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Abstract. We present new insights and algorithms for converting While the DCA holds for a humber of important domains (e.g.,
reasoning problems in monadic First-Order Logic (includes only 1-Planning) there are a number of applications where it is not rea-
place predicates) into equivalent problems in propositional logic. Ousonable, notably in problems with potentially unbounded or infi-
algorithms improve over earlier approaches in two ways. First, theyite number of objects. Also, the number of propositions that are
are applicable even without the unique-names and domain-closugenerated for many problems (e.g., planning problems) is still pro-
assumptions, and for possibly infinite domains. Therefore, they applfibitively large. We address these problems in what follows.

for many problems that are outside the scope of previous techniques. In this paper we present algorithms that propositionalize a gen-
Secondly, our algorithms produce propositional representations tha&ral monadic function-free First-Order Theory. Our algorithms do
are significantly more compact than earlier approaches, provided thabt make the DCA or the UNA, and they yield a set of proposi-
some structure is available in the problem. We examined our aptional symbols that is significantly smaller than previous algorithms,
proach on an example application and discovered that the numbérsome structural assumptions hold. We detail these results below.
of propositional symbols that we produced is smaller by a factor of First, we show that every monadic FOL thed@rywith or without

f = 50 than traditional techniques, when those techniques can bBCA,UNA) can be reformulated into a propositional thedry, with
applied. This translates to a factor of abadtincrease in the speed at most3” + PC propositional symbols, i, C are the number of

of reasoning for such structured problems. predicates and constant symbolgifrespectively. Consequently, we
achieve a better complexity bound for the decidable class of monadic
1 Introduction FOL than was known before: To the best of our knowledge, the best

) _ _ _ earlier result about inference (e.qg., satisfiability) in monadic FOL is
It is often advantageous to perform reasoning with a First-Order v’

Logic (FOL) theory by first transforming it into an equivalent propo- O(2 ) for a given FOL formulap with E existentially quan-
sitional theory propositionalizatioj and then using propositional in-  tified variables or constant symbols, universally quantified vari-
ference methods on it [8]. There are a number of good reasons f@bles, andP predicates [6] (this foIIowstrom the need to check all
this: Propositional Inference is decidable and the last 20 years of reHerbrand structures of size at mdgtV” ). In comparison, our re-
search have resulted in relatively efficient and successful algorithmsult is independent of the number of quantifierssimnd is at most
(e.g. [16, 15]). 0(23"+PC) (significantly smaller in practice, using current propo-
The simplest propositionalization of a First-Order theory is ob-gjtional SAT solvers).
tained by creating a proposition for every ground atom of the theory. gecondly, we use structure (in the mannePaftition-based Rea-
Quantified variables are systematically replaced with constants frorgoning[;g’ 2]) to obtain a propositionalization that has an exponential-
the language in the theory. This leads|P||C|") propositions,  factor fewer propositions than the one above. Our method is quite
where|P| and|C| are the number of predicates and constants in thgyeneral and does not require special knowledge of the underlying
FOL theory and: is the maximum arity of any predicate. The com- gomain or any semantic restrictions. Precisely, in many real-world
pleteness of this propositionalization requires B@main Closure  3ses we can partition a given thedfyinto n loosely dependent
Assumptio(DCA'; every object in the universe is referenced by a partitions that are arranged in a tree structure. Each partition includes
constant symbol), and thenique Names AssumptigtiNA; every  axioms that are restricted to a fraction of the signatur&.of each
constant symbol refers to a unique object). partition has2P/n. predicates and’/n constant symbols, then the
Propositionalization is used in a number of applications involv-pnumber of propositions that we need is at m&&€ + 3%7/"n. For
ing First-Order representations, such as Planning [9] and Relation@xamme’ ifP = 200, C = 2500, n = 200, théi’l we need at most
Data Mining [12]. Many specialized propositionalization algorithms 26, 200 propositional symbols (compared wih0, 000+32°° when
exist for such domains that use prior knowledge to construct effing structure is used). For further comparison, consider the cage whe
cient (small) propositionalizations. ILP systems such as LINUS [7]ye can make the DCA,UNA. Current techniques yield00, 000
use the training data to guide construction of the propositionalizapropositiOns for the same problem. This is a factor of adéutmes
tions. Bottom-Up Propositionalization [11] is tailored for biochem- mqre propositions (translating to computation that is slower by a fac-
ical databases and chooses propositions by constructing frequently, of about2?).
occuring fragments of linearly connected atoms. The rest of this paper is organized as follows Section 2.1 gives
1 This is also called th€losed-World AssumptigCWA) some preliminary definitions and Section 2.2 gives a motivating ex-




ample. Section 3 introduces the problem of Propositionalization, and In addition, there are a number of constraints on the scheduling of
presents our results and algorithm for propositionalizing withoutthe machines. For example,
DCA,UNA. Section 4 presents our algorithm for compact proposi- o L -
tionalization using structure and an analysis of the number of propo- Vi Qr2(i) = (—Q13(1)V-Q14(4))
. . 1 2
sitions it creates. =Q313(56) V —Q314(56)

2 Preliminaries Assume that we know such relationships among theli?Sttime

2.1 Definitions steps, but have no knowledge about steps beyahde.g., because
. . our scheduling personnel do not look beydrd steps).

W_e_ m'ake gome definitions he_re_ t_hat we will use later. We aSSL_Jme fa- Finally, suppose that we know that an item is in stateitially

miliarity with the standard definitions of FOL. Recall that@iomic (time 1), and we wish to know if it is possible for the system to reach

formulaof a language is of the forn (¢, ... tx), whereP is a k- 5 giate, after say125 steps. Call the axioms abote Then our task
place predicate and . . . tx are terms. Atomic formulas not contain- g g determine ifl" A Pi(1) | Pras(n).

ing variables are calledtoms A signed atomic formular literal Assume that we try to solve this problem by making the DCA and

is either an atomic formula or a negated atomic formula. Wee 4 najve propositionalization in the manner of [9]. Then the number
trix of a formulaf”, denoted\l atriz(F"), is the formula obtained by ¢ hropositional symbols is the number of constants times the num-
deleting each occurrence of a quantifier as well as the occurrence gt predicates, i.e125 - 3n (there aren states3 predicates per
the variable immediately to its right. In this paper we will mainly be state, and 25 time steps). This number is impractical for more than
concerned with monadic predicates, i.e., predicates of one variablfa. small number of states. For example, fom = 2500 states we

A factor is a monadic First-Order formula that is.a monadic.at(.)m Ol get 937,500 propositional variables, a number that is way beyond
is of the form[—]3z(L1 A Lz . .. :n) where eaclL; is amonadic lit-  he capabilities of current SAT solvers. In the next two sections we
eral with argument and each predicate occurs at most once in SOM&yjj| see an approach that leads to a solution for this problem without
Ls. DCA and with= 20, 000 variables (a reduction by a factor 50),

For a logical theory-, () is its signature (the set of non-logical \ich is a solvable size with state-of-the-art SAT technology.
symbols) andC(7) is its language (the set of formulas built with

L(7)). Lprea(T) and Leonst (7) are the set of predicate symbols and - - . .
constant symbols respectively of For the rest of the paper, we as- 3 Propositionalizing First-Order Theories
sume that all logical theories are function-free. We will use the con-

vention thatA, B, C' stand for constants in a logical theony,y, = First-Order Theory Propositionalization
are variables and, b, ¢ are objects in a universe. ~(P(A)AQ(B)) ~(ParQB)
VaP(x) = Vy—Q(y) (PAANPBAPc =
(-QAN-QEN-Qc))
2.2 Motivating Example F2(R(z, C)A-Q(z)) | (R(A, C)A~Q(A)V(R(B, C)A
~Q(B))V(R(C, C)A-Q(C))

We will now present a machine-scheduling problem involving con-
straint satisfaction for which current propositionalization methods do
not scale very well. Later we will develop a partitioned proposition-
alization algorithm, which performs two orders of magnitude better
when applied to this problem.

A factory has two machine®! and@Q? that can process items in Table 1 gives examples of propositionalizations of First-Order the-
incremental time steps. Every item is in onexaftates at any pointin  ories, created in the manner of [8] by replacing ground atoms with the
time. We useP;(j) to denote that our item is in stafe< n at times. corresponding subscripted proposition (€g4) with P4), Univer-

The machine is either available or not at any point in time to processally quantified formulas with the conjunction of their instantiations
items in statg (it may process more than one item at a time, though,(Vz (P (z)vQ(z)) with (PaVQa)A(PsV@5) .. .) and existentially
if they are in different states (e.g., consider machines that works witlyuantified formulas with the disjunction of their instantiations (e.g
a pipeline)). We writeQ; (j) to say that the machineis available at 3z P(z, C) with Pa.cyVP5,c) - -.). We will refer to this as the

Table 1. Propositionalization with the DCA

time ¢ to process an item in staje Naive Propositionalization
The function of the machine is to preserve the state of the item. Converting a First-Order theory into a propositional satisfiability
Thus, the following relations hold for every time step problem as shown, is neither sound nor complete unless the DCA is

made. The intuition is that there may be a matieith some object
) , , _ a in its universe such tha®™ (a) is true. ThereM = 3P(z), but
Vi Qi(4) = (Pi(j) = Pita(4)) (@ there need not exist some co(ns)tarin the theory su)Zh thagf’()A) is
Vi QI(j) = (Pi(j) = Pis1(j)) (2)  true, unless the DCA holds.
The DCA is reasonable in a Planning scenario, since one expects
e world to be more or less completely specified by the initial as-
umptions and operator definitions. Several techniques have been
employed in the planning literature to obtain optimized propositional
encodings of planning problems stated in a Situation Calculus [13]
1 9 formalism. Some use Lifted Causal Encodings, an idea borrowed
~Qi (12)A~Qi(42) = (Pr7(42) = Prs(29)) 4 from the Theorem Proving community and others reduce the number
If neither machine is available to process the item and it is notof variables by compiling away state variables and fluents. A good
allowed to change state then it is lost. introduction is [9].

At certain predefined time step, an item in a certain state can bﬁ1
moved to another state if neither machine is scheduled to work on its
For example in time step314, an item in statel2 can be moved to
state29. We represent this information as follows.



3.1 Propositionalization Without the DCA

We present a technique for constructing a propositionalization of g
monadic function-free FOL theory with open domain semantics. It is

common to try to do this by creating a new constant for every exis3
tentially quantified variable. This does not work for universally quan-4

tified formulas. For example, the formuta P(z)(= —3z—P(x))
would becomeP(c) for some new constat but this does not mean
the predicateP is true foreveryargument. In general, it is impos-
sible to describe an algorithm to convert an arbitrary FOL formula

1. If 7 = P(a) thenP(7) £ P,
If 7 = 3z([-]Pi(z) A [D]P2(z),...[~]Pu(x)) thenP(7)
([=]P1,[=] P2 [2] Pr)

. If7 = =7’ thenP (1) 2 -P(r)
T =T AT T, thenP(T) £ P(11) AP(72) ... P(m)
T=T1VT2...Tn, thenP(r) £ P(11) VP(12) ... P(n)

Finally, if 7 is not in proposition-ready form, thefrop(7)
Prop(SPR(T)).

into a propositionalization since that would imply the existence of
a decision procedure for FOL. Hence, we choose to concentrate @
decidable fragment$] of FOL, specifically monadic logic.

Informally our idea is as follows: Given a function-free monadic
FOL formula 7, we convert it into a form called thetandard
propostional-ready forgSPR). We next create a propositional the-
ory P(r) defined by purely syntactic operations on the SPR-.of
P(7) contains two kinds of propositional symbols - symbols of the
form P, which represent atoms and symbols of the fdip ...y
which are the propositional equivalent 8£(P(z)AQ(z) ...). We
then define a set of consistency axiofi{s') which preserve the se-
mantic meaning of these symbols. We show that the propositiong
theory P() A E(7) is implicationally equivalent ta-. Reasoning
with it is therefore sound and complete.

Definition 1 A monadic First-Order formula in prenex form is in

rI]\/Iake-SPR(Monadic FOL formula)

1. Rearrangé/atriz(7) into Conjunctive Normal Forn#’
2. Move the existential quantifiers in the Prefixoto the head o
the formula, to giver = 31 ... 3z, VY1 ... Vyn F'
3. For eachy;
(a) For each conjuncC; = (I1V...l») of F
I CJ, : (_‘Byl /\var(lk):yi,kgm(_‘lk) \ Vvar(lk)7éy7j,k§m(lk
Call the resulting formular’ := 3z; ...3z,, F" where F’
ACj
4. Corjlvert F’ to Disjunctive Normal Form
5. For eachz;
(a) For each disjuncD; = (1A .. .1y) Of F
I D; = (le /\var(lk):zi,kgm(lk) A /\’uar(lk)#zi,kgm(lk))
Letr"” =\ Dj
6. Rearrange” into CNF

f

7. Return 7"

proposition-ready forniff Matrixz(7) is a conjunction of disjunc-
tions of factors.

Theorem 1 Algorithm Make-SPR (Figure 1) converts every
function-free monadic First-Order formula to a logically equiva-
lent formular” in proposition-ready form.

In algorithm Make-SPR, we have used the notatian(l), where
[ is a literal, to mean the (unique) free variable ,if anyj.of

For example, the conversion ofz3y(P(z)AQ(y)) to
proposition-ready form by Algorithm Make-SPR is given be-
low:

VaIy(P(z)AQ(y)) Iy (P(2)AQ(y))
Jy(VzP(z)AQ(y))
Jy(—=Fz-P(z)A\Q(y))

(=32=P(2))ATyQ(y)

Note that in the first step we have used the fact that the relative
order of the existential and universal operators in an FOL formula is

irrelevant when all the predicates are monadic [6].

For any monadic FOL formula, let the result of Make-SPR be the
standard proposition-ready forwf 7, SPR(7). We now describe a
propositionalization ofr created by purely syntactic operations on
SPR(7). First we define the set of propositional symbols that will
appear in this propositionalization.

If L is the language of a monadic first order Formuiden,

Prop(L) 2 {P|P € Lyrea(L), ¢ € Leonst(L)} U
{E(1Py,[~1Ps,...[~1Pu) | PL - - P € Lprea(L)}

Definition 2 P : £L(L) — L(Prop(L)) is defined as follows.
If 7 is in proposition-ready form,

Figure 1. Conversion to Standard Proposition Ready Form

By replacing each factor by a propositional symbol, we have cre-
ated a propositionalizatio® (7) “consistent” with the FOL theory
7. However the meaning of factors like:(P(z)AQ(z)) are lost. To
ensure that each Propositional symigly ...y retains the seman-
tics of its First-Order counterpart,we assert a set of axi6(mg than
ensure the consistency of the propositionalization.

LetP = {P1, P»,... P,} be a set of monadic FOL predicates and
C be a set of constants. Then,

E(P,C)=
N cec (PIPa A [FlPy = Eqapy,mp)) A
k<n
i1...1, € P
k<n (E(mpy .-1Py) =
I<k BB, 1P ) NE(1P o 1P))

1 ...
The first set of axioms ir€(7) ensures that the existence of a
constante for which a conjunction of literals instantiated with
can be deduced, implies that the corresponding existential proposi-
tion is true. The second set asserts that if any conjunction of liter-
als instantiated with the same variable is true, then all subsets of
that conjunction is true as well. We sometimes §ge) to mean
g(Lpred(T)7 Leonst (T))

For example, consider the formutan Table 2. The development
of its propositionalization is shown.
Our main result follows:

Theorem 2 (Consistency and Completenesdf «a and
B are monadic FOL theories,a E g iff Pla) A
S(Lpred(a)7 Lconst(a)) ': P(ﬁ) A S(Lpred(ﬂ)7 Lconst(ﬁ))



T VaIy[(P(z) V Q(z) V R(y)) A =S(y)] - g
SPRE) =P G) A QW) VIR A =S 7| || O VARDMPE A i<n, G, Q)
Fy(=S)) vV Iy(R(y) A ~S(y))) 1. {A;}i<n a partitioning of the theoryd, G = (V, E, 1) a graph
P(r) (CE(-p-q) V E(r-s)) A describing the connections between the partitigpsa query in
(Eos) ¥ B s) L(AR)(k < n)
E(r) = Pa=Ewpy N Pah-Qa= Erp-q) A 2. Determine< as in Definition 4
E(Lprea(r),{A}) Ep-q@) = E(p)N\E(-q) - -- 3. Concurrently

(a) Perform consequence finding for each partitibn: < n.

. L ) (b) For every(i, ) € E such that < j for every consequencge

Table 2. P(7) A £(7) is the propositionalization of using Make-SPR. of A; found (ory in Ay), if ¢ € L(I(4,4)), then addp to the
set of axioms of4;.

(c) If Q is proved inAy return YES

PART-PROP{A;}i<n, G)
Figure 3. Message Passing
1. {A;}.<n a partitioning of the theoryd, G = (V, E,l) a graph
describing the connections between the partitions.
2. Fori:=1—ndo
(a) .Ai, = 'P(.Al) U 5(./41)
(b) Forj:=1—ndo Rl = (P1(1) = P2(3))

Py =t o
3 G/I:l ((Z{/jag'?)Pmp(l(z’J)) Q3() = (PL()) = Pa(i)
4. Q' :=P(Q) ~QIMA=Q2(1) = (PL(1) = Py(7)

5. Return ({Ai/}iS’IL7 G/a Ql)

Py, Py, 7

Figure 2. Compact Propositionalizing algorithm
QY1) = (Pa(3) = P3(i)

Q3(i) = (P2(i) = P3(i)

~Q3(1)A=Q3 (i) = (P2(7) = P3(9))

Theorem 2 formalizes the notion that reasonin@ifr)AE (1) is ~Q() = (~RE(HVRI™)
equivalent to reasoning in. ThusP(7)AE(T) is thepropositional-
izationof 7. Py, P3,Q4.Q%.9
This approach creatd®| - |C| + 3!¥! propositional symbols in
PROP(7) which can be unacceptably large. We describe a method Qi) = (P3(i) = P4(i))
to reduce this number significantly in the next section. Q2(1) = (P3(i) = Pa(i))

-Q1(56)v-Q3 (56)

4 Structure and Compact Propositionalization

Section 3.1 describes a propositionalization which can require an
excessively large number of propositions. An analysis of most do-
mains shows that many of these propositions are unnecessary. For
the purpose of soundness and completeness it is clearly not required
to instantiate a literal with every possible constant as an argument,
but only those from which useful inferences can be made. Deciding; 1 Factored Propositionalization

which propositions to retain should therefore be an important aspect

of an efficient propositionalization algorithm. One popular strategyWe will now describe our factored propositionalized algorithm.

Figure 4. A partitioning of theoryI” (Section 2.2), which describes
machines and item state in a factory.

has been to use typed predicatesviany-sorted Logic$14] to re- Briefly, the First-Order Theory is divided into sub-domains cor-
strict the set of objects that can substitute for an argument in a predresponding to subsets of the predicates and constants ®his
cate. is done by hand or automatically (e.g., [3, 1]) such that the pred-

We are interested in a more general setting where an efficieritates and the constants are divided somewhat evenly among the
propositionalization can be derived purely from the syntactic featuresub-domains (which we cgtlartitions). Figure 4 shows this applied
of the theory independent of its intended semantics. Specifically, outo our example from Section 2.2. Then, each partition is individu-
intention is to determine which predicates need to be instantiatedlly propositionalized. After this we may choose to do either of two
with which constants by analyzing the global properties of the thethings. The partitioning of the theory can be retained and reason-
ory. Our idea is to use the principles Bartition-based Reasoning ing can be done using the (sound and complete) Message-Passing
[3, 2] to do so. algorithms described in [3, 2] (Henceforth, we call tMethod 1.

The next section describes an algorithm that finds a more compadlternatively, the domains can be merged together, creating a single
propositionalization using partitioning. We present this algorithm, itspropositionalized theory, to which any propositional SAT solver or
analysis and application to the machine scheduling problem in Sed¢heorem prover can be applied (Henceforth, we call ¥héshod 2.
tion 2.2 in the following. Our method uses the theory pértition-based reasoningp de-



termine which propositions can be safely left out, while maintainingDefinition 5 (Completeness for Consequence Findinglsiven  a
completeness. It does so by exploiting Craig’s Interpolation Theorenset of formulaed and a reasoning procedur®, R is complete for

[4]. consequence finding iff for every clausgthat is a non-tautologous
Formally,{A;}:<» is apartitioning of a logical theory4 if A = logical consequence o, R derives a clause from A such that)

U;A;. Each individualA; is called apartition. We associate a tree subsumes.

G = (V, E, 1) with this partitioning, such that each nodeepresents Furthermore, we say thaR is complete for consequence finding

an individual partitionA4;, (V = {1,...,n}), and we require the in FOL (as opposed telausalFOL) iff for every non-tautologous

graph to beproperly labeledor A = U; A;: logical consequence of A, R derives a logical consequenageof

A suchthat) = ¢ andy € L(y).
Definition 3 (Proper Labeling) For a partitioning A = |, .,, A,
we say that a tree7 = (V, E,1) has aproper labelingif for all Theorem 3 ([3]) Let A =J,.,, A: be a partitioned theory and as-
(i,7) € E and By, Ba, the two subtheoriésf A on the two sides of  sume that the graplil is a tree that has a proper labeling for the
the edgd(i, j) in G, itis true thati(i, j) 2 L(B1) N L(B2). partitioning { 4; }:<.. Also assume that each of the reasoning pro-
cedures used in FORWARD-MP is complete for consequence find-

For every partitioning there are many such trees, and itis importaning (as defined in Definition 5). Ldt < n and letQ € L£(Ax U
to find such a tree with optimal computational properties (more orU(,m.)eE I(k,7)) be a sentence. I4 E @, then FORWARD-MP
that below). A very similar property, theinning intersection prop-  outputs YES.
erty, is used in literature on probabilistic graphical models (e.g., [10])
and CSPs (e.g., [5]). The proof of this theorem uses Craig’s Interpolation theorem [4]

Figure 2 presents algorithm PART-PROP. The input to PART-(stated below), which guarantees that FORWARD-MP transmits be-
PROP is a partitioning of the monadic FOL thearyand a graph  tween partitions exactly those messages that are necessary for com-
G. PART-PROP propositionalizes each partitidpand the link lan-  pleteness.
guagesd(z, j) in the manner of Section 3.1. The link langudg@g j)
is the language in which messages will be passed from partition Theorem 4 (Craig’s Interpolation Theorem) If o (3, then there
to j. PART-PROP returns the partitioning for the propositionalizedis a formulay € £(L(«) N L(3)) such thatx + v and~y = 3.
theory.

Recall our example from Section 2.2. Procedure PART-PROP Method 1 corresponds to running FORWARD-MP on the parti-
(Figure 2) applies to it by examining a partitioning of the set of ax-tioned theory returned by PART-PRGR{; }). Method 2 is running
ioms as presented diagrammatically in Figure 4. Here, every partitioa SAT solver ol J!_, PART-PROR{A;}). The next theorem proves
includes the set of axioms that describe the effects of the machine béie soundness and completeness of these methods:
ing ready and not ready, as well as knowledge about the availability
of the machine in different times for different states of our item. TheTheorem 5 Let A = | J,,, A: be a partitioned monadic FOL the-
edges between the partitions are labeled with the set of nonlogicary with G' a properly labeled tree. Let < n and @ a sentence in
(predicate and constant) symbols that are shared between partitiong.( A, ). Then, A = Q iff PART-PROPA U {—-Q}) = FALSE.

Figure 3 reproduces the Message Passing algorithm FORWARD-

MP from [3, 2]. Given a partitioned theory, its intersection graph and The quality of the propositionalization obtained depends on how
query @ in the language of one of the partitiond,, FORWARD- balanced the partitions are, that is how evenly the predicates and con-
MP will try to prove Q. (If the query is not contained in any partion stants are divided among the partitions (as will be shown in the next
Ay, then a new partition can be created which contains just the norsection). Finding a balanced partitioning can be done with human
logical symbols of the querg), and the graplty must be extended guidance or automatically. Sometimes, we can reduce this problem

with the new partition.) to finding graph decompositions with minimum treewidth of the in-
FORWARD-MP defines a partial ordering on the partitions basedersection graplé:(V, E,1). A good reference is [1].

on distance to the query partitiody, as follows: The algorithms above give sound and complete propositionaliza-
tions without the DCA by using thé-sets. Even if we are allowed to

Definition 4 (<) Given partitioned theoryd = |J,.,, As, in- make the DCA for the entire problem, a partitioned propositionaliza-

tersection graphG = (V,E,l) and queryQ € L(Ax), let  tion would still need the-sets for completeness. The reason is that,

dist(i,7) (1,7 € V) be the length of the shortest path between nodeseven though the theory as a whole is closed, each individual partition

i,7 1IN G. Theni < j iff dist(i, k) < dist(j, k). is not, as the constant representing an object could be in a different
partition.

Consequence-Finding is performed within each partition inde-
pendently and concurrently with the other partitions. Those conse- .
quences that are in the link language of the partiiorand its par- 42 Analysis

ent.A; (ie. in the languagé(i, j)) are transmitted amessageso  \ya now compare briefly the efficiency of our methods to the standard

A;. Partition.A; then asserts the message as an axiom of its thet'echniques. We do so with two metrics: the number of propositional

ory, performs Consequence Finding and so on. When the algorithrQymbols created by propositionalization, and the running time of the
reachesA;, it attempts to prove the quex§ and returns the result. resulting SAT procedure.

The following recounts a soundness and completeness result of [3, 2] First, the number of propositions created by method 1 and 2 on a

for partitioned reasoning with Messag_e-Passing on trees. We use thﬂﬁeorw are exponentially less than the number of propositions cre-
result to show that COMPACT-PROP is correct. ated by a propositionalization efwithout the DCA. When the nhum-

2 If we remove(i, ;) from the graph, then each &, B is the union of the ~ ber of constants is large, we get an improvement even when com-
partitions in connected a connected component of the graph. pared to naive propositionalization with the DCA.




Theorem 6 Let 7 be a monadic FOL theory Wit cqa(7) =

P, Leonst(7) = C. Let A be a partitioning ofr into 4;, A3 ... A,

such thatL,,cq(A;) = O(|P|/n) and Leonst (A;) = O(|C|/n). If

the number of propositions created®(7) U £() is N(7), created
by a naive propositionalization of with the DCA isNpca(7), and
by Method 2 applied tol is N (.A), then

1.
N(r) _ _a(1=1/n)|P|
NA) Q(1/n-3 )
n23lPl/n
2. If|C > =5,
Npca(r)

N )

Each partition hag predicatesP;, P;;1, Q}, Q7 (sometimes we
may have more predicates per partition because of additional con-
straints on the&)’s, but for now we assume that such exceptions are
not significant). The structural assumption we make with this parti-
tioning is that only a limited set of constants (i.e., states), say at most
20, appears in each partition,

Using Method 2 for this propositionalization, we get a proposition-
alization withn(3* 4 4 - 20) propositional symbols. Substituting the
number of time steps to be ,say, 125 (from the example in Section
2.2) gives us 20,125 propositions, which is solvable using state-of-
the-art SAT solvers. For comparison, Section 2.2 shows that a con-
ventional propositionalization creates neatlynillion propositional
symbols, which is beyond the capabilities of current SAT solvers.

Now we examine the running time of our inference procedure5 Conclusions and Future Work

compared to a naive propositionalization without the DCA.

Theorem 7 Let 7 be a monadic FOL theory Wit req(7) =
P, Leonst(7) = C. Let A be a partitioning ofr into A1, Az ... A,
(with intersection graphG = (V, E, 1)) such thatL,,cq(A;) =

O(|P|/n) and Leonst(Ai) = O(|C|/n). Let d(v) be the degree

of nodew in the graphG, letd = maz,cvd(v) and letl =
3l Pl/n .
. f T(7) is the

maz; j<n|l(i.7)]. Finally, assumdC| > nzﬁ
running time complexity of performing inference-owith the DCA,

andT'(A) is the running time of FORWARD-MP on a propositional-

ization of A created by PART-PROP, then

n- 2. foar (LA
fsar(|P||CY)

T(A)

()

)

where fsar(n) is the time taken to solve SAT problems orer

variables.

The proof of Theorem 7 relies on the running-time analysis of 2]
FORWARD-MP given in [3]. Sincefsar is typically exponential

in the number of propositional symbols, the fracti

R will be
small.

™)

4.3 The Factory Example Revisited

Recall the machine scheduling problem from Section 2.2. Here wel®]

show an efficient solution of this problem by our methods.
The partioned theory is given in Figure 4.
Essentially, we create a partitiod; for every time step, and

place the following (propositional) axioms in it (this is the proposi-

tionalization of Equations 1 and 2):
“Ealp

i Pit1)

ﬁE(Q?,Pi,—' i+1)

We use the fact thatx P(z) = -3-P(z) = ~E(.p). Also in
our example, if the system allows the item to move from sfdtek
at time step, then we add

Pij = Pit1y,

We have described algorithms that construct compact propositional-
izations of function-free monadic First Order Logic Theories by ex-
ploiting structure in them. Our methods are quite general and resultin
significant savings in the number of propositional symbols required.
They have applications to a number of domains that use logical rea-
soning such as Program Verification, Deductive Databases, Planning
and Commonsense Reasoning.

In the near future we expect to extend this approach to reasoning
with equality and binary predicates. We eventually intend to explore
applications of our methods to Planning and Probabilistic Relational
Models.
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