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Abstract

An autonomous agent that explores and acts in a
rich world needs knowledge to act effectively. This
agent can use knowledge that is available inCom-
monsense Knowledge Bases(CSKBs), when the
agent designer cannot encode all the information
the agent might need. CSKBs include general-
purpose information about the everyday world in a
formal language, but this information is not always
correct, relevant, or useful for the agent’s purpose.
In this paper we present an approach to retriev-
ing commonsense knowledge for autonomous de-
cision making. We consider agents whose for-
mal language is different from that of the CSKB,
and can use multiple CSKBs of various expressiv-
ity and coverage. We present a complete retrieval
framework with algorithms for mapping languages
and selection of knowledge. We report on prelim-
inary experimental results of these algorithms for
the ConceptNet CSKB.

1 Introduction
There is growing interest in using knowledge about the world
to aid autonomous decision making, e.g.,[Bacchus and Ka-
banza, 2000; Doherty and Kvarnström, 2001]. This knowl-
edge is crafted carefully by a knowledge engineer to fit the
domain and goal. However, autonomous agents that explore
and acts in rich world cannot receive all their information
from the agent designer because he does not know the target
environment in design time or the environment is too com-
plex. In these cases this agent can use knowledge that is avail-
able inCommonsense Knowledge Bases(CSKBs).

Typically, CSKBs comprise of ontologies and hierarchical
concept information together with many thousands of axioms
that bring these concept together. Examples include CYC
[Lenat, 1995], SUMO [Niles and Pease, 2001], the HPKB
project at SRI[Cohenet al., 1998], the HPKB project at Stan-
ford’s KSL [Fikes and Farquhar, 1999], ConceptNet[Singhet
al., 2002], and WordNet[Miller, 1995].

The challenges posed by decision making are not ad-
dressed by current CSKB research. Research on CSKBs has
focused so far on applications for natural language processing

and for question answering. The first typically uses the con-
cept hierarchy information that is embedded in the CSKB,
while the second uses axioms of the CSKB that are tuned
carefully for the specific topic and queries together with a
theorem prover. In contrast, decision making requires knowl-
edge that is versatile and can aid in answering questions like
“what will action a do in my situation?” or “how do I get
closer toX?” . The two challenges posed by such applica-
tions are selecting knowledge that is correct, relevant, and
useful for the current task, and then using this knowledge.
We cannot expect fine tuning of axioms or manual selection
for an agent that is expected to explore an unknown territory.
Furthermore, our agent has to be able to select and use knowl-
edge that is not complete or accurate.

In this paper we present an approach to retrieving com-
monsense knowledge for autonomous decision making, and
a complete retrieval framework with several algorithms for
mapping languages and selection of knowledge. We consider
agents whose formal language is different from that of the
CSKB, and can use multiple CSKBs of various expressiv-
ity and coverage. Our algorithms translate an agent’s knowl-
edge base (AKB) to the language of a CSKB, even when the
CSKB is sparse. We show how an agent may use the AKB
and knowledge from a CSKB to choose actions.

The usage of knowledge by our agent gives rise to two
types of queries that we can ask from a CSKB. These arere-
gion queries, which find relevant concepts and axioms given
a set of concepts that the agent considersactive, and path
queries, which find relevant concepts and axioms given the
current situation and a goal description. The corresponding
queries are processed using a graph that we associate with the
CSKB, and using methods from information retrieval[Salton
and Buckley, 1988] and automated reasoning. We report on
preliminary experimental results of these algorithms for the
ConceptNet CSKB.

This is work in progress, and some details are omitted with
only little experimental evaluation.

2 Knowledge and Decision Making
Our running example is that of an agent playing an adven-
ture game[Amir and Doyle, 2002]. This problem isolates the
commonsense reasoning problem from external challenges
like vision and motor control. Far from the arrows and breezy
pits of the wumpus world, these adventure games are intended
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Figure 1: A high-level perspective of the retrieval system

to be abstractions of real-world scenarios. The agent is de-
signed to track its world in a compact belief state, use com-
monsense to reason about the semantics of its knowledge,
learn the effects of actions through observation, and use its
knowledge to progress toward some goal. Importantly, the
agent is required to learn the action model, which is unknown
initially1.

2.1 Problem Setting
We assume that there is a single agent in the partially ob-
servable world, with knowledge about the current state of the
world (and its effects of actions) that is represented by a set
of logical sentences. We also assume that the agent can ob-
serve its environment using its sensors and act upon it. The
world conforms to the assumptions of the basic Situation Cal-
culus[McCarthy and Hayes, 1969; Reiter, 2001]: the Markov
property holds, actions have explicit preconditions and effects
and are deterministic, and there is a set of unique names ax-
ioms. Simple adventure games already have these properties,
so they are not too restrictive, and they allow us to represent
actions using a well-understood language.

The agent is given a goal that is achievable from any state
via a finite sequence of executable actions. (In many adven-
ture games, a state satisfying the goal is not specified initially
but must bediscoveredthrough exploration (e.g., by reading
a note), but we ignore this case here.) Thus, in such envi-
ronments the agent can perform some default exploratory be-
havior until a goal is reached. However, this exploration is
infeasible because it may take time that is linear (or worse)in
the number of states in our system, which is inΩ(2n) for n

1This paper does not concern learning action models or main-
taining a compact belief state; the focus is on knowledge retrieval
only.

propositional features in the domain.
Thus, our decision maker is faced with the choice of a ac-

tion policy A such that executingA in the current states
produces the goal stateg. Methods that address this prob-
lem to some degree include planning under partial observabil-
ity [Bertoli and Pistore, 2004] and reinforcement learning in
partially observable domains[Even-Daret al., 2004]. They
maintain a belief state and compute a plan or a policy for a
given problem domain and goal.

2.2 Using Knowledge
There are four ways in which we wish to use knowledge: (1)
control knowledge for planning and search, (2) information
about the way actions change the world (eliminate some of
the uncertainty about the transition model), (3) better guid-
ance to exploration on the way to the goal (using information
gain), and (4) better guidance to acting on the way to the goal
(using projection paths).

Control knowledge for planning (e.g.,[Bacchus and Ka-
banza, 2000; Doherty and Kvarnström, 2001]) can be repre-
sented as a restriction strategy on the choices that the agent
can make. For example, one can state that if our agent is
faced by a locked door, then it should not try to unlock the
door with a bannana (this may jam the door).

Information about actions’ effects and preconditions can
help in making our planning problem more feasible, and may
allow us to reach islands in our search space. For example,
if we know that unlocking the door with the correct key will
have the effect that the door is unlocked, then we will try this
action before others, to find if the key that we have is the right
one, and possibly get into the room on the other side of the
door.

Knowledge about the way our actions change (or do not
change) the world, and knowledge about the way they are



likely or unlikely to change the world is important for explo-
ration. Information gain[Mitchell, 1997] is a measure that is
typically used to perform this exploration. It is particularly
attractive in adventure and exploration games because there
one can use the information gain measure with hill climbing
to reach the goal (the goal is achieved exactly when we dis-
cover an action that achieves it).

Finally, a chain of plausible, high-level concept landmarks
or actions (e.g., a chain of concepts connecting a house with
a grocery store) can serve as guidance for both planning and
reinforcement learning. Planning techniques can use such
chains to guide a rough forward plan search with a subsequent
process that corrects the plan where needed (e.g.,[anb Bern-
hard Nebel, 2001]). Reinforcement learning can use such
information to re-shape the reward structure by transferring
some of the final reward (of reaching the goal) to various po-
sitions in the state space[Ng et al., 1999].

2.3 Representation of Agent’s Knowledge and
Interaction Model

In this paper we assume a logical representation for actions
(e.g., in the situation calculus), having met the preconditions
for doing so with the previous section’s restrictions. As men-
tioned above, the action model is initially unknown. How-
ever, we assume that the game environment provide the agent
with a list of relevant actions.

We use the intuition that actiona(~x) is relevant if it is ex-
ecutable (with a non-nil effect) in some states′ that is reach-
able from the initial state. Such a list of relevant actions is
usually available to a human agent in an adventure game, ei-
ther through a help system or through feedback that notifies
the player of an unrecognized action. The rest of the action
model is initially hidden from the agent.

Ideally, an agent should be able to receive all observa-
tions in natural language, as humans do, but converting natu-
ral language sentences to logical ones is tantamount to a so-
lution to the general knowledge extraction problem. Thus,
we assume that observations contain only a limited natural
language component, and we associate this natural language
component with a set of logical sentences that represent the
observations of the agent. We use the text that is associated
with nonlogical symbols in our First-Order Logical language
L as semantic information that allows us to connectL with
the language of any CSKB.

3 System Overview
Figure 1 shows how the commonsense retrieval system aug-
ments an agent’s knowledge base with relevant commonsense
axioms. The upper and lower halves of the diagram repre-
sent the two broad tasks being performed. The first task is to
create a mapping from symbols in the AKB to those in the
CSKB. The second task is to use a subset of the AKB (now
mapped to the language of the CSKB) as a query with which
to find useful axioms in the CSKB. To determine relevance as
generally as possible given the unstructured nature of some
CSKBs, relevance is only calculated based on distance in a
graph representation of the CSKB. Every CSKB has ground
terms and axioms over those terms, so a simple graph repre-
sentation has a node for each term and an edge between two

nodes iff there is an axiom that mentions both of those terms.
The astute reader will note that the algorithms as presented
retrieve concepts rather than axioms. These concepts are are
intended to be used along with the supplied query concepts as
endpoints of a path along which all axioms are retrieved.

3.1 Mapping Agent Language to CSKB Language
To reason with commonsense knowledge, a mapping must be
made from the symbols in the agent’s language to those in the
CSKB. The most important thing to realize when constructing
the mapping is that it won’t be exact, because no formal on-
tology exists that can represent all the information in English
words (even when these words occur in isolation). Worse, it
is not clear that such a formalization is even possible. With
that limitation in mind, we propose the baseline system seen
in Figure 2.

PROCEDURE MapSymbols(AKB,WordNetKB,CSKB)
AKB Agent’s KB (in FOL),WordNetKB WordNet KB
(Ontology and English words),CSKB Commonsense KB
(in FOL)

1. SetMapping ← ∅

2. Loop for every constant symbolsa in AKB:

(a) Search forsa in WordNet, putting the resulting
set of synsets insenses

(b) If senses = ∅, then setMapping ←Mapping∪
{〈sa, nil〉}. Else:
i. Setsyn← argmaxs∈sensesP (s|AKB)
ii. Setsc to be a CSKB concept (predicate, func-

tion, or constant) symbol corresponding to
syn’s WordNet ID.

iii. If sc is non-nil, then setMapping ←
Mapping ∪ {〈sa, sc〉}. Otherwise, loop until
syn = TOP :
A. Setsyn ← hypernym(syn), syn’s near-
est hypernym in WordNet

B. If CSKB has a conceptsc corresponding
to syn’s WordNet ID, then setMapping ←
Mapping ∪ {〈sa, sc〉}, and break

3. ReturnMapping

Figure 2: Algorithm for mapping agent’s symbols to CSKB
symbols

MapSymbols maps every constant symbol in the AKB to
a matching entry in WordNet, based on a textual match only.
It performs word sense disambiguation based only on bag-
of-words co-occurrence data, which could be obtained from
a WordNet sense-tagged corpus. Then it attempts to find a
matching concept in the CSKB, requiring an existing map-
ping from CSKB symbols to WordNet synsets. If a match
cannot be found in the CSKB, the next nearest hyponym in
WordNet is checked for a match, and so on until the most
specific match available is found.

For symbols other than constants, there may be more di-
mensions to match than simple textual similarity. In CYC,



for instance, functions and predicates take typed arguments,
and functions themselves have types. Types and arity rep-
resent syntactic restrictions that must be checked before an
agent symbol can be mapped to a CSKB symbol. To map
functions and predicates using MapSymbols, we can perform
unification, recursively matching terms textually or - if the
terms are functions - through unification.

3.2 Retrieval Tasks

We want our knowledge retrieval system to work well on each
of the CSKBs, but their differences make this goal difficult
to achieve. To minimize the effects of these differences, we
create a simplified but uniform representation for CSKBs.

The retrieval system is not an algorithm for deciding which
axioms are relevant but a system for facilitating the applica-
tion of such algorithms on different types of CSKBs. Our
aim is to be able to retrieve useful information from any of
them, but their differences make that a difficult task. To mini-
mize the effects of these differences, we simplify the CSKBs,
converting them to a weighted graph. The simple procedure
is given in Figure 3. The following sections describeregion
queriesandpath queries, the two retrieval options allowed in
the framework.

PROCEDURE RetrieveFromGraph(CSKB, S, T , q)
CSKB, Commonsense KB (in FOL);S ⊆ CSKB, a rele-
vant subset of the agent’s KB, mapped toCSKB concepts;
T ⊆ CSKB, a set of concepts appearing in the goal state,
mapped toCSKB concepts;q ∈ {region, path}, the type
of query

1. SetA← ∅, the set of retrieved axioms.

2. Construct a weighted graph,G, from CSKB, with a
node for every concept and an edge between two nodes
iff the corresponding concepts are mentioned in any
axioms together. The weight on each edge corresponds
to the number of axioms it represents.

3. SetS′ ← the nodes inG corresponding toS

4. SetT ′ ← the nodes inG corresponding toT

5. if querytype = region then A ←
RegionQuery(G,S′)

6. elseA← PathQuery(G,S′, T ′)

7. ReturnA

Figure 3: Algorithm for retrieving relevant commonsense ax-
ioms

Region Query
This type of search is intended to help the retriever find out
more about its current knowledge. The intent is for an agent
to select a small number of concepts from its KB, and the
result should be the set of axioms in the “contextual region”
of the given concepts. This region is identified using spread-
ing activation, a technique that has been used successfullyin
similar applications in which some seed was used to retrieve
a collection of related items from a graph .

Conceptually, spreading activation starts with a set of
nodes with someactivation weightand proceeds to acti-
vate neighboring nodes recursively over a series of time
steps. The activation weighta(t)

i of a nodei at time t is

f(
∑

j wija
(t−1)
j ), wherej varies over the neighbors ofi, and

wij is the edge weight fromj to i. f() is usually a decay func-
tion that has the effect of decreasing activation as distance in-
creases from the activation sources. Activation weights are
ranked after a halting condition is reached, based either on
time or nearness to some asymptotic distribution. Spread-
ing activation is only a general procedure, but the “leaky
capacitor” model used in has been analyzed parametrically
in and can be used on our network with little modification.
RegionQuery(G,S), then, is a straightforward application
of the leaky capacitor model, parameterized for a rich, con-
nected network.

Path Query

This type of search is intended only to find paths between two
concepts (or sets of concepts). They might represent two re-
gions of the belief state that the agent wants to connect (a key
and a locked door, for instance), or one of them might repre-
sent the goal, or part of the goal. Since it is assumed that the
retrieving agent is trying to find the shortest path to its goal,
a goal-directed search returns axioms lying on the shortest
paths between the supplied concept sets. The algorithm is
given in Figure 4.

PROCEDURE PathQuery(G, S, T )
G, a weighted graph;S, the set of source nodes;T , the set
of destination nodes

1. Remove all edges between nodes inS.

2. Create a new node,s.

3. For each edge(p, q) wherep ∈ S, create an edge(s, q)
of equal weight and remove(p, q). if (s, q) already
exists, add to its weight the weight of(p, q).

4. Remove all nodes inS.

5. Repeat this procedure forT , to produce a nodet.

6. Assign a score of 0 to each node in the graph.

7. Find thek shortest paths betweens andt, wherek is a
parameter.

8. for each pathpi (i = 1, ..., k)

(a) for each nodenj onpi (not includings andt)

i. nj .score+ = 1
length(pi)

9. Return theα (another parameter) nodes with the high-
est scores

Figure 4: Algorithm for returning nodes on paths between
two regions



4 Discovering Interesting Actions in
ConceptNet

We have been able to implement a simple version of the re-
trieval system on ConceptNet first because of that CSKB’s
simple graph structure and ready availability. This version ap-
proximates spreading activation inRegionQuery with Con-
ceptNet’s ownGetContext function. This function measures
two nodes’ relatedness as the number of paths between them,
weighted to favor shorter paths. As mentioned previously,
all axioms on the paths between query concepts and retrieved
concepts are returned.

What is the right amount of information? This question
has not been answered. Any upper bound is established by
performance concerns: inference is ultimately exponential in
the size of the underlying knowledge base, so too much in-
formation will be useless to any agent. The ideal result of a
retrieval is one fact or statement: the one that will determine
an agent’s next correct action. But the generality that makes
common sense useful will generally necessitate returning a
broader scope of facts than simply the correct next action.
Keeping in mind the hard limits posed by exponential time,
this retrieval system must be able to operate on a precise con-
text.

4.1 Concept Expansion
The benefit of having a ranked contextual neighborhood is the
same as in any ranked result set: the ability to select the most
relevant subset of results. In the examples used while building
and testing this system, usually only the top five or ten results
have actual real-world relevance to the supplied context. As
with any ranking heuristic, there were some anomalies - in-
stances of irrelevant concepts appearing much higher in the
ranking than would be reasonably expected.

The most relevant concepts in the list, in no particular or-
der, are ”unlock door”, ”open lock”, and ”lock”. Some other
concepts’ positions at the top of the list could be argued, but
it is unlikely anyone would argue that ”metal” should even
appear in the top ten. Its appearance here is a likely indicator
that this contextual neighborhood is somewhat sparse, mean-
ing there are relatively few relations involving doors, keys,
and locks.

Results like this demonstrate the need for normalization in
relevance scoring. Intuitively, if one concept is of broad gen-
eral interest and the database contains many relations refer-
ring to it, that concept will be ranked highly in many queries.
If normalization had been used in the ”door, ”key” example,
it is unlikely that ”metal” would have ranked so highly. But
whether normalization will improve ranking in the general
case is a question best answered empirically. To perform such
a test, there will need to be a set of test cases, each a pair con-
sisting of a query (given as a set of concepts) and a desired
result (either a set of relevant results, or a perfect ranking).
Any test set will be dependent on the nature of the agent us-
ing the system.

4.2 Additions to the ConceptNet Retrieval System
The earlier system was retrieving all concepts and relations
in ConceptNet related to the given context. Our current prob-

lem definition refines the results we want. Now it is suffi-
cient only to retrieve those actions semantically related to a
context. Any more information would be useless because we
have no way of knowing how to reason with it. So we add an
extra step to the end of the procedure: select the intersection
of the concepts retrieved by GetContext and the universe of
actions.

The original system to retrieve data from ConceptNet used
all the nonlogical symbols from the AKB as arguments to the
GetContext function. That approach is fine for small KBs, but
for a long-running agent, only a small subset of the symbols
will define its present context. We restrict the set of symbols
sent to the context query to be only those appearing in the
agent’s current location. Clearly this only allows objectsto
be used in the query.

Procedure GetRelevantAction, presented in Figure 5, takes
the agent’s knowledge base as input and returns a ranked list
of interesting actions. It is a specialization of ProcedureRe-
trieveFromGraph from Figure 3.

PROCEDURE GetRelevantAction(AKB,CSKB)
AKB Agent’s KB (in FOL),CSKB Commonsense KB (in
FOL)

1. LetC ← null

2. For every nonlogical symbols in AKB for which
there is a relationObjectAtLocation(s, l) wherel is
the agent’s current location, adds to C

3. ReturnGetContext(C,CSKB) ∩ A, whereA is the
universe of actions

Figure 5: Getting relevant actions from a commonsense KB

The algorithm does not make use of common sense markup
from the previous algorithm that mapped the agent language
to common sense.

5 Related Work

Background knowledge is increasingly important for deci-
sion making. Work on reinforcement learning[Kaelbling et
al., 1996; Andre and Russell, 2000; Ng and Russell, 2000;
Ng et al., 1999] uses background knowledge to structure
the state space, update the reward function, and approxi-
mate the value function. Also, work on planning uses back-
ground knowledge to guide the search for a plan[Levesqueet
al., 1997; Bacchus and Kabanza, 2000; Doherty and Kvarn-
ström, 2001]. Finally, there has been some work on discov-
ering knowledge to aid planning , and also about using non-
monotonic reasoning to speed up reasoning[Ginsberg, 1991].
However, no work known to us has approached the problem
of retrieving the right knowledge for a specific task.

The topic of matching symbols between KBs has attracted
much attention in recent years. There has been some suc-
cesses in the case of matching database schemas that have
common underlying instances and language[Doan, 2002;
Doanet al., 2003], and some investigation was made in the
case of more general AI knowledge bases . However, work on



merging KBs and matching ontologies between KBs remains
manually driven[Noy et al., 2001].
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