
TREEWIDTH for graphs of treewidth greater than 4 in any
reasonable amount of time. (e.g., see [Röhrig, 1998]). The
best approximation guarantee in polynomial time is due
to [Kloks, 1994, Bodlaender et al., 1995] who achieved a
O(log(n) · k)-factor approximation.

Algorithms with the best time bounds found so far
that do not assume a bounded treewidth are due to
[Becker and Geiger, 1996] (factor-3 23 approximation, with
time O(24.66k · n · poly(n)), where poly(n) is the running
time of linear programming), and [Reed, 1992] (factor-
5 approximation, with time O(34kk2n lgn)). Experi-
ments with the fastest algorithms available show that
TREEWIDTH of graphs with treewidth of 10 or more
cannot be solved in any reasonable amount of time
(reasonable here is less than 24 hours), for graphs
of 100 nodes or more (see [Becker and Geiger, 1996,
Shoikhet and Geiger, 1997]). Graphs of sizes larger than
these are exactly those that are of interest in many of the
above-mentioned applications.

Section 2 defines the main notions involved in comput-
ing treewidth and recalls some theorems proved elsewhere.
Section 3 presents our 4- and 4 12 - approximation algo-
rithms. Section 4 presents our 3 23 - and O(lgk)- approxi-
mation algorithms. The paper concludes with experimental
results.

The algorithms in this paper are described for constant-
weight nodes (applicable to binary nodes in Bayesian Net-
works). Extensions for weighted nodes are possible along
similar lines. A good survey paper on TREEWIDTH is
[Bodlaender, 1997].

2 TREEWIDTH

In this section we briefly recall some of the main definitions
pertaining to treewidth.

A cycle in a graph is chordless if no proper subset of the
vertices of the cycle forms a cycle.

Definition 2.1 A graph is triangulated (or chordal) if it
contains no chordless cycle of length greater than three.

A triangulation of a graph G is a graph H with the same
set of vertices such that G is a subgraph of G and such that
H is triangulated.

Definition 2.2 ([Robertson and Seymour, 1986]) A tree-
decomposition of a graph G(V,E) is a pair D = (S, T )
with S = {Xi | i ∈ I} a collection of subsets of vertices
of G and T = (I, F ) a tree, with one node for each subset
of S, such that the following three conditions are satisfied:
(1)
⋃

i∈I Xi = V . (2) For all edges (v, w) ∈ E there is a
subsetXi ∈ S such that both v, w are contained inXi. (3)
For each vertex x, the set of nodes {i | x ∈ Xi} forms a
subtree of T .

The width of a tree-decomposition ({Xi | i ∈ I}, T =
(I, F )) is maxi∈I (|Xi| − 1). The treewidth of a graph
G equals the minimum width over all tree-decompositions
of G. Equivalently, the treewidth of G is the minimum
k ≥ 0 such that G is a subgraph of a triangulated graph
with all cliques of size at most k + 1. Any triangulation of
a graph defines a tree-decomposition of a graph of the same
treewidth. Similarly, every tree-decomposition of a graph
defines a triangulation of it of the same treewidth.

Definition 2.3 Let G(V,E) be a graph,W ⊆ V a subset
of the vertices and α ∈ (0, 1) a real number. An α-vertex-
separator ofW in G is a set of vertices X ⊆ V such that
every connected component ofG[V \X ] has at most α|W |
vertices of W . A two-way α-vertex-separator is required
in addition to have exactly two sets, S1, S2, separated by
X such that S1 ∪ S2 ∪X = V and |Si| ≤ α|W |, i = 1, 2.

Lemma 2.4 ([Robertson and Seymour, 1986]) Let
G(V,E) be a graph with n vertices and treewidth k. There
exists a setX with k+1 vertices such that every connected
component of G[V \X ] has at most 12 (n− k) vertices.

Corollary 2.5 ([Becker and Geiger, 1996]) Let G(V,E)
be a graph with n ≥ k + 1 vertices and treewidth k. For
everyW ⊆ V , |W | > 1, there is a vertex separatorX and
sets A,B,C ⊂ V such that A∪B ∪C ∪X = V , A,B,C
are separated by X , |X | ≤ k and |W ∩ C| ≤ |W ∩ B| ≤
|W ∩ A| ≤ 1

2 |W |.

3 USING 2-WAY VERTEX SEPARATORS

The two algorithms presented in this section use two-way
separators recursively. They differ on their choice of actual
separator: 2/3 versus 1/2.

3.1 MINIMUM VERTEX SEPARATORS

We briefly describe the notion of a vertex separator. Let
G = (V,E) be an undirected graph. A set S of vertices
is called an (a, b)-vertex-separator if {a, b} ⊂ V \ S and
every path connecting a and b in G passes through at least
one vertex contained in S. An (a, b)-vertex-separator of
minimum cardinality is said to be a minimum (a, b)-vertex-
separator. The weaker property of a vertex separator be-



ing minimal requires that no subset of the (a, b)-vertex-
separator is an (a, b)-vertex-separator.

Algorithms for finding minimum vertex separators typi-
cally reduce the problem to a maximum flow problem in
a directed graph. The algorithm of Even and Tarjan re-
ported in [Even, 1979] for finding minimum vertex separa-
tors uses Dinitz’s algorithm [Dinic, 1970] with time com-
plexity O(|V |

1

2 |E|).

Another possibility is to use the Ford-Fulkerson flow al-
gorithm [Ford Jr. and Fulkerson, 1962] (alternatively, see
[Cormen et al., 1989]), for computing maximum flow. For
an original graph of treewidth < k this involves finding at
most k augmenting paths of capacity 1. Thus, the com-
bined algorithm using the Ford-Fulkerson maximum flow
algorithm finds a minimum (a, b)-vertex-separator in time
O(k(|V |+ |E|)).

3.2 FACTOR-4 APPROXIMATION ALGORITHM

Procedure 2way-2/3-triang, displayed in Figure 1, finds
factor-4 approximations. For a graph G and a parameter
k, running 2way-2/3-triang(G, ∅, k), either returns a valid
answer that the the treewidth of G is of size > k − 1 or it
returns a triangulation ofG of clique number at most 4k+1.

PROCEDURE 2way-2/3-triang(G,W , k)
G = (V,E) with |V | = n,W ⊆ V , k integer.

1. If n ≤ 4k, then make a clique of G. Return.

2. Let W ′ ← W . Add to W ′ vertices from V such that
|W ′| = 3k + 2.

3. Find X , a minimum 2

3
-vertex-separator ofW ′ in G, with

S1, S2 two nonempty parts separated byX (S1∪S2∪X =
V ) and |X| ≤ k. If there is no such separator, then output
“the treewidth exceeds k − 1” and exit.

4. For i← 1 to 2 do

(a) Wi ← Si ∩W .
(b) call 2way-2/3-triang(G[Si ∪X],Wi ∪X , k).

5. Add edges between vertices of W ∪ X , making a clique
of G[W ∪X].

Figure 1: A factor-4 approximate triangulation algorithm.

This algorithm is very similar to that of
[Robertson and Seymour, 1995], as presented in
[Reed, 1992]. The main difference is the more effi-
cient algorithm that we use for exact vertex separation,
which we provide below. The addition of elements to
W ′ in step 2 ensures completeness of our separator (see
Lemma 3.2’s proof).

Lemma 3.1 If G(V,E) is a graph, k an integer andW ⊆
V such that |W | ≤ 3k + 2, then 2way-2/3-triang(G,W ,k)
either outputs correctly that the treewidth ofG is more than

k or it triangulates G such that the vertices of W form a
clique and the clique number of the result is at most 4k+1.

The proof is identical to that presented in
[Robertson and Seymour, 1986, Reed, 1992].

Figure 2 presents the algorithm we will use for finding a
2
3 -vertex-separator ofW ′ in G (step 3 in procedure 2way-
2/3-triang). It checks choices of sets of vertices to be sepa-
rated until a solution is found or the choices are exhausted.
The intuition behind making a clique from each selected
set, W i, is that doing so prevents any element from that
clique from becoming an element in the separated subset
of the other side. Given an arbitrary vertex separator of
vW 1 , vW 2 , any vertex in the clique ofW 1 must be either in
the separator itself or in S1.

PROCEDURE 2

3
-vtx-sep(W , G, k)

G = (V,E) with |V | = n,W ⊆ V , k integer.

1. Nondeterministically take a set W 1 of d |W |
2
e vertices

fromW and a setW 2 of d |W |
3
e vertices fromW \W 1.

2. Let G′ ← G. Add edges to G′ so thatW 1 is a clique and
W 2 is a clique. Create new vertices vW1 , vW2 in G′ and
connect them to all the vertices ofW 1,W 2, respectively.

3. Find a minimum (vW1 , vW2 )-vertex-separator, X . If
|X| ≤ k, return |X| and two separated subsets S1, S2,
discarding vW1 , vW2 . Otherwise, return “failure”.

Figure 2: Find a 23 -vertex-separator ofW in G.

Lemma 3.2 Let G(V,E) be a graph, k ≥ 0 an integer,
and W ⊆ V of size 3k + 2. Algorithm 2

3 -vtx-sep(W ,
G, k) finds a 2

3 -separator of W in G of size ≤ k, if
it exists, returning failure otherwise. It does so in time
O( 2

4.38k

k
f(|V |, |E| + k2, k)), given a min-(a, b)-vertex-

separator algorithm taking time f(n,m, k).

PROOF We prove the correctness of the algorithm first.
Assume that the algorithm finds a separatorX of S1, S2 in
G′. X is also a separator of S1, S2 in G, by the way we
constructed G′ from G. Also, X separates W 1 \ X and
W 2 \ X in G′ because W 1 ∪ {vW 1} and W 2 ∪ {vW 2}
are cliques inG′ andX separates vW 1 , vW 2 (ifX does not
separate W 1 \ X and W 2 \ X in G′, then there is a path
between vW 1 , vW 2 that does not go throughX). Finally,X
is a 23 -vertex-separator of W because |W 1|, |W 2| ≥ |W |

3 ,
W 1 \ X ⊂ S1 andW 2 \X ⊆ S2, so |Si ∩W | ≤ 2

3 |W |,
for i = 1, 2. Notice that S1, S2 are never empty because
|X | ≤ k and |Si| ≥ |W i| − |X | ≥ 1 for i = 1, 2 (|W i| ≥
d |W |3 e = k + 1 because |W | = 3k + 2).

For the reverse direction, assume that the treewidth of G is
k − 1 and we show that the algorithm will find a suitable
separator. Assume first that there are two sets of vertices
S1, S2 separated by X in G such that S1 ∪ S2 ∪ X = V



and |Si ∩W | ≤
|W |
2 , for i = 1, 2. Let W in sep = W ∩ Si,

for i = 1, 2. LetW isep ⊆ W ∩X such thatW 1sep ∪W
2
sep =

W∩X and |W isep∪W
i
n sep| =

|W |
2 . LetW i =W isep∪W

i
n sep,

for i = 1, 2. Then, X separates W 1 \ X,W 2 \ X , as
W i \ X = W in sep, for i = 1, 2. Thus, running steps 2,3
in our algorithm using this selection ofW 1,W 2 will find a
separator of size ≤ |X | ≤ k. By the previous paragraph,
this separator is a 23 -vertex-separator ofW in G.

Now we show that if there are no such sets S1, S2, X , then
our algorithm still finds a suitable separator. By Lemma
2.5, there are three sets, A,B,C, of vertices separated by
X in G such that |X | ≤ k and |W ∩ C| ≤ |W ∩ B| ≤
|W ∩A| ≤ 1

2 |W |. Let S1 = A, S2 = B∪C. If |S2∩W | ≤
|W |
2 , then the first selection case would cover this W (the

previous paragraph). Thus, |S2 ∩W | >
|W |
2 . TakeW 1 ⊂

(S2 ∩W ) of size |W |2 andW 2 ⊂ ((S1 ∪X)∩W ) \W 1 of

size |W |3 . The selection of W 2 is possible because |(S1 ∪
X)∩W | = |S1∩W |+ |X∩W | ≥

1
3 |W \X |+ |X∩W | =

1
3 |W |. For this selection of W 1,W 2 our algorithm will
find a separator of size ≤ |X | ≤ k because X is already
a separator ofW 1,W 2 \X . By the first paragraph in this
proof, this separator is a 23 -vertex-separator ofW in G.

Finally, each choice of W 1 takes O(f(|V |, |E| + k2, k))
time to check, for f(n,m, k) the time taken by a min-(a, b)-
vertex-separator algorithm over a graph with n vertices,m
edges and treewidth k − 1. There are

(

3k+2
1.5k+1

)

ways to
choose 1.5k + 1 elements (W 1) from a set of 3k + 2 ele-
ments (W ). Also, there are

(

1.5k+1
k+1

)

ways to choose k + 1
elements (W 2) from a set of 1.5k+1 elements (W \W 1).

Since
(

3k+2
1.5k+1

)

= O( 2
3k

√
k
) and

(

1.5k+1
k+1

)

= O( 2
1.3776k

√
k
) (us-

ing Stirling’s approximation), we get the time bound of
O( 2

4.3776k

k
f(|V |, |E|+ k2, k)).

Proposition 3.3 (cf [Reed, 1992]) If the treewidth of
G(V,E) is k − 1, then |E| ≤ |V |k.

Theorem 3.4 Procedure 2way-2/3-triang(G, ∅, k) finds
a triangulation of G of clique number ≤ 4k + 1,
if the treewidth of G is at most k − 1, in time
O(24.38k|V |

5

2 ) or O(24.38k|V |2k) if we use the mini-
mum (a, b)-vertex-separator algorithm of [Even, 1979] or
[Ford Jr. and Fulkerson, 1962], respectively.

PROOF Lemmas 3.1 and 3.2 prove the correctness.
For the time bound, [Reed, 1992] showed that there
are O(|V |) recursive calls to such triangulation algo-
rithms. Since each recursive step runs 2

3 -vtx-sep once
and makes a clique of size ≤ 4k + 2, we get that
the combined procedure using [Even, 1979]’s algorithm
for min-(a, b)-vertex-separator (time O(|V |

1

2 |E|)) takes

time O( 2
4.38k

k
|V |

1

2 (|E| + k2)|V |). Using Proposition

3.3 we get the bound O( 2
4.38k

k
|V |

3

2 (|V |k + k2)) =

O(24.38k|V |
5

2 ). Similarly, using the algorithm given
by [Ford Jr. and Fulkerson, 1962] for finding a minimum
(a, b)-vertex-separator in time O(k(n + m)) we get time
O(24.38k|V |2k).

3.3 FACTOR-4 12 APPROXIMATION ALGORITHM

We can avoid many of the choices examined in procedure
2
3 -vtx-sep if we allow the resulting separator to be slightly
larger. Procedure 2way-half-vtx-sep, presented in Figure
4 does that, returning a minimum two-way 1

2 -vertex sep-
arator. The combined procedure, called 2way-half-triang,
is identical to procedure 2way-2/3-triang besides replacing
step 3. It is presented in Figure 3.

PROCEDURE 2way-half-triang(G,W , k)
G = (V,E) with |V | = n,W ⊆ V , k integer.

1. If n ≤ 4k, then make a clique of G. Return.

2. Let W ′ ← W . Add to W ′ vertices from V such that
|W ′| = 3k + 2.

3. Find X , a minimum two-way 1

2
-vertex-separator of W ′

in G, with S1, S2 the two nonempty parts separated by X
(S1 ∪ S2 ∪X = V ) and |X| ≤ 1 1

2
k. If there is no such

separator, then output “the treewidth exceeds k − 1” and
exit.

4. For i← 1 to 2 do

(a) Wi ← Si ∩W .
(b) call 2way-half-triang(G[Si ∪X],Wi ∪X , k).

5. Add edges between vertices of W ∪ X , making a clique
of G[W ∪X].

Figure 3: A factor-4 12 approximate triangulation algorithm.

Lemma 3.5 If G(V,E) is a graph with treewidth < k and
W ⊆ V , then there is a two-way 12 -vertex-separator ofW
in G with size at most k + 1

6 |W |

PROOF By Lemma 2.5 there are A,B,C ⊂ V sepa-
rated by X such that A ∪ B ∪ C ∪ X = V , |X | ≤ k
and |W ∩ C| ≤ |W ∩ B| ≤ |W ∩ A| ≤ 1

2 |W |. If
|(B ∪ C) ∩W | ≤ 1

2 |W |, then A, (B ∪ C) and X satisfy
our desired conditions.

Thus, assume that |(B ∪ C) ∩W | > 1
2 |W |. Take XC ⊂

W ∩ C of size |(B ∪ C) ∩ W | − 1
2 |W |. Then |XC | =

|(B∪C)∩W |− 12 |W | ≤
2
3 |W |−

1
2 |W | =

1
6 |W |. LetX ′ =

X∪XC , S1 = A and S2 = (B∪C)\XC . ThisX ′, S1, S2
satisfy the desired conditions because |S2 ∩W | ≤ 1

2 |W |,
|S1| ≤

1
2 |W |, |X

′| ≤ |X | + |XC | ≤ k +
1
6 |W | and X ′

separates S1, S2 (becauseX separates S1, S2).

Lemma 3.6 IfG(V,E) is a graph with n vertices, k an in-
teger andW ⊆ V such that |W | ≤ 3k+2, then 2way-half-
triang(G,W ,k) either outputs correctly that the treewidth



of G is more than k − 1 or it triangulates G such that the
vertices of W form a clique and the clique number of the
resulting graph is at most 4 12k + 2.

PROOF If the algorithm outputs that the treewidth is
more than k− 1, then it did not find a decomposition ofW
as needed. If the treewidth is at most k−1, then Lemma 3.5
guarantees the existence of a two-way 1

2 -vertex-separator
ofW inG with size at most k+ 16 |W |. Thus, this separator
is of size at most k+ 16 |W | ≤ k+

1
6 (3k+2) = 1

1
2k+

1
3 (and

because the size cannot be fractional, it is at most 1 12k). If
we did not find such a separator, then the treewidth is in-
deed at most k − 1.

The same argument used for the proof of Lemma 3.1 shows
that the algorithm always terminates and, if it is successful,
then it returns a graph that is triangulated.

We show that the clique number of this triangulation is at
most 4 12k + 2. First, notice that always |W | ≤ 3k + 2.
Initially, |W | ≤ 3k+ 2 by our assumption in the statement
of the lemma. As the algorithm is called recursively, |X | ≤
1 12k and |Wi| ≤ 1

2 |W
′| = 1 12k + 1. Thus, |Wi ∪ X | ≤

1 12k + 1 + 1
1
2k = 3k + 1, which concludes the induction

step (W in the recursive call to the algorithm isWi ∪X).

Now, letM be a maximal clique. IfM contains no vertex
of Si \Wi, for i = 1, 2, thenM contains only vertices of
W ∪ X . Thus, |M | ≤ 3k + 2 + 1 12k = 4

1
2k + 2. On the

other hand, ifM contains a vertex of Si \Wi, then it does
not contain any vertex of Sj , for j 6= i. This is because X
vertex-separates S1, S2 (any two separated vertices cannot
have an edge connecting them). Hence, M is a clique in
the triangulation ofG[Si ∪X ]. By induction we know that
|M | ≤ 4 12k + 2. This proves the lemma.

Procedure 2way-half-vtx-sep is very similar to procedure
2
3 -vtx-sep with one main difference. While 23 -vtx-sep se-
lects two sets of sizes 12 |W | and 1

3 |W |, procedure 2way-
half-vtx-sep selects two sets of size 12 |W |. This precludes
finding two-way separators in which one of the sets is of
size 23 |W | (as we did before).

PROCEDURE 2way-half-vtx-sep(W , G, k)
G = (V,E) with |V | = n,W ⊆ V , k integer.

1. Nondeterministically choose a set W 1 of |W |
2

vertices
fromW . LetW 2 beW \W 1.

2. Let G′ ← G. Add edges to G′ so thatW 1 is a clique and
W 2 is a clique. Create new vertices vW1 , vW2 in G′ and
connect them to all the vertices ofW 1,W 2, respectively.

3. Find a minimum (vW1 , vW2 )-vertex-separator, X . If
|X| ≤ 1 1

2
k, return |X| and two separated subsets S1, S2,

discarding vW1 , vW2 . Otherwise, return “failure”.

Figure 4: Find a two-way 12 -vertex-separator ofW in G.

Lemma 3.7 Let G(V,E) be a graph, k ≥ 0 an integer,
and W ⊆ V of size 3k + 2. Algorithm 1

2 -vtx-sep(W ,
G, k) finds a two-way 1

2 -separator of W in G of size
≤ 1 12k, if it exists, returning failure otherwise. It does so in

time O( 2
3k

√
k
f(|V |, |E|+ k2, k)), given a min-(a, b)-vertex-

separator algorithm taking time f(n,m, k).

PROOF We prove the correctness of the algorithm.
First, assume that the algorithm finds a separator X of
S1, S2 in G′. X is also a separator of S1, S2 in G, by the
way we constructedG′ fromG. Also,X separatesW 1 \X
andW 2 \X inG′ becauseW 1 ∪{vW 1} andW 2 ∪ {vW 2}
are cliques inG′ andX separates vW 1 , vW 2 (ifX does not
separateW 1 \X andW 2 \X inG′, then there is a path be-
tween vW 1 , vW 2 that does not go throughX). Finally,X is
a 12 -vertex-separator of W because |W 1| = |W 2| = |W |

2 ,
W 1\X ⊂ S1 andW 2\X ⊆ S2. S1, S2 are non-empty be-
cause |S1| ≥ |W |−|X |−|W 2| ≥ 3k+2−1 12k−(

1
2k+1) =

1 (similarly for S2).

Now, assume that there is a two-way 12 -vertex-separatorX
of W in G with |X | ≤ 1 12k. Let S1, S2 be two separated
sets of vertices in G such that S1 ∪ S2 ∪X = V and |Si ∩
W | ≤ |W |

2 , for i = 1, 2. LetW in sep =W ∩Si, for i = 1, 2.
Let W isep ⊆ W ∩ X such that W 1sep ∪ W

2
sep = W ∩ X

and |W isep ∪ W
i
n sep| =

|W |
2 . Let W i = W isep ∪ W

i
n sep,

for i = 1, 2. Then, X separates W 1 \ X,W 2 \ X , as
W i \ X = W in sep, for i = 1, 2. Thus, running steps 2,3
in our algorithm using this selection ofW 1,W 2 will find a
separator of size≤ |X | ≤ 1 12k. By the previous paragraph,
this separator is a 12 -vertex-separator ofW in G.

Finally, each choice of W 1 takes O(f(|V |, |E| + k2, k))
time to check, for f(n,m, k) the time taken by a min-(a, b)-
vertex-separator algorithm over a graph with n vertices,
m edges and treewidth k − 1. There are

(

3k+2
1 1
2
k+1

)

ways to

choose 1 12k+1 elements (W 1) from a set of 3k+2 elements

(W ). Since
(

2n
n

)

= 22n√
πn
(1+O( 1

n
)), we get the time bound

of O( 2
3k

√
k
f(|V |, |E|+ k2, k)).

Theorem 3.8 Procedure 2way-half-triang(G, ∅, k) finds
a triangulation of G of clique number ≤ 3k +
2, if the treewidth of G is at most k − 1, in
time O(23kn

5

2 k
1

2 ) or O(23kn2k
3

2 ) if we use the mini-
mum (a, b)-vertex-separator algorithm of [Even, 1979] or
[Ford Jr. and Fulkerson, 1962], respectively.

The proof of this theorem is similar to that of Theorem 3.4.

4 USING 3-WAY VERTEX SEPARATORS

The last section presented algorithms that recursively di-
vide the set of vertices into two sets. Doing so we give up
some of the separators guaranteed by Lemma 2.4. In this



section we present a different angle on the tradeoff between
the size of the separator, the size of each of the separated
sides and the computational complexity of finding the sep-
arator. We find approximate three-way separators, and use
them in a similar way to the one used above.

4.1 MULTIWAY VERTEX CUT

A generalization of the minimum (a, b)-vertex-cut prob-
lem is the minimum multiway-vertex-cut. Given an undi-
rected graph, G(V,E), and a set of nodes, v1, ..., vl ∈ V ,
a minimum multiway cut is a minimum-cardinality set of
nodes S ∈ V such that v1, ..., vl are in different connected
components in V \ S. The weighted version requires a
minimum-weight set of nodes.

Unlike the minimum (a, b)-vertex-cut problem, the prob-
lem of finding a minimum multiway-vertex-cut is NP-
hard and MAXSNP-hard for l ≥ 3 [Cunningham, 1991,
Garg et al., 1994] (i.e., there is ε > 0 such that approximat-
ing the problem within a factor of (1 + ε) is NP-hard). For
the (a, b)-vertex-cut problem the maximum flow is equal
to the minimum capacity cut in both directed and undi-
rected graphs. This is not the case for multiway-vertex-
cut. Nevertheless, [Garg et al., 1994] showed that by solv-
ing a maximum multicommodity flow problem, one can
find an l-way vertex cut (in an undirected graph) that is
of size within a factor (2 − 2

l
) to the optimal (multicom-

modity flow is a generalization of maximum-flow for mul-
tiple sources, sinks and commodities sent between them
[Leighton and Rao, 1999]).

This algorithm was used subsequently by
[Becker and Geiger, 1996] to offer an algorithm for
minimum-treewidth triangulation. This algorithm takes
time O(24.66kn poly(n)), for poly(n) the time required to
solve a linear program of size n.

4.2 FACTOR-3 23 APPROXIMATION ALGORITHM

Figure 5 recalls the main loop of the algorithm of
[Becker and Geiger, 1996]. The algorithm differs from that
of [Robertson and Seymour, 1995] in using a 3-way sepa-
rator instead of a 2-way separator. The separator,X ofW ,
is required to satisfy |(Si ∩W ) ∪ X | ≤ (1 + α)k, for all
three sets Si, i = 1, 2, 3, for a given α ≥ 1. Let us call
such a separator a α-sum-separator.

Figure 6 presents a new procedure for producing an α-sum-
separator. It calls a procedure for 3-way vertex separation
3|W | times instead of 4|W | times as in the algorithm of
[Becker and Geiger, 1996].

Lemma 4.1 Let G(V,E) be a graph, k ≥ 0 an inte-
ger, and W ⊆ V of size (1 + α)k + 1. Algorithm α-
sum-sep(W , G, k) finds a α-sum-separator of W in G,
if it exists, returning failure otherwise. It does so in time

PROCEDURE 3way-triang(G,W , k)
G = (V,E) with |V | = n,W ⊆ V , k integer.

1. If n ≤ (2α + 1)k, then make a clique of G. Return.

2. Let W ′ ← W . Add to W ′ vertices from V such that
|W ′| = (1 + α)k + 1.

3. Find X , a minimum α-sum-separator of W ′ in G, with
S1, S2, S3 three parts separated by X (at least two are
nonempty) and S1 ∪ S2 ∪ S3 ∪X = V . If there is none,
then output “the treewidth exceeds k − 1” and exit.

4. For i← 1 to 3 do

(a) Wi ← Si ∩W .
(b) call 3way-triang(G[Si ∪X],Wi ∪X , k).

5. Add edges between vertices of W ∪ X , making a clique
of G[W ∪X].

Figure 5: A factor-3 23 approximate triangulation algorithm.

PROCEDURE α-sum-sep(W , G, k)
G = (V,E) with |V | = n,W ⊆ V , k integer.

1. Nondeterministically divide |W | into three sets,
W 1,W 2,W 3, such that |W |

2
≥ |W 1| ≥ |W 2| ≥ |W 3|.

2. If |W 1| > k, then set W 2 ← W 2 ∪W 3 and return the
result of steps 2–3 of algorithm 2

3
-vtx-sep (Figure 2).

3. Let G′ ← G. Add edges to G′ so that each
of W 1,W 2,W 3 is a clique. Create new vertices,
vW1 , vW2 , vW3 inG′ and connect them to all the vertices
ofW 1,W 2,W 3, respectively.

4. Find an α-approximation to a minimum
(vW1 , vW2 , vW3 )-vertex-separator, X . If |X| ≤ αk, re-
turnX and the three separated sets, S1, S2, S3, discarding
vW1 , vW2 , vW3 . Otherwise, return “failure”.

Figure 6: Find an α-sum-separator in G of size at most k.

O(23.6982kf(|V |, |E|+k2, k)), for α = 4
3 , with f(n,m, k)

the time taken by an algorithm for α approximation to min-
(a, b, c)-vertex-separator.

PROOF We prove the correctness of the algorithm first.
Assume that the algorithm finds a α-sum-separator X of
S1, S2, S3 inG′. X is also a separator ofS1, S2 inG, by the
way we constructedG′ fromG. Also,X separatesW i \X
andW j \ X , i 6= j ≤ 3, in G′ becauseW i ∪ {vW i} and
W j ∪ {vW j} are cliques in G′ andX separates vW i , vW j .

To see thatX is an α-sum-separator ofW we examine two
cases. In the first, |W 1| ≤ k. Thus, |X | ≤ αk (otherwise
we return “failure”). |(Si ∩ W ) ∪ X | ≤ |W i| + |X | ≤
(1+α)k, for i = 1, 2, 3, because Si∩W ⊆W i. Thus, this
is an α-sum-decomposition. In the second case, |W 1| > k.
Thus, |W 2 ∪W 3| < αk because |W | = (1 + α)k. Also,
|X | ≤ k because it was returned by step 3 of algorithm
2
3 -vtx-sep (Figure 2). Thus, |(Si ∩ W ) ∪ X | ≤ |W i| +



|X | ≤ (1 + α)k. Notice that |Si ∩ W | ≥ 1, for at least
two of i = 1, 2, 3 (i.e., X does not contain at least two of
the W i’s). In the first case this is because |W 2 ∪W 3| =
|W |− |W 1| ≥ αk+1 > |X | (we set |W | = (1+α)k+1).
In the second case this is because |X | ≤ k, |W 1| > k and
|W 2| = |W | − |W 1| ≥ |W | − |W |2 > k.

For the reverse direction, assume that the treewidth of G is
k−1. We show that the algorithm finds a suitable separator.
Let S1, S2, S3 be three sets as guaranteed by Lemma 2.5,
separated by X in G such that S1 ∪ S2 ∪ S3 ∪ X = V ,
|S3 ∩W | ≤ |S2 ∩W | ≤ |S1 ∩W | ≤

|W |
2 and |X | ≤ k.

If |W ∩ S1| ≤ k, then letW in sep =W ∩ Si, for i = 1, 2, 3.
LetW isep ⊆W ∩X such thatW 1sep∪W

2
sep∪W

3
sep =W ∩X

and |W isep∪W
i
n sep| ≤

|W |
2 . LetW i =W isep∪W

i
n sep, for i =

1, 2, 3. Then,X separatesW 1\X,W 2\X,W 3\X because
W i \X = W in sep, for i = 1, 2, 3. Thus, running steps 3,4
in our algorithm using this selection of W 1,W 2,W 3 will
find a separator of size ≤ α|X | ≤ αk. By the first part of
the proof, this separator is a α-sum-separator ofW in G.

If |W ∩ S1| > k, then letW 1n sep = W ∩ S1 andW 2n sep =

W ∩ (S2 ∪ S3). Let W isep ⊆ W ∩ X , i = 1, 2 such that

W 1sep ∪W
2
sep = W ∩ X and |W isep ∪W

i
n sep| ≤

|W |
2 . Let

W i = W isep ∪ W
i
n sep, for i = 1, 2. Then, X separates

W 1 \X,W 2 \X becauseW i \X = W in sep, for i = 1, 2.
Thus, running steps 2,3 of algorithm 2

3 -vtx-sep (Figure 2)
using this selection ofW 1,W 2 will find a separator of size
≤ |X | ≤ k. By the first part of the proof, this separator is
a α-sum-separator ofW in G.

Finally, each choice of W 1 takes O(f(|V |, |E| + k2, k))
time to check, for f(n,m, k) the time taken by a α-
approximating 3-way-vertex-separator algorithm (or a
minimum vertex separator algorithm, if it takes more time
than the approximate 3-way-vertex-separator) over a graph
with n vertices,m edges and treewidth k − 1. There are at
most 3|W | ways to divideW into three sets. Since |W | ≤
(1+α)k+1, we run a vertex separation algorithm at most
3(1+α)k+1 = O(32

1

3
k) = O(23.6982k) times, for α = 4

3 .
Thus, the total time isO(23.6982kf(|V |, |E|+k2, k)).

Theorem 4.2 ([Becker and Geiger, 1996]) If G(V,E) is
a graph with n vertices, k ≥ 1 an integer, α ≥ 1 a real
number, andW ⊂ V such that |W | ≤ (α + 1)k + 1, then
3way-vtx-sep(G,W ,k) triangulatesG such that the vertices
ofW form a clique and such that the size of a largest clique
of the triangulated graph ≤ (2α + 1)k or the algorithm
correctly outputs that the cliquewidth ofG is larger than k.

Solutions for linear programs of multicommodity flow
problems are typically slow. The linear programming sub-
routine used by the procedure of [Becker and Geiger, 1996]
for the subroutine of [Garg et al., 1994] can be re-
placed by the multicommodity flow algorithm of

[Leighton et al., 1995]. This combined algorithm finds
a factor-(1 + ε) 43 approximation to the optimal 3-way
separator in time O(ε−2nm lg4n), given ε > 0. Selecting
ε = 1

8k guarantees that the separator is in fact a factor- 43
approximation to the optimal (because the separator size is
integral).

Using this procedure, the complexity of running the al-
gorithm with α = 4

3 is O(23.6982kn f(n,m + k2, k)) =
O(23.6982knk3n2lg4n) = O(23.6982kn3k3lg4n). This
is an improvement over the O(24.66kn poly(n)) of
[Becker and Geiger, 1996], especially because we have re-
duced the exponential dependency on k by a factor of about
2k.

4.3 FACTOR-O(lgk) APPROXIMATION

In this section we use a procedure reported in
[Leighton and Rao, 1999] for finding factor-βlgk ap-
proximations (β = 720) to minimum 2

3 -vertex-separator
of W in G. This procedure calls a subroutine that solves
multi-commodity flow at most O(|W |) times. Using the
algorithm of [Leighton et al., 1995] for multicommod-
ity flow it takes time O(|W |k3n2lg4n) for a graph of
treewidth k− 1. The triangulation algorithm uses the main
loop of algorithm 3way-triang (Figure 5), replacing steps
2,3 by

2-3. Find X , an approximate minimum 3-way 2
3 -vertex-

separator of W in G, with S1, S2, S3 the three parts
separated by X . If |X | > βk, then output “the
treewidth exceeds k − 1” and exit.

The combined algorithm for triangulation is used in the
same way as before: we call lgk-triang(G, ∅, k).

Lemma 4.3 If G(V,E) is a graph with n vertices, k an
integer and W ⊆ V such that |W | = γ1k · lgk), for
γ1 = 3β, then lgk-triang(G,W ,k) that uses the procedure
of [Leighton and Rao, 1999] for finding 3-way 2

3 -vertex
separators either outputs correctly that the treewidth of G
is more than k−1 or it triangulatesG such that the vertices
ofW form a clique and the clique number of the resulting
graph is at most γlgk), for γ = 4β.

PROOF As in the proofs for previous algorithms, this
algorithm either outputs (correctly) that the treewidth ex-
ceeds k, or a triangulated graph. We show that the clique
number of this triangulation is at most γklgk.

First, notice that always |W | ≤ γ1klgk. Initially, |W | ≤ γ1
by our assumption in the statement of the lemma. As
the algorithm is called recursively, |X | ≤ βklgk and
|Wi| ≤

2
3 |W | ≤

2
3γ1klgk, by induction. Thus, |Wi∪X | ≤

2
3γ1klgk+ βklgk. Since γ1 = 3β we get that |Wi ∪X | ≤
γ1klgk which concludes the induction step (W in the re-
cursive call to the algorithm isWi ∪X).



Now, letM be a maximal clique. IfM contains no vertex
of Si \Wi, for i = 1, 2, 3, thenM contains only vertices
of W ∪ X . Thus, |M | ≤ γ1klgk + βklgk = γklgk. On
the other hand, if M contains a vertex of Si \ Wi, then
it does not contain any vertex of Sj , for j 6= i. This is
because X vertex-separates S1, S2, S3 (any two separated
vertices cannot have an edge connecting them). Hence,M
is a clique in the triangulation of G[Si ∪X ]. By induction
we know that |M | ≤ γklgk. This proves the lemma.

Theorem 4.4 Procedure lgk-triang(G, ∅, k) finds a trian-
gulation of G of clique number≤ γlgk), for γ = 4β, if the
treewidth of G is at most k − 1, in time O(n3lg4n k5lgk).

The proof is similar to those for the previous algorithms.

PROOF Lemma 4.3 guarantees the correctness of the
procedure. The time bound is seen noticing that there are
at most n invocations of lgk-triang for a graph of n vertices.

5 EXPERIMENTAL RESULTS

We have implemented a constructive variant of algorithms
2way-2/3-triang and 2way-half-triang. Given a graph, G,
they return a tree decomposition ofG. The main difference
between the description given above and our implementa-
tion is that we do not increase the size ofW ′ to be 3k+2 in
step 2) of Figure 1 (we do not know what k is, a priori). In-
stead, we gradually increaseW ′’s size during the execution
of 23 -vtx-sep, until we find a cardinality of |W ′| for which
a minimum separator has both separated sets non-empty.
This is particularly useful when only some of the partitions
of the tree decomposition are of size close to the limit.

For our implementation we use an implementation of
Chekassky and Goldberg [Chekassky and Goldberg, 1997]
for Dinitz’s max-flow algorithm. We have experimented
with several graphs of various sizes and treewidths that
are associated with real-world problems. The results are
depicted in Figure 7. They were achieved on a Sun Su-
perSparc 60. For comparison1 we ran the implemen-
tation of the algorithm of [Shoikhet and Geiger, 1997].
Unfortunately, that algorithm did not return answers
for any of these graphs after more than three days.
This is not surprising if we compare our theoretical
results to those reported in [Becker and Geiger, 1996,
Shoikhet and Geiger, 1997]. These algorithms have been
tested with graphs of treewidths ≤ 6, n ≤ 50, m ≤ 110
(real-world graphs) and treewidth ≤ 10, n ≤ 100 (artifi-
cially generated), respectively, an order of magnitude lower
than those used here.

1We could not get the implementation of
[Becker and Geiger, 1996].

It is important and interesting to notice that the min-
degree heuristic [Rose, 1974, Kjaerulff, 1993], which iter-
atively selects a node that has as few neighbors as pos-
sible, makes a clique from the neighbors and removes
the node, achieved better tree decompositions than our
approximation-guaranteed algorithms on these samples.
This heuristic takes between 1 second and 2 minutes on
our sample graphs with a sub-optimal implementation, but
is not guaranteed to approximate the optimal by a constant
factor.

6 CONCLUSIONS

We presented four related approximation algorithms for tri-
angulation of minimum treewidth. Two of them (2way-2/3-
triang and 3way-triang) are modifications of previous algo-
rithms that improve their running speed by a factor expo-
nential in k and polynomial in n. A third algorithm (2way-
half-triang) has the best combined n, k time bound known
for any constant-factor approximation algorithm. The
fourth algorithm (lgk-triang) is the first polynomial-time al-
gorithm for an approximation factor that does not depend
on n. We showed that our algorithms are efficient enough
to solve large problems of practical importance. The results
of some of the tree decompositions that we produced are
currently being used in reasoning with the HPKB and CYC
knowledge bases [Cohen et al., 1999, Lenat, 1995] using
algorithms of [Amir and McIlraith, 2000].
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