
Compact Propositionalizations of First-Order Theories
Deepak Ramachandran and Eyal Amir

Computer Science Department
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{dramacha,eyal}@cs.uiuc.edu

Abstract. We present new insights and algorithms for converting
reasoning problems in monadic First-Order Logic (includes only 1-
place predicates) into equivalent problems in propositional logic. Our
algorithms improve over earlier approaches in two ways. First, they
are applicable even without the unique-names and domain-closure
assumptions, and for possibly infinite domains. Therefore, they apply
for many problems that are outside the scope of previous techniques.
Secondly, our algorithms produce propositional representations that
are significantly more compact than earlier approaches, provided that
some structure is available in the problem. We examined our ap-
proach on an example application and discovered that the number
of propositional symbols that we produced is smaller by a factor of
f ≅ 50 than traditional techniques, when those techniques can be
applied. This translates to a factor of about2f increase in the speed
of reasoning for such structured problems.

1 Introduction

It is often advantageous to perform reasoning with a First-Order
Logic (FOL) theory by first transforming it into an equivalent propo-
sitional theory (propositionalization) and then using propositional in-
ference methods on it [8]. There are a number of good reasons for
this: Propositional Inference is decidable and the last 20 years of re-
search have resulted in relatively efficient and successful algorithms
(e.g. [16, 15]).

The simplest propositionalization of a First-Order theory is ob-
tained by creating a proposition for every ground atom of the theory.
Quantified variables are systematically replaced with constants from
the language in the theory. This leads toO(|P ||C|k) propositions,
where|P | and|C| are the number of predicates and constants in the
FOL theory andk is the maximum arity of any predicate. The com-
pleteness of this propositionalization requires theDomain Closure
Assumption(DCA1; every object in the universe is referenced by a
constant symbol), and theUnique Names Assumption(UNA; every
constant symbol refers to a unique object).

Propositionalization is used in a number of applications involv-
ing First-Order representations, such as Planning [9] and Relational
Data Mining [12]. Many specialized propositionalization algorithms
exist for such domains that use prior knowledge to construct effi-
cient (small) propositionalizations. ILP systems such as LINUS [7]
use the training data to guide construction of the propositionaliza-
tions. Bottom-Up Propositionalization [11] is tailored for biochem-
ical databases and chooses propositions by constructing frequently
occuring fragments of linearly connected atoms.

1 This is also called theClosed-World Assumption(CWA)

While the DCA holds for a number of important domains (e.g.,
Planning) there are a number of applications where it is not rea-
sonable, notably in problems with potentially unbounded or infi-
nite number of objects. Also, the number of propositions that are
generated for many problems (e.g., planning problems) is still pro-
hibitively large. We address these problems in what follows.

In this paper we present algorithms that propositionalize a gen-
eral monadic function-free First-Order Theory. Our algorithms do
not make the DCA or the UNA, and they yield a set of proposi-
tional symbols that is significantly smaller than previous algorithms,
if some structural assumptions hold. We detail these results below.

First, we show that every monadic FOL theoryT (with or without
DCA,UNA) can be reformulated into a propositional theory,Tp, with
at most3P + PC propositional symbols, ifP,C are the number of
predicates and constant symbols inT , respectively. Consequently, we
achieve a better complexity bound for the decidable class of monadic
FOL than was known before: To the best of our knowledge, the best
earlier result about inference (e.g., satisfiability) in monadic FOL is

O(2E2·U2P

) for a given FOL formulaϕ with E existentially quan-
tified variables or constant symbols,U universally quantified vari-
ables, andP predicates [6] (this follows from the need to check all

Herbrand structures of size at mostE2·U2P

). In comparison, our re-
sult is independent of the number of quantifiers inϕ and is at most

O(23P +PC) (significantly smaller in practice, using current propo-
sitional SAT solvers).

Secondly, we use structure (in the manner ofPartition-based Rea-
soning[3, 2]) to obtain a propositionalization that has an exponential-
factor fewer propositions than the one above. Our method is quite
general and does not require special knowledge of the underlying
domain or any semantic restrictions. Precisely, in many real-world
cases we can partition a given theoryT into n loosely dependent
partitions that are arranged in a tree structure. Each partition includes
axioms that are restricted to a fraction of the signature ofT . If each
partition has2P/n predicates andC/n constant symbols, then the
number of propositions that we need is at most2PC

n
+ 32P/nn. For

example, ifP = 200, C = 2500, n = 200, then we need at most
26, 200 propositional symbols (compared with500, 000+3200 when
no structure is used). For further comparison, consider the case when
we can make the DCA,UNA. Current techniques yield1, 000, 000
propositions for the same problem. This is a factor of about40 times
more propositions (translating to computation that is slower by a fac-
tor of about240).

The rest of this paper is organized as follows Section 2.1 gives
some preliminary definitions and Section 2.2 gives a motivating ex-

ample. Section 3 introduces the problem of Propositionalization, and
presents our results and algorithm for propositionalizing without
DCA,UNA. Section 4 presents our algorithm for compact proposi-
tionalization using structure and an analysis of the number of propo-
sitions it creates.

2 Preliminaries

2.1 Definitions

We make some definitions here that we will use later. We assume fa-
miliarity with the standard definitions of FOL. Recall that anatomic
formula of a language is of the formP (t1 . . . tk), whereP is a k-
place predicate andt1 . . . tk are terms. Atomic formulas not contain-
ing variables are calledatoms. A signed atomic formulaor literal
is either an atomic formula or a negated atomic formula. TheMa-
trix of a formulaF , denotedMatrix(F), is the formula obtained by
deleting each occurrence of a quantifier as well as the occurrence of
the variable immediately to its right. In this paper we will mainly be
concerned with monadic predicates, i.e., predicates of one variable.
A factor is a monadic First-Order formula that is a monadic atom or
is of the form[¬]∃x(L1 ∧L2 . . . :n) where eachLi is a monadic lit-
eral with argumentx and each predicate occurs at most once in some
Li.

For a logical theoryτ , L(τ) is its signature (the set of non-logical
symbols) andL(τ) is its language (the set of formulas built with
L(τ)). Lpred(τ) andLconst(τ) are the set of predicate symbols and
constant symbols respectively ofτ . For the rest of the paper, we as-
sume that all logical theories are function-free. We will use the con-
vention thatA,B,C stand for constants in a logical theory,x, y, z
are variables anda, b, c are objects in a universe.

2.2 Motivating Example

We will now present a machine-scheduling problem involving con-
straint satisfaction for which current propositionalization methods do
not scale very well. Later we will develop a partitioned proposition-
alization algorithm, which performs two orders of magnitude better
when applied to this problem.

A factory has two machinesQ1 andQ2 that can process items in
incremental time steps. Every item is in one ofn states at any point in
time. We usePi(j) to denote that our item is in statej ≤ n at timei.
The machine is either available or not at any point in time to process
items in statej (it may process more than one item at a time, though,
if they are in different states (e.g., consider machines that works with
a pipeline)). We writeQr

i (j) to say that the machiner is available at
time i to process an item in statej.

The function of the machine is to preserve the state of the item.
Thus, the following relations hold for every time stepi.

∀j Q1
i (j) ⇒ (Pi(j) ⇒ Pi+1(j)) (1)

∀j Q2
i (j) ⇒ (Pi(j) ⇒ Pi+1(j)) (2)

At certain predefined time step, an item in a certain state can be
moved to another state if neither machine is scheduled to work on it.
For example in time step2314, an item in state42 can be moved to
state29. We represent this information as follows.

¬Q1
i (42)∧¬Q2

i (42) ⇒ (P77(42) ⇒ P78(29)) (3)

If neither machine is available to process the item and it is not
allowed to change state then it is lost.

In addition, there are a number of constraints on the scheduling of
the machines. For example,

∀i Q1
12(i) ⇒ (¬Q1

13(i)∨¬Q
1
14(i))

¬Q1
313(56) ∨ ¬Q2

314(56)
...

Assume that we know such relationships among the first125 time
steps, but have no knowledge about steps beyond125 (e.g., because
our scheduling personnel do not look beyond125 steps).

Finally, suppose that we know that an item is in state1 initially
(time1), and we wish to know if it is possible for the system to reach
a staten after say,125 steps. Call the axioms aboveT . Then our task
is to determine ifT ∧ P1(1) |= P125(n).

Assume that we try to solve this problem by making the DCA and
a naive propositionalization in the manner of [9]. Then the number
of propositional symbols is the number of constants times the num-
ber of predicates, i.e.,125 · 3n (there aren states,3 predicates per
state, and125 time steps). This number is impractical for more than
a small number of statesn. For example, forn = 2500 states we
get 937, 500 propositional variables, a number that is way beyond
the capabilities of current SAT solvers. In the next two sections we
will see an approach that leads to a solution for this problem without
DCA and with≅ 20, 000 variables (a reduction by a factor of50),
which is a solvable size with state-of-the-art SAT technology.

3 Propositionalizing First-Order Theories

First-Order Theory Propositionalization
¬(P (A)∧Q(B)) ¬(PA∧QB)

∀xP (x) ⇒ ∀y¬Q(y) (PA∧PB∧PC ⇒
(¬QA∧¬QB∧¬QC))

∃z(R(z, C)∧¬Q(x)) (R(A, C)∧¬Q(A))∨(R(B, C)∧
¬Q(B))∨(R(C, C)∧¬Q(C))

Table 1. Propositionalization with the DCA

Table 1 gives examples of propositionalizations of First-Order the-
ories, created in the manner of [8] by replacing ground atoms with the
corresponding subscripted proposition (e.gP (A) with PA), Univer-
sally quantified formulas with the conjunction of their instantiations
(∀x(P (x)∨Q(x)) with (PA∨QA)∧(PB∨QB) . . .) and existentially
quantified formulas with the disjunction of their instantiations (e.g
∃xP (x,C) with P〈A,C〉∨P〈B,C〉 . . .). We will refer to this as the
Naive Propositionalization.

Converting a First-Order theory into a propositional satisfiability
problem as shown, is neither sound nor complete unless the DCA is
made. The intuition is that there may be a modelM with some object
a in its universe such thatPM (a) is true. There,M |= ∃P (x), but
there need not exist some constantA in the theory such thatP (A) is
true, unless the DCA holds.

The DCA is reasonable in a Planning scenario, since one expects
the world to be more or less completely specified by the initial as-
sumptions and operator definitions. Several techniques have been
employed in the planning literature to obtain optimized propositional
encodings of planning problems stated in a Situation Calculus [13]
formalism. Some use Lifted Causal Encodings, an idea borrowed
from the Theorem Proving community and others reduce the number
of variables by compiling away state variables and fluents. A good
introduction is [9].

3.1 Propositionalization Without the DCA

We present a technique for constructing a propositionalization of a
monadic function-free FOL theory with open domain semantics. It is
common to try to do this by creating a new constant for every exis-
tentially quantified variable. This does not work for universally quan-
tified formulas. For example, the formula∀xP (x)(≡ ¬∃x¬P (x))
would becomeP (c) for some new constantc, but this does not mean
the predicateP is true foreveryargument. In general, it is impos-
sible to describe an algorithm to convert an arbitrary FOL formula
into a propositionalization since that would imply the existence of
a decision procedure for FOL. Hence, we choose to concentrate on
decidable fragments[6] of FOL, specifically monadic logic.

Informally our idea is as follows: Given a function-free monadic
FOL formula τ , we convert it into a form called thestandard
propostional-ready form(SPR). We next create a propositional the-
ory P(τ) defined by purely syntactic operations on the SPR ofτ .
P (τ) contains two kinds of propositional symbols - symbols of the
form Pa which represent atoms and symbols of the formE〈P,Q... 〉

which are the propositional equivalent of∃x(P (x)∧Q(x) . . .). We
then define a set of consistency axiomsE(τ) which preserve the se-
mantic meaning of these symbols. We show that the propositional
theoryP(τ) ∧ E(τ) is implicationally equivalent toτ . Reasoning
with it is therefore sound and complete.

Definition 1 A monadic First-Order formulaτ in prenex form is in
proposition-ready formiff Matrix(τ) is a conjunction of disjunc-
tions of factors.

Theorem 1 Algorithm Make-SPR (Figure 1) converts every
function-free monadic First-Order formulaτ to a logically equiva-
lent formulaτ ′′ in proposition-ready form.

In algorithm Make-SPR, we have used the notationvar(l), where
l is a literal, to mean the (unique) free variable ,if any, ofl.

For example, the conversion of∀x∃y(P (x)∧Q(y)) to
proposition-ready form by Algorithm Make-SPR is given be-
low:

∀x∃y(P (x)∧Q(y)) ≡ ∃y∀x(P (x)∧Q(y))

≡ ∃y(∀xP (x)∧Q(y))

≡ ∃y(¬∃x¬P (x)∧Q(y))

≡ (¬∃x¬P (x))∧∃yQ(y)

Note that in the first step we have used the fact that the relative
order of the existential and universal operators in an FOL formula is
irrelevant when all the predicates are monadic [6].

For any monadic FOL formulaτ , let the result of Make-SPR be the
standard proposition-ready formof τ , SPR(τ). We now describe a
propositionalization ofτ created by purely syntactic operations on
SPR(τ). First we define the set of propositional symbols that will
appear in this propositionalization.

If L is the language of a monadic first order Formulaτ then,

Prop(L) , {Pc|P ∈ Lpred(L), c ∈ Lconst(L)} ∪

{E〈[¬]P1,[¬]P2,...[¬]Pn〉|P1 . . . Pn ∈ Lpred(L)}

Definition 2 P : L(L) → L(Prop(L)) is defined as follows.
If τ is in proposition-ready form,

1. If τ = P (a) thenP(τ) , Pa

2. If τ = ∃x([¬]P1(x) ∧ [¬]P2(x), . . . [¬]Pn(x)) thenP(τ) ,

E〈[¬]P1,[¬]P2...[¬]Pn〉

3. If τ = ¬τ ′ thenP(τ) , ¬P(τ ′)
4. If τ = τ1 ∧ τ2 . . . τn, thenP(τ) , P(τ1) ∧ P(τ2) . . .P(τn)
5. If τ = τ1 ∨ τ2 . . . τn, thenP(τ) , P(τ1) ∨ P(τ2) . . .P(τn)

Finally, if τ is not in proposition-ready form, thenProp(τ) =
Prop(SPR(τ)).

Make-SPR(Monadic FOL formulaτ)

1. RearrangeMatrix(τ) into Conjunctive Normal FormF
2. Move the existential quantifiers in the Prefix ofτ to the head of

the formula, to giveτ = ∃x1 . . . ∃xm∀y1 . . . ∀ynF
3. For eachyi

(a) For each conjunctCj = (l1∨ . . . lm) of F
i. C′

j := (¬∃yi

∧
var(lk)=yi,k≤m(¬lk)∨

∨
var(lk) 6=yi,k≤m(lk))

Call the resulting formulaτ ′ := ∃x1 . . . ∃xmF
′ whereF ′ =∧

C′
j

4. Convert F’ to Disjunctive Normal Form
5. For eachxi

(a) For each disjunctDj = (l1∧ . . . lm) of F
i. D′

j := (∃xi

∧
var(lk)=xi,k≤m(lk) ∧

∧
var(lk) 6=xi,k≤m(lk))

Let τ ′′ =
∨
D′

j

6. Rearrangeτ ′′ into CNF
7. Return τ ′′

Figure 1. Conversion to Standard Proposition Ready Form

By replacing each factor by a propositional symbol, we have cre-
ated a propositionalizationP(τ) “consistent” with the FOL theory
τ . However the meaning of factors like∃x(P (x)∧Q(x)) are lost. To
ensure that each Propositional symbolE〈P,Q...〉 retains the seman-
tics of its First-Order counterpart,we assert a set of axiomsE(τ) than
ensure the consistency of the propositionalization.

LetP = {P1, P2, . . . Pn} be a set of monadic FOL predicates and
C be a set of constants. Then,

E(P,C) ,∧
c ∈ C
k ≤ n

i1 . . . ik ∈ P

([¬]Pi1c ∧ . . . [¬]Pik c ⇒ E〈[¬]P1,...[¬]Pk〉) ∧

∧
k ≤ n
l < k

i1 . . . ik ∈ P

(E〈[¬]Pi1
,...[¬]Pik

〉 ⇒

E〈[¬]Pi1
,...[¬]Pil

〉∧E〈[¬]Pil+1
,...[¬]Pik

〉)

The first set of axioms inE(τ) ensures that the existence of a
constantc for which a conjunction of literals instantiated withc
can be deduced, implies that the corresponding existential proposi-
tion is true. The second set asserts that if any conjunction of liter-
als instantiated with the same variable is true, then all subsets of
that conjunction is true as well. We sometimes useE(τ) to mean
E(Lpred(τ), Lconst(τ)).

For example, consider the formulaτ in Table 2. The development
of its propositionalization is shown.

Our main result follows:

Theorem 2 (Consistency and Completeness)If α and
β are monadic FOL theories,α |= β iff P(α) ∧
E(Lpred(α), Lconst(α)) |= P(β) ∧ E(Lpred(β), Lconst(β))

τ ∀x∃y[(P (x) ∨ Q(x) ∨ R(y)) ∧ ¬S(y)]
SPR(τ) (¬∃x(¬P (x) ∧ ¬Q(x)) ∨ ∃y(R(y) ∧ ¬S(y))) ∧

(∃y(¬S(y)) ∨ ∃y(R(y) ∧ ¬S(y)))
P(τ) (¬E〈¬P,¬Q〉 ∨ E〈R,¬S〉) ∧

(E〈¬S〉 ∨ E〈R,¬S〉)
E(τ) = PA ⇒ E〈P 〉 ∧ PA∧¬QA ⇒ E〈P,¬Q〉 ∧
E(Lpred(τ), {A}) E〈P,¬Q〉 ⇒ E〈P 〉∧E〈¬Q〉 . . .

Table 2. P(τ) ∧ E(τ) is the propositionalization ofτ using Make-SPR.

PART-PROP({Ai}i≤n, G)

1. {Ai}i≤n a partitioning of the theoryA, G = (V,E, l) a graph
describing the connections between the partitions.

2. For i := 1 → n do
(a) Ai

′ := P(Ai) ∪ E(Ai)
(b) For j := 1 → n do

i. l′(i, j) := Prop(l(i, j))
3. G′ := (V,E, l′)
4. Q′ := P(Q)
5. Return ({Ai

′}i≤n, G
′, Q′)

Figure 2. Compact Propositionalizing algorithm

Theorem 2 formalizes the notion that reasoning inP(τ)∧E(τ) is
equivalent to reasoning inτ . ThusP(τ)∧E(τ) is thepropositional-
izationof τ .

This approach creates|P | · |C| + 3|P | propositional symbols in
PROP (τ) which can be unacceptably large. We describe a method
to reduce this number significantly in the next section.

4 Structure and Compact Propositionalization

Section 3.1 describes a propositionalization which can require an
excessively large number of propositions. An analysis of most do-
mains shows that many of these propositions are unnecessary. For
the purpose of soundness and completeness it is clearly not required
to instantiate a literal with every possible constant as an argument,
but only those from which useful inferences can be made. Deciding
which propositions to retain should therefore be an important aspect
of an efficient propositionalization algorithm. One popular strategy
has been to use typed predicates orMany-sorted Logics[14] to re-
strict the set of objects that can substitute for an argument in a predi-
cate.

We are interested in a more general setting where an efficient
propositionalization can be derived purely from the syntactic features
of the theory independent of its intended semantics. Specifically, our
intention is to determine which predicates need to be instantiated
with which constants by analyzing the global properties of the the-
ory. Our idea is to use the principles ofPartition-based Reasoning
[3, 2] to do so.

The next section describes an algorithm that finds a more compact
propositionalization using partitioning. We present this algorithm, its
analysis and application to the machine scheduling problem in Sec-
tion 2.2 in the following.

FORWARD-MP({Ai}i≤n, G,Q)

1. {Ai}i≤n a partitioning of the theoryA, G = (V,E, l) a graph
describing the connections between the partitions,Q a query in
L(Ak)(k ≤ n)

2. Determine≺ as in Definition 4
3. Concurrently

(a) Perform consequence finding for each partitionAi, i ≤ n.
(b) For every(i, j) ∈ E such thati ≺ j for every consequenceϕ

of Aj found (orϕ in Aj), if ϕ ∈ L(l(i, j)), then addϕ to the
set of axioms ofAi.

(c) If Q is proved inAk return YES

Figure 3. Message Passing

Q1
1(i) ⇒ (P1(i) ⇒ P2(i))

Q2
1(i) ⇒ (P1(i) ⇒ P2(i))

¬Q1
1(1)∧¬Q2

1(1) ⇒ (P1(1) ⇒ P2(7))

P1, P2, 7

Q1
2(i) ⇒ (P2(i) ⇒ P3(i))

Q2
2(i) ⇒ (P2(i) ⇒ P3(i))

¬Q1
2(1)∧¬Q2

2(i) ⇒ (P2(7) ⇒ P3(9))

¬Q1
2(i) ⇒ (¬Q1

3(i)∨Q1
4(i))

P2, P3, Q1
3, Q1

4, 9

Q1
3(i) ⇒ (P3(i) ⇒ P4(i))

Q2
3(i) ⇒ (P3(i) ⇒ P4(i))

¬Q1
3(56)∨¬Q2

4(56)

Figure 4. A partitioning of theoryT (Section 2.2), which describes
machines and item state in a factory.

4.1 Factored Propositionalization

We will now describe our factored propositionalized algorithm.
Briefly, the First-Order Theoryτ is divided into sub-domains cor-

responding to subsets of the predicates and constants ofτ . This
is done by hand or automatically (e.g., [3, 1]) such that the pred-
icates and the constants are divided somewhat evenly among the
sub-domains (which we callpartitions). Figure 4 shows this applied
to our example from Section 2.2. Then, each partition is individu-
ally propositionalized. After this we may choose to do either of two
things. The partitioning of the theory can be retained and reason-
ing can be done using the (sound and complete) Message-Passing
algorithms described in [3, 2] (Henceforth, we call thisMethod 1).
Alternatively, the domains can be merged together, creating a single
propositionalized theory, to which any propositional SAT solver or
theorem prover can be applied (Henceforth, we call thisMethod 2).

Our method uses the theory ofpartition-based reasoningto de-

termine which propositions can be safely left out, while maintaining
completeness. It does so by exploiting Craig’s Interpolation Theorem
[4].

Formally,{Ai}i≤n is apartitioning of a logical theoryA if A =
∪iAi. Each individualAi is called apartition. We associate a tree
G = (V,E, l) with this partitioning, such that each nodei represents
an individual partitionAi, (V = {1, . . . , n}), and we require the
graph to beproperly labeledfor A = ∪iAi:

Definition 3 (Proper Labeling) For a partitioningA =
⋃

i≤n Ai,
we say that a treeG = (V,E, l) has aproper labeling, if for all
(i, j) ∈ E andB1,B2, the two subtheories2 ofA on the two sides of
the edge(i, j) in G, it is true thatl(i, j) ⊇ L(B1) ∩ L(B2).

For every partitioning there are many such trees, and it is important
to find such a tree with optimal computational properties (more on
that below). A very similar property, therunning intersection prop-
erty, is used in literature on probabilistic graphical models (e.g., [10])
and CSPs (e.g., [5]).

Figure 2 presents algorithm PART-PROP. The input to PART-
PROP is a partitioning of the monadic FOL theoryτ and a graph
G. PART-PROP propositionalizes each partitionAi and the link lan-
guagesl(i, j) in the manner of Section 3.1. The link languagel(i, j)
is the language in which messages will be passed from partitioni
to j. PART-PROP returns the partitioning for the propositionalized
theory.

Recall our example from Section 2.2. Procedure PART-PROP
(Figure 2) applies to it by examining a partitioning of the set of ax-
ioms as presented diagrammatically in Figure 4. Here, every partition
includes the set of axioms that describe the effects of the machine be-
ing ready and not ready, as well as knowledge about the availability
of the machine in different times for different states of our item. The
edges between the partitions are labeled with the set of nonlogical
(predicate and constant) symbols that are shared between partitions.

Figure 3 reproduces the Message Passing algorithm FORWARD-
MP from [3, 2]. Given a partitioned theory, its intersection graph and
queryQ in the language of one of the partitionsAk, FORWARD-
MP will try to proveQ. (If the query is not contained in any partion
Ak, then a new partition can be created which contains just the non-
logical symbols of the queryQ, and the graphG must be extended
with the new partition.)

FORWARD-MP defines a partial ordering on the partitions based
on distance to the query partitionAk as follows:

Definition 4 (≺) Given partitioned theoryA =
⋃

i≤n Ai, in-
tersection graphG = (V,E, l) and queryQ ∈ L(Ak), let
dist(i, j)(i, j ∈ V) be the length of the shortest path between nodes
i, j in G. Theni ≺ j iff dist(i, k) < dist(j, k).

Consequence-Finding is performed within each partition inde-
pendently and concurrently with the other partitions. Those conse-
quences that are in the link language of the partitionAi and its par-
ent Aj (ie. in the languagel(i, j)) are transmitted asmessagesto
Aj . PartitionAj then asserts the message as an axiom of its the-
ory, performs Consequence Finding and so on. When the algorithm
reachesAk it attempts to prove the queryQ and returns the result.
The following recounts a soundness and completeness result of [3, 2]
for partitioned reasoning with Message-Passing on trees. We use this
result to show that COMPACT-PROP is correct.

2 If we remove(i, j) from the graph, then each ofB1, B2 is the union of the
partitions in connected a connected component of the graph.

Definition 5 (Completeness for Consequence Finding)Given a
set of formulaeA and a reasoning procedureR, R is complete for
consequence finding iff for every clauseϕ, that is a non-tautologous
logical consequence ofA, R derives a clauseψ fromA such thatψ
subsumesϕ.

Furthermore, we say thatR is complete for consequence finding
in FOL (as opposed toclausalFOL) iff for every non-tautologous
logical consequenceϕ of A, R derives a logical consequenceψ of
A such thatψ |= ϕ andψ ∈ L(ϕ).

Theorem 3 ([3]) LetA =
⋃

i≤n Ai be a partitioned theory and as-
sume that the graphG is a tree that has a proper labeling for the
partitioning {Ai}i≤n. Also assume that each of the reasoning pro-
cedures used in FORWARD-MP is complete for consequence find-
ing (as defined in Definition 5). Letk ≤ n and letQ ∈ L(Ak ∪⋃

(k,i)∈E l(k, i)) be a sentence. IfA |= Q, then FORWARD-MP
outputs YES.

The proof of this theorem uses Craig’s Interpolation theorem [4]
(stated below), which guarantees that FORWARD-MP transmits be-
tween partitions exactly those messages that are necessary for com-
pleteness.

Theorem 4 (Craig’s Interpolation Theorem) If α ⊢ β, then there
is a formulaγ ∈ L(L(α) ∩ L(β)) such thatα ⊢ γ andγ ⊢ β.

Method 1 corresponds to running FORWARD-MP on the parti-
tioned theory returned by PART-PROP({Ai}). Method 2 is running
a SAT solver on

⋃n
i=1 PART-PROP({Ai}). The next theorem proves

the soundness and completeness of these methods:

Theorem 5 LetA =
⋃

i≤n Ai be a partitioned monadic FOL the-
ory withG a properly labeled tree. Letk ≤ n andQ a sentence in
L(Ak). Then,A |= Q iff PART-PROP(A ∪ {¬Q}) |= FALSE.

The quality of the propositionalization obtained depends on how
balanced the partitions are, that is how evenly the predicates and con-
stants are divided among the partitions (as will be shown in the next
section). Finding a balanced partitioning can be done with human
guidance or automatically. Sometimes, we can reduce this problem
to finding graph decompositions with minimum treewidth of the in-
tersection graphG(V,E, l). A good reference is [1].

The algorithms above give sound and complete propositionaliza-
tions without the DCA by using theE-sets. Even if we are allowed to
make the DCA for the entire problem, a partitioned propositionaliza-
tion would still need theE-sets for completeness. The reason is that,
even though the theory as a whole is closed, each individual partition
is not, as the constant representing an object could be in a different
partition.

4.2 Analysis

We now compare briefly the efficiency of our methods to the standard
techniques. We do so with two metrics: the number of propositional
symbols created by propositionalization, and the running time of the
resulting SAT procedure.

First, the number of propositions created by method 1 and 2 on a
theoryτ are exponentially less than the number of propositions cre-
ated by a propositionalization ofτ without the DCA. When the num-
ber of constants is large, we get an improvement even when com-
pared to naive propositionalization with the DCA.

Theorem 6 Let τ be a monadic FOL theory withLpred(τ) =
P,Lconst(τ) = C. LetA be a partitioning ofτ into A1,A3 . . .An

such thatLpred(Ai) = O(|P |/n) andLconst(Ai) = O(|C|/n). If
the number of propositions created inP(τ)∪ E(τ) isN(τ), created
by a naive propositionalization ofτ with the DCA isNDCA(τ), and
by Method 2 applied toA isN(A), then

1.
N(τ)

N(A)
= Ω(1/n · 3(1−1/n)|P |)

2. If |C| ≥ n23|P |/n

|P |
,

NDCA(τ)

N(A)
= Ω(n)

Now we examine the running time of our inference procedure
compared to a naive propositionalization without the DCA.

Theorem 7 Let τ be a monadic FOL theory withLpred(τ) =
P,Lconst(τ) = C. LetA be a partitioning ofτ into A1,A2 . . .An

(with intersection graphG = (V,E, l)) such thatLpred(Ai) =
O(|P |/n) and Lconst(Ai) = O(|C|/n). Let d(v) be the degree
of nodev in the graphG, let d = maxv∈V d(v) and let l =

maxi,j≤n|l(i.j)|. Finally, assume|C| ≥ n23|P |/n

|P |
. If T (τ) is the

running time complexity of performing inference onτ with the DCA,
andT (A) is the running time of FORWARD-MP on a propositional-
ization ofA created by PART-PROP, then

T (A)

T (τ)
= O(

n · 22dl · fSAT (|P ||C|

n2)

fSAT (|P ||C|)
)

wherefSAT (n) is the time taken to solve SAT problems overn
variables.

The proof of Theorem 7 relies on the running-time analysis of
FORWARD-MP given in [3]. SincefSAT is typically exponential
in the number of propositional symbols, the fractionT (A)

T (τ)
will be

small.

4.3 The Factory Example Revisited

Recall the machine scheduling problem from Section 2.2. Here we
show an efficient solution of this problem by our methods.

The partioned theory is given in Figure 4.
Essentially, we create a partitionAi for every time stepi, and

place the following (propositional) axioms in it (this is the proposi-
tionalization of Equations 1 and 2):

¬E〈Q1
i ,Pi,¬Pi+1〉

¬E〈Q2
i ,Pi,¬Pi+1〉

We use the fact that∀xP (x) ≡ ¬∃¬P (x) ≡ ¬E〈¬P 〉. Also in
our example, if the system allows the item to move from statej to k
at time stepi, then we add

Pij ⇒ Pi+1k

to the propositionalization of Equation 3.
Similarily we propositionalize any constraints on the schedules of

Q1 andQ2 that may exist and add them to the appropriate parti-
tion. Figure 4 gives an example of the final partitioned theory (before
propositionalization).

Each partition has4 predicatesPi, Pi+1, Q
1
i , Q

2
i (sometimes we

may have more predicates per partition because of additional con-
straints on theQ’s, but for now we assume that such exceptions are
not significant). The structural assumption we make with this parti-
tioning is that only a limited set of constants (i.e., states), say at most
20, appears in each partition,

Using Method 2 for this propositionalization, we get a proposition-
alization withn(34 + 4 · 20) propositional symbols. Substituting the
number of time steps to be ,say, 125 (from the example in Section
2.2) gives us 20,125 propositions, which is solvable using state-of-
the-art SAT solvers. For comparison, Section 2.2 shows that a con-
ventional propositionalization creates nearly1 million propositional
symbols, which is beyond the capabilities of current SAT solvers.

5 Conclusions and Future Work

We have described algorithms that construct compact propositional-
izations of function-free monadic First Order Logic Theories by ex-
ploiting structure in them. Our methods are quite general and result in
significant savings in the number of propositional symbols required.
They have applications to a number of domains that use logical rea-
soning such as Program Verification, Deductive Databases, Planning
and Commonsense Reasoning.

In the near future we expect to extend this approach to reasoning
with equality and binary predicates. We eventually intend to explore
applications of our methods to Planning and Probabilistic Relational
Models.

REFERENCES

[1] Eyal Amir, ‘Efficient approximation for triangulation of minimum
treewidth’, in Proc. Seventeenth Conference on Uncertainty in Artifi-
cial Intelligence (UAI ’01), pp. 7–15. Morgan Kaufmann, (2001).

[2] Eyal Amir and Sheila McIlraith, ‘Partition-based logical reasoning’, in
Principles of Knowledge Representation and Reasoning: Proc. Seventh
Int’l Conference (KR ’2000), pp. 389–400. Morgan Kaufmann, (2000).

[3] Eyal Amir and Sheila McIlraith, ‘Partition-based logical reasoning for
first-order and propositional theories’,Artificial Intelligence, (2004).
Accepted for publication.

[4] William Craig, ‘Linear reasoning. A new form of the Herbrand-Gentzen
theorem’,Journal of Symbolic Logic, 22, 250–268, (1957).

[5] Rina Dechter and Judea Pearl, ‘Tree clustering for constraint networks’,
Artificial Intelligence, 38, 353–366, (1989).

[6] Burton Dreben and Warren D. Goldfarb,The decision problem; solv-
able classes of quantificational formulas, Addison-Wesley, 1979.

[7] S. Dzeroski and N. Lavrac, ‘Learning relations from noisy examples:
An empirical comparison of linus and foil’, inProceedings of the 8th
International Workshop on Machine Learning, eds., L. Birnbaum and
G. Collins, pp. 399–402. Morgan Kaufmann, (1991).

[8] P.C. Gilmore, ‘A proof method for quantification theory: It’s justifica-
tion and realization’,IBM Journal of Research and Development, 4(1),
28–35, (January 1960).

[9] Henry Kautz and Bart Selman, ‘Pushing the envelope: Planning, propo-
sitional logic, and stochastic search’, inProc. National Conference on
Artificial Intelligence (AAAI ’96), (1996).

[10] Uffe Kjaerulff, Aspects of efficiency imporvement in bayesian networks,
Ph.D. dissertation, Aalborg University, Department of Mathematics and
Computer Science, Fredrik Bajers Vej 7E, DK-9220 Aalborg, Denmark,
1993.

[11] Stefan Kramer and Eibe Frank, ‘Bottom-up propositionalization’, in
Proceedings of the Work-in-Progress Track at the 10th International
Conference on Inductive Logic Programming, eds., J. Cussens and
A. Frisch, pp. 156–162, (2000).

[12] Nada Lavrac Mark-A. Krogel and Stefan Wrobel, ‘Comparative eval-
uation of approaches to propositionalization’, inILP, pp. 197–214,
(2003).

[13] John McCarthy and Patrick J. Hayes, ‘Some philosophicalproblems
from the standpoint of artificial intelligence’, inMachine Intelligence 4,
eds., B. Meltzer and D. Michie, 463–502, Edinburgh University Press,
(1969).

[14] Karl Meinke and John V. Tucker,Many Sorted Logic and its Applica-
tions, Wiley Proffesional Computing, John Wiley & Sons, Chichester,
New York, 1993.

[15] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik, ‘Chaff: Engineering an Efficient SAT Solver’, in
Proceedings of the 38th Design Automation Conference (DAC’01),
(2001).

[16] Bart Selman, Henry A. Kautz, and Bram Cohen, ‘Noise strategies for
local search’, inProc. 12th National Conference on Artificial Intelli-
gence, AAAI’94, Seattle/WA, USA, pp. 337–343, (1994).

