1

The Inverse Reinforcement Learning (IRL) problem is de-
fined in[Russell, 199Bas follows: Determine The reward
function that an agent is optimizingiven 1) Measurement
of the agent’s behaviour over time, in a variety of circum-
stances 2) Measurements of the sensory inputs to that age
3) a model of the environment. In the context of Markov De-
cision Processes, this translates into determining thangkw
function of the agent from knowledge of the policy it exesute
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Abstract

Inverse Reinforcement Learning (IRL) is the prob-

lem of learning the reward function underlying a

Markov Decision Process given the dynamics of
the system and the behaviour of an expert. IRL
is motivated by situations where knowledge of the
rewards is a goal by itself (as in preference elici-
tation) and by the task of apprenticeship learning
(learning policies from an expert). In this paper

we show how to combine prior knowledge and evi-

dence from the expert’s actions to derive a probabil-
ity distribution over the space of reward functions.

We present efficient algorithms that find solutions

for the reward learning and apprenticeship learn-
ing tasks that generalize well over these distribu-
tions. Experimental results show strong improve-
ment for our methods over previous heuristic-based
approaches.

I ntroduction

and the dynamics of the state-space.

Urbana, IL 61801

the exper{Atkeson and Schaal, 19R7However the reward
function is generally the most succint, robust and trasadfier
representation of the task, and completely determinesghe o
timal policy (or set of policies). In addition, knowledge of
the reward function allows the agent to generalize betesi.
new policy can be computed when the environment changes.
IRL is thus likely to be the most effective method here.

In this paper we model the IRL problem from a Bayesian
perspective. We consider the actions of the expesivatence
that we use to update a prior on reward functions. We solve
reward learning and apprenticeship learning using thisepos
rior. We perform inference for these tasks using a modified
Markov Chain Monte Carlo (MCMC) algorithm. We show
that the Markov Chain for our distribution with a uniform
prior mixes rapidly, and that the algorithm converges to the
correct answer in polynomial time. We also show that the
original IRL is a special case of Bayesian IRL (BIRL) with a
Laplacian prior.

There are a number of advantages of our technique over
previous work: We do not need a completely specified op-
timal policy as input to the IRL agent, nor do we need to
assume that the expert is infallible. Also, we can incorpo-
rate external information about specific IRL problems into
the prior of the model, or use evidence from multiple experts

IRL was first studied in the machine learning setting by

|[|'t\|g and Russell, 204avho described algorithms that found

optimal rewards for MDPs having both finite and infinite
states. Experimental results show improved performance by
our techniques in the finite case.

The rest of this paper is organised as follows: In section
2 we define our terms and notation. Section 3 presents our

There are two tasks that IRL accomplishes. The fiest, B ; del of the IRL Section 4 di h
ward learning is estimating the unknown reward function as ayesian modet of the Process. Seclion 4 diSCUSSes now

accurately as possible. It is useful in situations wherad¢he Ito use th'ShTOdel to d°5 rgyvard Iearnr:ng and Igpprenﬂcedsmp

ward function is of interest by itself, for example when con-'€aMing while section 5 discusses the sampling procedure.

structing models of animal and human learning or modellin pections 6, 7.and 8 th_en present e_zxpenmental resultsecelat

opponent in competitive games. Pokerbots can improve pe vork and our conclusions respectively.

formance against suboptimal human opponents by Iearning o .

reward functions that account for the utility of money, gref Preliminaries

ences for certain hands or situations and other idiosyiesas We recall some basic definitions and theorems relating to

[Billings et al,, 1999. There are also connections to various Markov Decision Processes and Reinforcement Learning.

preference elicitation problems in econonfi8argent, 1994 A (finite) Markov Decision Problemis a tuple
The second task iapprenticeship learning using obser- (S, A, T, v, R) where

vations of an expert’s actions to decide one’s own behaviour e S is a finite set ofV states

It is possible in this situation to directly learn the polftgm o A={ay,...,ax}is asetofk actions



e T:5x A xS+ [0,1] is atransition probability func-

tion.

e v € [0,1) is thediscount factor

e R : S — Ris areward function with absolute value

bounded byR,,, 4.

The rewards are functions of state alone because IRL prob-
lems typically have limited information about the value of
action and we want to avoid overfitting.

A Markov Decision Proces@VDP) is a tuple(S, A, T, v),
with the terms defined as before but without a reward func-
tion. To avoid confusion we will use the abbreviation MDP
only for Markov Decision Processes and not Problems.

. \ Figure 1: An example IRL problem. Bold lines represent the
We adopt the following compact notation frofNg and o ptimal actiona, for each state and broken lines represent

Russell, 200Dfor finite MDPs : Fix an enumeration ...sy  some other actions,. Actiona, in s; has probabilities 0.4,0.3
of the finite state spacg. The reward function (or any other 5,4 0.3 of going to states, s», 53 respectively, and all other
function on the state-space) can then be represented/sis an 4tions are deterministic.

dimensional vectoR, whoseith element isR(s;).

A (stationary)policy is a mapr : S — A and the (dis-
counted, infinite-horizoryalueof a policyr for reward func-
tion R at states € S,denoted/ " (s, R) is given by:

3.1 Evidencefrom the Expert

Now we present the details of our Bayesian IRL model (Fig.
. R 2). We derive a posterior distribution for the rewards from
V7 (st R) = R(st,)+ B, 0, [YR(50,) 47" R(st5)+- - [7] - g prior distribution and a probabilistic model of the exjsert
where Pr(s, ,|s¢,,m) = T(s¢,,7(st,),5¢+,,,). The goal of  actions given the reward function.
standard Reinforcement Learning is to findagtimal policy Consider an MDPM = (S,A,T,v) and an agentt
7* such thal/ ™ (s, R) is maximized for alls € S by 7 = 7*. (the expert) operating in this MDP. We assume that a reward
Indeed, it can be shown (see for examf8aitton and Barto, function R for X is chosen from a (known) prior distribu-
1999) that at least one such policy always exists for ergodidion Pr. The IRL agent receives a series of observations of
MDPs. For the solution of Markov Decision Problems, it is the expert’'s behaviowbx = {(s1,a1), (s2,a2) ... (sk,ax)}
useful to define the following auxilliarg)-function which means that’ was in states; and took action; at time
Q™(s,a,R) = R(5) + vEy~1(s.0.)[V™(s', R)] stepi. For generality, we will not specify the algorithm that
We also define the o timay—functioné*(- . R) as theQ- X uses to deter_mlne his (pqssmly stoch_asuc) pthy, but we
; S opimé b make the following assumptions about his behaviour:
function of the optimal policyr* for reward functionR.

Finally, we state the following result concerning Markov 1. Xis attempt.ing to maximize the tOta.l accumqlated re-
Decision Problems (sd&utton and Barto, 1998: ward according taR. For exampleX is not using an

Theorem 1 (Bellman Equations). Let a Markov Decision epsilon greedy policy to explore his environment.
ProblemM = (S, A,T,~, R) and a policyr : S — A be 2. X executes a stationary policy, i.e. it is invariant w.r.t.

given. Then, time and.does not c_hange.depe.nding on the actions and
1. Foralls € S,a € A, V™ andQ™ satisfy observations made in previous time steps.
- o N For example X could be an agent that learned a policy for
Vi(s) = R(s)+ VZT(S’W(S)’ V() (1) (M, R) using a reinforcement learning algorithm. Because
° the expert’s policy is stationary, we can make the following
Q" (s,a) = R(s)+~ Z T(s,a,s V™ (s") independence assumption:
o i imal policy f M i forall s € S Prx(Ox|R) = Prx((s1,a1)|R)Pra((s2,a2)|R)
. w is an optimal policy forM iff, forall s € S, .. Pra((sk, an)|R)
7(s) € argmax Q" (s, a) ) The expert's goal of maximizing accumulated reward is
a€A equivalent to finding the action for which tiag* value at each
. state is maximum. Therefore the larggt (s, a) is, the more
3 Bayesian IRL likely it is that X would choose action at states. This like-

IRL is currently viewed as a problem of infering a single re- lihood increases the more confident we aretiis ability to
ward function that explains an agent’s behaviour. Howeverselect a good action. We model this by an exponential dis-
there is too little information in a typical IRL problem totge tribution for the likelihood of(s;, a;), with Q* as a potential
only one answer. For example, consider the MDP shown iffunction:
Figure 1. There are at least three reasonable kinds of reward
functions: R, (-) has high positive value a} (and low values
elsewhere) which explains why the policy tries to return to
this state, whileR,(-) and R3(-) have high values at, and

s3 respectively. Thus, a probability distribution is needed t
represent the uncertainty. !Note that the probabilities of the evidence should be coomtid

1 X
Prx((si;a;)|R) = ZGQXQ (85,00, 77)
1

whereay is a parametérrepresenting the degree of con-
fidence we have imX’s ability to choose actions with high



1 7‘
PLaplace(R(S) = 7") = 567‘27‘#8 es

3. If the underlying MDP represented a planning-type
problem, we expect most states to have low (or negative)
rewards but a few states to have high rewards (corre-
sponding to the goal); this can be modeled Begadis-
tribution for the reward at each state, which has modes
at high and low ends of the reward space:

1
Ppeia(R(s) =71) = -
B ( () ) (R”:aw)é(l_Rr )

max

, Vs €S
2

In section 6.1, we give an example of how more informa-
Figure 2: The BIRL model tive priors can be constructed for particular IRL problems.

4 |nference

We now use the model of section 3 to carry out the two tasks
described in the introduction: reward learning and appren-
Pry(Ox|R) = leaXE(oX,R) tices_hip learning. Our general proqedure is to derive méthim
Z solutions for appropriate loss functions over the post€Eq.
whereE(Ox, R) = ¥, Q*(si, ai, R) and Z is the appropriate 3). Some proofs are omitted for lack of space.
normalizing constant. We can think of this likelihood func-

tion as a Boltzmann-type distribution with energyO., R) 41 Rewarql Lgarnlng. )
and temperaturel. Reward learning is an estimation task. The most common loss

Now, we complite the posterior probability of reward func- functilons 1;0r estimation problems are the linear and sqliare
tion R by applying Bayes theorem, error loss functions: X
Llinear(R7 R) = || R-R Hl
Prx(Ox|R)Pr(R) Lsg(R,R) = |R-R]|
Pr(Ox) whereR and R are the actual and estimated rewards, respec-
_ ieaxE(Ox,R)PR(R) 3) tively. If R is drawn from the posterior distribution (3), it can
be shown that the expected valudgfz (R, R) is minimized

value. This distribution satisfies our assumptions andsy ea
to reason with. The likelihood of the entire evidence is :

Prgg(R|Ogg)

Z/
Computing the normalizing consta#t is hard. However by settingR to the mean of the posterior (se&erger, 1993.
the sampling algorithms we will use for inference only needSimilarily, the expected linear loss is minimized by sejti
the ratios of the densities at two points, so this is not a-robto the median of the distribution. We discuss how to compute
lem. these statistics for our posterior in section 5.
. It is also common in Bayesian estimation problems to use
3.2 Priors the maximum a posteriori (MAP) value as the estimator. In
When no other information is given, we may assume that thgact we have the following result:
rewards are independently identically distributed ()i.0y  Theorem 2. When the expert's policy is optimal and fully

the principle of maximum entropy. Most of the prior func- specified, the IRL algorithm diNg and Russell, 20Q0is

tions considered in this paper will be of this form. The exacteqyivalent to returning the MAP estimator for the model of
prior to use however, depends on the characteristics of th@) with a Laplacian prior.

roblem: . o
P ) _ However in IRL problems where the posterior distribution
1. If we are completely agnostic about the prior, we canjs typically multimodal, a MAP estimator will not be as rep-

use the uniform distribution over the spaeé,... <  resentative as measures of central tendency like the mean.
R(s) < Ryuq. foreachs € S. If we do not want to spec-

ify any R, we can try the improper prioP(R) =1 4.2 Apprenticeship Learning

forall R € R™. For the apprenticeship learning task, the situation is rmere
2. Many real world Markov decision problems have parsi-teresting. Since we are attempting to learn a poticye can

monious reward structures, with most states having negiormally define the following class gfolicy loss functiors

ligible rewards. In such situations, it would be better to

assume a Gaussian or Laplacian prior: LY icy (R, ™) =| V(R) = VT(R) |,
1 L2 whereV*(R) is the vector of optimal values for each state
Pcaussian(R(s) = 1) = o 22, Vs €8 acheived by the optimal policy foR andp is some norm.

We wish to find ther that minimizes the expected policy loss
onax as well (Fig 2). But it will be simpler to treatx as justa over the posterior distribution faR. The following theorem
parameter of the distribution. accomplishes this:



Theorem 3. Given a distribution P(R) over reward
functions R for an MDP (S, A,T,~), the loss function
Lgolicy(R, ) is minimized for alp by 7},, the optimal policy
for the Markov Decision Problef = (S, A, T,~, Ep[R]).

Proof. From the Bellman equations (1) we can derive the fol-
lowing:

VI(R)=(I-7T")"'R (4)
whereT'™ is the| S| x | S| transition matrix for policyr. Thus,

for a states € S and fixedr, the value function is a linear
function of the rewards:

V™(s,R) =w(s,7)- R

Algorithm Pol i cyWal k(Distribution P, MDP M, Step Size5 )
1. Pick arandom reward vectdt € RSl /6.
2. m:=Policylteration(M,R)
3. Repeat
(a) Pick a reward vectaR uniformly at random from th
neighbours ofR in RI®! /5.
(b) ComputeQ™(s,a, R) forall (s,a) € S, A.
() If 3(s,a) € (S, A), Q"(s,7(s),R) < Q"(s,a, R)
i. #:=Policylteration(M,R,x)

v

wherew(s, ) is thes’th row of the coefficient matriXI —
vT™)~tin (4). Suppose we wish to maximiZe[V ™ (s, R)]
alone. Then,

max E[V™(s,R)] = max E|w(s, 7)-R] = max w(s,n)-E[R]

By definition this is equal td/};(s), the optimum value
function for M, and the maximizing policyr is 73, the op-
timal policy for M. Thus for all states € S, E[V™ (s, R)| is
maximum atr = 7},.

ButV*(s,R) > V™ (s, R) for all s € S, reward functions
R, and policiesr. Therefore

E[Lyoiicy(m)] = E(|| VI (R) = VT(R) [|,))
is minimized for allp by = = 7},. O

So, instead of trying a difficult direct minimization of the
expected policy loss, we can find the optimal policy for the
mean reward function, which gives the same answer.

5 Sampling and Rapid Convergence

We have seen that both reward learning and apprenticesh
learning require computing the mean of the posterior distri
tion. However the posterior is complex and analytical deriv

i. Set R := R andr := & with probability
min{1, ggg:i%}
Else _ _
i. SetR := R with probabilitymin{1, 772}
4. ReturnR

Figure 3: PolicyWalk Sampling Algorithm

steps of policy iteration (sd&utton and Barto, 199Bstart-

ing from the old policyr. HencePol i cyWal k is a correct
and efficient sampling procedure. Note that the asymptotic
memory complexity is the same as fari d\al k.

The second concern for the MCMC algorithm is the speed
of convergence of the Markov chain to the equilibrium dis-
tribution. The ideal Markov chain isapidly mixing(i.e. the
number of steps taken to reach equilibrium is polynomially
bounded), but theoretical proofs of rapid mixing are rare. W
will show that in the special case of the uniform prior, the
Markov chain for our posterior (3) is rapidly mixing using
the following result fron{Applegate and Kannan, 19pthat
bounds the mixing time of Markov chains for pseudo-log-
concave functions.

Lemmal. LetF(-) be a positive real valued function defined
on the cube{z € R"| — d < x; < d} for some positivel,
%tisfying for allx € [0, 1] and somey, 8

fl@)=fWl<alle-yle

tion of the mean is hard, even for the simplest case of the uni- d
form prior. Instead, we generate samples from these distrib &"

tions and then return the sample mean as our estimate of the

fAz+ 1 =Ny) 2 Af(z)+ (1 =Nf(y) -8

true mean of the distribution. The sampling technique we use

is an MCMC algorithmGr i dWal k (see[Vempala, 200h
that generates a Markov chain on the intersection points of
grid of lengthd in the regiorR!®! (denotedR!®!/6).

However, computing the posterior distribution at a partic-
ular point R requires calculation of the optimé@)-function
for R, an expensive operation. Therefore, we use a modi
fied version ofGri dWal k calledPol i cyWal k (Figure 3)
that is more efficient: While moving along a Markov chain,
the sampler also keeps track of the optimal policfor the
current reward vectoR. Observe that whem is known,
the Q function can be reduced to a linear function of the

wheref(z) = log F(x). Then the Markov chain induced by
& i dWal k (and hencePol i cyWal k) on F rapidly mixes
to within e of F in O(n?d*a?¢*” log 1) steps.

Proof. See[Applegate and Kannan, 19P3 O

Theorem 4. Given an MDPM = (S, A,T,~) with |S| =

N, and a distribution over reward®(R) = Prx(R|Ox)

defined by (3) with uniform prioPr overC = {R € R"| —

Riaz < Ri < Rpaz} If Rppa = O(1/N) then P can be
efficiently sampled (within errar) in O(N?log 1/¢) steps by
algorithmPol i cyVal k.

reward variables, similar to equation 4. Thus step 3b can

be performed efficiently. A change in the optimal policy

Proof. Since the uniform prior is the same for all poirfg

can easily be detected when moving to the next reward ved€ canignore it for sampling purposes along with the normal-

tor in the ch~ainR, because then for sore, a) € (S, A),
Q7 (s,7(s),R) < Q7(s,a,R) by Theorem 1. When this
happens, the new optimal policy is usually only slightly-dif

ferent from the old one and can be computed by just a few

izing constant. Therefore, I R) = axFE(Ox, R). Now
choose some arbitrary polieyand let

fﬂ(R) = Oy ZQF(‘SvaivR)
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Posterior Samples

Note thatf, is a linear function ofR and f(R) > f.(R),
forall R € C. Also we have,

R
max Q*(s,a) = max Q" (s,a) = max V7, (s) < /=
s,a s,a,T s, 1-— Yy
Similarly, min, , Q*(s,a) > —%=a=. Therefore,f(R) < B o, S
OLXJIV_’;n,a,w andfﬂ(R) > — aXJIV_Fz’;na,m and hence True Rewards ‘
20x N Rinax 2
fW(R)Zf(R)—lfvm'“ g

SoforallR,, R, € C andX € [0, 1],

ED 3‘%(513‘2 o o5 o8

FOAR +(1-ANRy) > fr(AR1+(1-A\)Ry)
2 )\f‘n'(Rl) + (1 - )‘)f‘n'(R2)
> M(R1)+ (1= )N f(Ry) Figure 6: Scatter diagrams of sampled rewards of two arbi-
20y NR trary states fpr agiven MDP and expert trajectory. Qur com-
-7 maz puted posterior is shown to be close to the true distribution
-
Therefore.f satis(;iels the conditions of Lemma 1 with= 3 ngjicy by Q-learning on the MDP + reward function. The
% =2N - 1(TN7) = 0O(1) and learning rate was controlled so that the agent was not atlowe
to converge to the optimal policy but came reasonably close.
oo [FB) = f(Re)| _ 20xNRmaz _ (V) The second agent executed a policy that maximized the ex-

Ri— Ryl ~ (1-7)0(%) pected total reward over the nexsteps k¢ was chosen to be
o ] slightly below the horizon time).

Hence the Markov chain induced by the GridWalk al- ForBIRL, we usedPol i cyWal k to sample the posterior

gorithm (and the PolicyWalk algorithm) onP mixes gistribution (3) with a uniform prior. We compared the resul

rapidly to within e of P in a number of steps equal t0 of the two methods by their averagedistance from the true

O(N? 3z N2e°Mlog1/e) = O(N?log1/e). O reward function (Figure 4) and the policy loss withnorm

(Figure 5) of the learned policy under the true reward. Both

fi ol:%fcg]ﬂ eh\i‘/\gr;gi”rlgg czleot(hle/ i\é\),v'asrggtbre:l%gs;girg&omeasures show substantial improvement. Note that we have
y Used a logarithmic scale on the x-axis.

after computing the mean without changing the optimal pol- We also measured the accuracy of our posterior distribu-
icy and all the value functions ar@@ functions get scaled by tion for small N by comparing it with the true distribution

k as well. of rewards i.e. the set of generated rewards that gave rise to
. the same trajectory by the expert. In Figure 6, we show scat-

6 Experiments ter plots of some rewards sampled from the posterior and the

We compared the performance of our BIRL approach to thdrue distribution for a 16-state MDP. These figures show that

IRL algorithm of [Ng and Russell, 20Q0experimentally. the posterior is very close to the true distribution.

First, we generated random MDPs wifti states (with/V ) .

varying from 10 to 1000) and rewards drawn from i.i.d. Gaus-6-1 From Domain Knowledge to Prior

sian priors. Then, we simulated two kinds of agents on thes&o show how domain knowledge about a problem can be in-

MDPs and used their trajectories as input: The first learnedorporated into the IRL formulation as an informative prior



Reward Loss 8 Conclusionsand Future Work

18 I niform —— Our work shows that improved solutions can be found for
1] Gaussian IRL by posing the problem as a Bayesian learning task. We

14
12
10

provided a theoretical framework and tractable algoritfons
Bayesian IRL and our solutions contain more information
about the reward structure than other methods. Our experi-
ments verify that our solutions are close to the true reward
functions and yield good policies for apprenticeship leagn
There are a few open questions remaining:
IS S 7000 1. Are there more informative priors that we can construct
N for specific IRL problems using background knowledge?
2. How well does IRL generalize? Suppose the transition
Figure 7: lIsing versus Uninformed Priors for Adventure function of the actor and the learner differed, how robust
Games would the reward function or policy learned from the
actor be, w.r.t the learner’s state space?

o N M O ®

we applied our methods to learning reward functions in ad-
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whereN is the set of neighbouring pairs of state<ig and
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