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Abstract

Modal logic represents knowledge that agents have about
other agents’ knowledge. Probabilistic modal logic fur-
ther captures probabilistic beliefs about probabilistic beliefs.
Models in those logics are useful for understanding and de-
cision making in conversations, bargaining situations, and
competitions. Unfortunately, probabilistic modal structures
are impractical for large real-world applications because they
represent their state space explicitly. In this paper we scale
up probabilistic modal structures by giving them a factored
representation. This representation applies conditional inde-
pendence for factoring the probabilistic aspect of the structure
(as in Bayesian Networks (BN)). We also present two exact
and one approximate algorithm for reasoning about the truth
value of probabilistic modal logic queries over a model en-
coded in a factored form. The first exact algorithm applies
inference in BNs to answer a limited class of queries. Our
second exact method applies a variable elimination scheme
and is applicable without restrictions. Our approximate al-
gorithm uses sampling and can be used for applications with
very large models. Given a query, it computes an answer and
its confidence level efficiently.

1 Introduction
Reasoning about knowledge plays an important role in
various contexts ranging from conversations to imperfect-
information games. Formal models of reasoning about
knowledge use modal operators and logic to express knowl-
edge and belief. These enable agents to take into account not
only facts that are true about the world, but also the knowl-
edge of other agents. For example, in a bargaining situation,
the seller of a car must consider what the potential buyer
knows about the car’s value. The buyer must also consider
what the seller knows about what the buyer knows about the
value, and so on.

In many applications, it is not enough to include certain
knowledge or lack thereof. For example, the seller of a car
may not know the buyer’s estimate of the car’s value, but
may have a probability distribution over it. Current for-
mal logical systems (especially modal logics) (Fitting 1993;
Fagin et al. 1995) cannot represent such scenarios. On the
other hand, probabilistic graphical models (Pearl 1988) can
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represent distributions over distributions (Blei, Ng, & Jor-
dan 2003), but are not granular enough for multiple levels of
complex beliefs.

A number of works have presented frameworks capa-
ble of capturing probabilistic beliefs about probabilistic be-
liefs (Fagin & Halpern 1988; Heifetz & Mongin 1998;
Aumann & Heifetz 2001; Shirazi & Amir 2007). These rely
on probabilistic modal structures that combine accessibility
graphs and probabilistic distributions. However, reasoning
with such structures does not scale to domains of many states
because it accesses every state explicitly. Consequently, rea-
soning is impractical even for simple scenarios such as Poker
(
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> 1012 states).

In this paper we provide a compact model and efficient
reasoning algorithms for nested probabilistic modalities.
Our model is capable of representing applications with large
state spaces. We describe syntax and semantics of our rep-
resentation, as well as reasoning algorithms for evaluating a
query on a model.

More specifically, we introduce a framework for model-
ing probabilistic knowledge that uses a Bayesian Network
(BN) (Pearl 1988) to represent the probabilistic relationship
between states. We provide two exact methods for answer-
ing queries based on the class of queries of interest. Our
first method performs inference in a BN representation of
the combined query and model. Our second method is a
variable elimination scheme in which we compute values for
sub-formulas of the query in a dynamic-programming fash-
ion. We show theoretically and experimentally that these
methods are faster than earlier techniques (Shirazi & Amir
2007). We also introduce a sampling method that is tractable
on larger models for which the exact methods are intractable.
We show that for a specific group of queries the probabil-
ity of error in the estimated value of the query does not de-
crease when the number of samples increases. Our method
addresses this issue by computing the confidence in the an-
swer to the query.

Most previous related works are limited to combining
probability with a special case of modal logic in which
accessibility relations are equivalence relations, which is
called probabilistic knowledge. Among those, (Fagin &
Halpern 1988; Heifetz & Mongin 1998) are mainly con-
cerned with providing a sound and complete axiomatization
for the logic of knowledge and probability. (Shirazi & Amir



2007) provides reasoning methods for general probabilistic
modal structures but does not scale up to large domains.

Another related work is (Milch & Koller 2000) in which
probabilistic epistemic logic is used to reason about the men-
tal states of an agent. This logic is a special case of proba-
bilistic knowledge with the additional assumption of agents
having a common prior probability distribution over states.

Adding probabilistic notions to modal logic is also con-
sidered in (Herzig 2003; Nie 1992). The former adds a unary
modal operator expressing that a proposition is more prob-
able than its negation, whereas the latter defines an exten-
sion of fuzzy modal logic to perform probabilistic semantic-
based approaches for finding documents relevant to a query.

Related works in the game theory literature mainly fo-
cus on imperfect information games. For example, (Koller
& Pfeffer 1995) provides an algorithm for finding optimal
randomized strategies in two-player imperfect information
competitive games. The state of these games can be repre-
sented with our model.

2 Factored Probabilistic Modal Structures
In this section, we provide a compact Bayesian Net-
work (BN) representation for probabilistic Kripke struc-
tures. A BN is a directed acyclic graph in which nodes
represent random variables, and the joint distribution of
the node values can be written as Pr(X1, . . . , Xn) =
Πn

i=1Pr(Xi|parents(Xi)). According to (Shirazi & Amir
2007), a probabilistic Kripke structure consists of a set of
states and a probabilistic accessibility relation (we redefine
it in the next section). The probabilistic accessibility relation
is defined for each pair of states. The probabilistic Kripke
structure is basically a graph of states with labeled edges.
Therefore, the size of this structure is quadratic in the num-
ber of states and it is not scalable to large domains.

In the following section we review the probabilistic
Kripke structures. Then, in Section 2.2 we provide complete
specifications of our representation.

2.1 Probabilistic Kripke Structures
For simplicity we assume that the agent wishes to reason
about a world that can be described in terms of a nonempty
set, Z, of state variables. Probabilistic modal formulas are
built up from a countable set of state variables Z using equal-
ity (=), propositional connectives (¬, ∧), and the modal
function K. We use > and ⊥ for truth and falsehood con-
stants. First, we need to define non-modal formulas. The
formation rules are:
1. For every state variable X and value x, X = x is a non-

modal formula.
2. > and ⊥ are non-modal formulas.
3. If X is a non-modal formula so is ¬X .
4. If X and Y are non-modal formulas so is X ∧ Y .
5. Every non-modal formula is a probabilistic modal for-

mula.
6. If X is a probabilistic modal formula so is (K(X) ∝ r)

when 0 < r ≤ 1 and ∝ ∈ {<,=}.
Note that we have a different modal function Ki for each
agent i in the domain. We take ∨, ⊃ and ≡ to be abbrevia-
tions in the usual way.

We use Texas Holdem poker game as an example of a
game with imperfect knowledge that can be modeled using
our framework. In Holdem, players receive two downcards
as their personal hand, after which there is a round of bet-
ting. Three boardcards are turned simultaneously (called the
”flop”) and another round of betting occurs. The next two
boardcards are turned one at a time, with a round of betting
after each card. A player may use any five-card combination
from the board and personal cards. There are some rules
that applied to the cards to rank hands. For more info refer
to http://www.texasholdem-poker.com/handrank.

In the Holdem example, suppose that we introduce two
new propositional symbols, w1 and w2, to show whether
player 1 or player 2 wins the hand, respectively. The value
of these symbols is determined based on the game rules ap-
plied to players’ hands and boardcards (players’ hands and
boardcards are state variables). In this example there are two
players, therefore we have two modal functions, K1 and K2

corresponding to player 1 and player 2. K1(w1) < 1/2
is an example of a probabilistic modal formula whose truth
value can be evaluated on the current state of the world.
K1(w1) < 1/2 demonstrates that the probability of player 1
winning the hand is less than 1/2 from her perspective.

Now, we describe the semantics of our language. Our
approach is in terms of possible worlds which is similar to
Kripke structures in modal logic.

Definition 2.1 A probabilistic Kripke structure M is a tuple
(S,P,V) in which
1. S is a nonempty set of states or possible worlds.
2. P is a conditional probability function. P(s′|s) denotes

the probability of accessing state s′ given that we are in
state s. P(s′|s) > 0 indicates that s′ is accessible from
s. Therefore, it is similar to the accessibility relation of
modal logic. Since P is a probability function, we should
ensure that the following constraints hold:
• 0 ≤ P(s′|s) ≤ 1
• For each state s ∈ S:

∑
s′∈S P(s′|s) = 1

3. V is an interpretation that associates with each state in S
a value assignment to the state variables in Z.

Probabilistic knowledge is a special case of probabilistic
modal logic in which the accessibility relation is an equiva-
lence relation. This model captures the intuition that agent
i considers state t accessible from state s if in both s and t
she has the same knowledge about the world.

The above definition is for one modal function. When
we have j modal functions (K1, . . .Kj) we need a probabil-
ity function Pi for each modal function Ki. Intuitively, the
probability function Pi represents the probability of access-
ing a state from the perspective of agent i.

In probabilistic modal logic, the true state of the world is
a state in S. An agent has a probability distribution over all
the states that are possible to her given the true state of the
world .

Example. Let (KJ, K3, KKQ32) be the cards of players and
the boardcards. Since player 1 does not know her opponent’s
hand, P1((KJ, 65, KKQ32)|(KJ, K3, KKQ32)) should be > 0.
P1 is uniform on all the possible states since the player does
not have any information about her opponents hand.



Figure 1: GKM of Holdem.

The truth value of any formula in a given state is evaluated
with the following definitions.
Definition 2.2 LetM = (S,P,V) be a probabilistic Kripke
structure. Let s be a state in S. For any probabilistic modal
formula ϕ, we define val(s, ϕ) recursively as follows.
1. val(s,X = x) = (V(s,X) = x) for a state variable X .
2. val(s,>) = true.
3. val(s,⊥) = false.
4. val(s,¬X) = ¬val(s,X).
5. val(s,X ∧ Y ) = val(s,X) ∧ val(s, Y ).
6. val(s,K(X) ∝ r) = true iff

∑
s′∈S,val(s′,X)=true

P(s′|s) ∝ r.

We use val’s definition to define logical entailment, |=.
Definition 2.3 M, s |= X iff val(s,X) is true.

2.2 Graphical Kripke Models
A probabilistic Kripke structure as defined above, (S,P,V),
has sizeO(|S|2). This representation is impractical for large
state spaces. In this section we provide a more compact rep-
resentation for probabilistic Kripke structures.

In our new model, a state is represented by a set of state
variables, Z. P is represented by a BN with 2|Z| variables:
Za

(i) and Zh
(i) for each Z(i) ∈ Z. Za

(i) stands for a state
variable for the actual state of the world, whereas Zh

(i) rep-
resents a variable for a hypothetical state of the world (an
agent cannot distinguish with certainty between this state
and the actual state). Pr(Zh|Za) is represented by the BN
which serves as P of probabilistic Kripke structures (e.g.,
see Figure 1).

Definition 2.4 A graphical Kripke model (GKM)M on a set
of random variables Z is a BN which is defined as follows:
1. The nodes are: Za

(1), . . . , Z
a
(|Z|), Z

h
(1), . . . , Z

h
(|Z|)

2. Pr(Zh|Za) is defined by the edges of M .
3. There are no edges between the nodes in Za.

The above definition is for one modal function, K. For
cases with j modal functions, K1, . . .Kj , we need to define
Zhi and Pr(Zhi |Za) for each modal function Ki.

Figure 1 shows the GKM of our Holdem example. The
nodes in the first row represent the actual state of the world,
whereas the second row represents a possible state of the
world. Each node takes values from {A,2,. . . ,10,J,Q,K} ×
{♠,♥,♣,♦}. The first and second nodes are observed by

Figure 2: Left: GKM of War. Right: Kripke structure of War.

player 1 to have values K♠ and J♣, respectively. In each
row, the first two nodes correspond to player 1’s hand, the
second two nodes correspond to player 2’s hand, and the
last five are the boardcards. From the perspective of player
1, player 2 can have any cards except the boardcards and the
cards in her hand. In the BN, this is shown by the edges to
the third and forth node in Zh. The boardcards and player
1’s hand cards are the same in the actual state of the world
and the hypothetical state of the world. Let Z1, . . . , Z9 stand
for the nodes in each row (Z1 be the leftmost node), the
conditional probability functions are:

Pr(Zh
i |Za

i ) =

{
1 if Zh

i = Za
i ;

0 otherwise.
for i ∈ {1, 2, 5, . . . , 9}

Pr(Zh
3 |Za

1 , Z
a
2 , Z

a
5 , . . . , Z

a
9 ) =

1

α

{
1 if Zh

3 6∈ {Za
1 , Z

a
2 , Z

a
5 , . . . , Z

a
9 };

0 otherwise.

As shown in the above equation, Zh
3 has a uniform distribu-

tion. α is the normalization factor. The conditional proba-
bility function for Zh

4 is the same as Zh
3 except that Zh

4 is a
child of Zh

3 and should not be equal to Zh
3 as well.

Theorem 2.5 Let Z be the set of state variables and k be the
number of agents. GKM has O(k|Z|) nodes and O(k|Z|2)
edges and each node has at most 2|Z| − 1 parents.

Note that this model is most useful when the size of the
largest Conditional Probability Table (CPT) is much smaller
than |S| or when the CPTs can be represented compactly
(e.g., uniform distribution). In those cases, the size of GKM
is much smaller than the size of the corresponding proba-
bilistic Kripke structure (O(2|Z|) nodes when state variables
are binary).

Example. We define a simpler 2-player game, named
War, for the purpose of exposition with a smaller set of
states. In War, there is a deck of three cards, A, B, and
C. One card is dealt to each player and the third card is
face down. The player with the highest card wins the game
(A > B > C). The Kripke model has six states, and so can
be easily analyzed. The equivalence classes for player 1 are
shown in the right part of Figure 2. The first rounded rect-
angle corresponds to the class in which player 1 has A and
player 2 either has B or C (the actual state of the world is
either AB or AC). In this equivalence class, player 1 knows
that she is winning with probability 1. Player 1 has a proba-
bility distribution over each of these equivalence classes.

The GKM representing the equivalence classes of player
1 is shown in the left part of Figure 2. Za represent the actual



FUNCTION Q2BNa(query q, set of state variables Z)
Pa: associates with each node a set of parent nodes.
This function returns the query node of the BN.
1. if q = Ki(x) then
2. Zhi ← a set of new nodes for all state variables
3. Pa(Zhi)← Z with conditional probability of Pi

4. return Q2BN(x, Zhi )
5. else
6. n← new node
7. if q is Z(i) = x then Pa(n) = Z(i)

8. else if q = ¬x then Pa(n) = Q2BN(x, Z)
9. else if q = x ∧ y then
10. Pa(n) = {Q2BN(x, Z), Q2BN(y, Z)}
11. return n

aWe do not delve into the details of CPTs in this function.

FUNCTION QuAn(query q, state s)
1. Za ← a set of new nodes corresponding to all state variables
2. return Pr(Q2BN(q, Za) = 1|Za = s)

//the probability is computed using any BN inference method

Figure 3: Query Answering (QuAn) algorithm.

state of the world and Zh represent the hypothetical state of
the world that player 1 considers possible. In this example
P (Zh

2 |Za
1 ) is uniform when Zh

2 6= Za
1 (P (Zh

2 = B|Za
1 =

A) = 1
2 and P (Zh

2 = C|Za
1 = A) = 1

2 ). P (Zh
1 |Za

1 ) is
equal to 1 when Zh

1 = Za
1 and is 0 otherwise.

3 Query Answering
In this section we provide reasoning methods for answer-
ing queries over GKMs. Previous sections showed that us-
ing GKMs potentially reduces the size of the model expo-
nentially. The reasoning methods known for probabilistic
Kripke structures cannot be used on GKMs in practice. This
is because they enforce explicit access to every state in the
probabilistic Kripke structure. In this section we design
new methods for reasoning with GKMs and show that they
are more efficient than their counterparts for probabilistic
Kripke structures.

In Section 3.1 we investigate a class of queries that can be
answered by inference in BNs. We also introduce a method
that answers these queries by taking advantage of the BN
structure of GKMs. In Sections 3.2 and 3.3 we provide an
exact and a sampling algorithm for answering probabilistic
modal queries (defined in Section 2.1), respectively.

3.1 Answering Expectation Queries
Any probabilistic modal query with no nested modal func-
tion can be answered by computing the marginal probability
of a node in a BN. For example, for K1(x) < r we add a
node x as a child of the hypothetical state of the correspond-
ing GKM. Since x is a non-modal formula, it can be easily
added as a node to the BN. In this new model Pr(x|Za = s)
is equal to the value of K1(x) on state s which can be com-
pared to r, thus answering K1(x) < r.

A probabilistic modal query with nested modal functions
cannot be modeled with a BN since the parameter of its
modal function is inequality. For example, BNs cannot rep-

resent queries such as K1(K2(x) < 1
2 ) < 3

4 . In this ex-
ampleK2(x) can be represented by the marginal probability
of a node given the actual state of the world in a BN. How-
ever, we do not know a way to introduce another node that
compares this value with a number.

Inference can answer queries with no inequality (e.g.,
K1(K2(x))). The answer to such queries is a number be-
tween 0 and 1. In these queries we treat the modal function
as an expectation function. K1(K2(x)) denotes the expected
value from the perspective of agent 1 of the expected value
of x from the perspective of agent 2.

Based on Definition 2.2, the value of K1(x) is equal to
the expected value of x from the perspective of agent 1.

K1(x) =
∑
s′∈S

x(s′)P1(s′|s) = E1(x)

where x(s′) denotes the value of x on state s′, and P1(s′|s)
is the probability of accessing state s′ when the true state of
the world is s from the perspective of agent 1.

The expectation queries have the following format:
1. Every non-modal formula is a query.
2. If Q is a query so is K(Q).
Algorithm QuAn of Figure 3 computes the answer to such
queries. First, it transforms the query into a BN (using
the GKM), and then computes the answer to the query
by performing inference in the BN (any inference method
can be used (Zhang & Poole 1994; Jordan et al. 1999;
Yedidia, Freeman, & Weiss 2004)).

Example. Suppose that the query

Figure 4: BN for
K1(K2(x))

is K1(K2(x)) on state s. First, we
need to transform this query into a
BN. The BN is shown in Figure 4.
Za, Zh1 , and Zh2 each represent a
set of nodes. Za is the actual state
of the world. Zh1 is the hypothetical
state from the perspective of player 1
(since the first modal function isK1).
Zh2 is the hypothetical state from
the perspective of player 2. The last
node, x, is a non-modal formula on
the state variables, therefore, can be
represented by a node. After creating
the BN, the value of Pr(x|Za = s)
is computed by performing inference

in the BN. This value is equal to the value of K1(K2(x)) on
state s and so is the answer to the query.

The following equations justify our method. It shows
that the value of Pr(x|Za = s) is equal to the value of
K1(K2(x)) on state s.

Pr(x|Za = s) =
∑
Zh1

∑
Zh2

Pr(x,Zh1 ,Zh2 |Za = s)

=
∑
Zh1

∑
Zh2

Pr(x|Zh2)Pr(Zh2 |Zh1)Pr(Zh1 |Za = s)

=
∑
Zh1

Pr(Zh1 |Za = s)
∑
Zh2

Pr(x|Zh2)Pr(Zh2 |Zh1)

=
∑
Zh1

Pr(Zh1 |Za = s)
(
K2(x) on Zh1

)
= K1(K2(x)) on s



In the following sections we provide efficient algorithms
for queries with inequalities (probabilistic modal queries).

3.2 Ordered Variable Elimination
In this section we provide an algorithm to answer probabilis-
tic modal queries. In the previous section we mentioned that
existing BN inference methods cannot answer these queries.
The algorithm that we introduce is called Ordered Variable
Elimination (OVE). The following example justifies that the
original variable elimination (see (Pearl 1988)) does not an-
swer the following query because some of the summations
participate in inequalities. Therefore, the order of some of
the summations cannot be changed.

Example. Assume the query K1(K2(x) < 1
2 ) < 3

4 on s.
This query is calculated as follows:

K1(K2(x) <
1

2
) <

3

4
on s

=

(∑
Zh1

Pr(Zh1 |Za = s)
(
K2(x) <

1

2
on Zh1

))
<

3

4

=

(∑
Zh1

Pr(Zh1 |Za = s)((∑
Zh2

Pr(x|Zh2)Pr(Zh2 |Zh1)
)
<

1

2

))
<

3

4

In this formula we cannot move
∑

Zh1 inside
∑

Zh2 , since
the latter participates in an inequality. OVE performs vari-
able elimination on this formula in two rounds. It eliminates
variables Zh2 in the first round and variables Zh1 in the sec-
ond round. Assume that Z′ which is a subset of Zh1 is the set
of parents of Zh2 in the BN calculated by Function Q2BN of
the previous section. After the first round of variable elim-
ination

(∑
Zh2 Pr(x|Zh2)Pr(Zh2 |Zh1)

)
< 1

2 is replaced
by f(Z′) < 1

2 . The result is a summation over Zh1 which is
computed in the second round of variable elimination.

The algorithm is shown in figure 5. There are a few stan-
dard ways to speed up this function. For example, instead
of summing over all Zs we can sum over those in which
Pr(Z|Z′) is not zero. This will provide a faster approach
when Pr(Z|Z′) is sparse.

Theorem 3.1 Let q be a query, s be a state, v be the max-
imum size of the domain of random variables, and t be the
size of the largest factor. Function OVE calculates the value
of q on s in O(vt) time.

Elimination is deriven by an ordering on variables. OVE
does not allow all the orders. Therefore, for some graphs its
running time is worse than the variable elimination’s. Typ-
ically, vt << |S|. However, the worst-case running time
of this algorithm is the same as the running time of GBU in
(Shirazi & Amir 2007) which is the fastest exact method in
that paper.

3.3 Sampling with Confidence
In this section we provide a sampling method to answer
queries on GKMs. Our method is based on probabilistic
logic sampling of (Henrion 1986) which is the simplest and
first proposed sampling algorithm for BNs. This method is
optimal for our query answering because our evidence nodes

FUNCTION OVE(query q, state s)
q: the query of the form K(1)(. . . (K(m)(x) < n(m)) . . .) <

n(1) in which K(i) ∈ {K1, . . . ,Kj} for j agentsa

s: list of actual-state values
Za: list of actual-state variables
Y : query nodeb

Z(i): list of hypothetical-state variables corresponding to K(i)

1. Za ← set of new nodes for all state variables
2. Y ← Q2BN (q, Za)
3. F ← list of conditional probabilities in the model
4. for i← m to 1
5. while Z(i) is not empty
6. remove node z from Z(i)

7. sum-out(F , z)
8. f(Z′)← the result of previous loop /*Z′ ⊆ Z(i−1)*/
9. add f(Z′) < n(i) to F
10. h← the multiplication of all factors in F
11. return h(Y )∑

Y h(Y )

aFor simplicity we only treat <. The inequality can be > as
well.

bQ2BN is similar to the one in the previous section except that
these queries have inequalities. But it does not affect the BN.

Figure 5: Ordered Variable Elimination (OVE) algorithm.

are root nodes. The details of the method is provided in the
rest of this section.

First, we show that the estimated values of some queries
may not converge to the true values by increasing the num-
ber of samples. Consequently, the only way to answer these
queries is to use an exact method. The following theorem
states this result.
Theorem 3.2 Let K(x) < n be a query, s be a state,
and s1, s2, . . . be a sequence of independent and identi-
cally distributed states sampled from Pr(Zh|Z = s). Define
K̂m = x(s1)+...+x(sm)

m to be the observed value of K(x) us-
ing m samples. Pr( lim

m→∞
(K̂m < n) does not exist ) = 1

when n is equal to the value of K(x) on s and 0 < n < 1.
Proof Sketch. We show the proof for n = 1

2 . We show that

Pr( lim
m→∞

(K̂m <
1
2

) does not exist ) = 1 when the value of

K(x) on s is equal to 1
2 .

Since the value of K̂m < n for a specific m is either 0
or 1, limm→∞(K̂m < 1

2 ) (if exists) should be either 0 or 1.
First, we show that Pr(limm→∞(K̂m < 1

2 ) = 1) = 0 (the
proof for value 0 is similar to the proof for value 1).

By definition of limit of a function at infinity,
limm→∞(K̂m < 1

2 ) = 1 if and only if for each ε > 0
there exists an N such that |(K̂m < 1

2 ) − 1| < ε whenever
m > N . Since K̂m < 1

2 is binary, our definition would be
K̂m < 1

2 for m > N .
Each sample is drawn from a Bernoulli distribution with

mean 1
2 . To compute the above probability we need to an-

swer the following question. In a one-dimensional random
walk, what is the probability that no return to the origin
occurs up to and including time 2m? A random walk is



modeled with X(t + 1) = X(t) + Φ(t). In this notation,
Φ(t)s are independent and identically distributed Bernoulli
random variables that have value +1 and −1 with probabil-
ity 1/2 at all times.

By lemma 1 of chapter III.3 of (Feller 1968), the proba-
bility that no return to the origin occurs up to and including
time 2m is the same as the probability that a return occurs at
time 2m (i.e., the number of +1s is equal to the number of
-1s). This probability is:

Pr(return at time 2m) =

(
2m
m

)
22m

We calculate the probability that in an infinite sequence no
return to the origin occurs by computing the limit of above
probability at infinity.

Pr( lim
m→∞

(K̂m <
1
2

) = 1) = lim
n→∞

(
2m
m

)
22m

= 0

Similarly we can show that Pr(limm→∞(K̂m < 1
2 ) =

0) = 0. Using these results, it holds that Pr( lim
m→∞

(K̂m <

n) does not exist ) = 1. 2

Based on this theorem, the accuracy of a sampling method
does not necessarily increase with the number of samples.
To estimate the accuracy of the value of a query, our sam-
pling method not only calculates the truth value of the query
but also returns the confidence level of the method in that
value. The confidence level is the probability of the query
being true given the set of samples.

Function CoSa shown in Figure 6 presents our sampling
method. It returns the probability of the query being true.
The function first transforms the query to its BN representa-
tion. Then, it calculates the probability of q = 1 recursively
using Function RecCS (e.g., if RecCS returns 0 the truth
value of the query is equal to 0).

For queries with no modal function, RecCS calculates the
value of q on s (the details of this calculation is not shown
in the function) and returns the probability of q = 1 based
on this value. For queries with modal functions such as q
= Ki(q′) < n, RecCS repeats the following step m times.
It samples a new state s′ accessible from s and recursively
computes the probability of q′ on s′. Then, RecCS calcu-
lates the probability of q = 1 using the probabilities of
the values of these samples. Function RecCS calls Func-
tion CalculateProb to perform this calculation. In the next
few paragraphs we explain how CalulateProb computes the
probability of the query.

Imagine the query q = K1(x) < 0.4 on s. First, we sam-
plem states from the probability distribution Pr(Zh|Z = s)
and we calculate the value of x on each sampled state. Then,
we compute the probability of q = 1 given these values. Let
there be k samples with value 1. Each sample is a Bernoulli
trial whose probability of success is p = K1(x). The sam-
ple proportion p̂ is the fraction of samples with value 1 so
p̂ = k

m . When m is large, p̂ has an approximately nor-
mal distribution. The standard deviation of the sample pro-

portion is σ =
√

p(1−p)
m . Since the true population pro-

portion (p) is unknown, we use standard error instead of

FUNCTION CoSa(query q, state s)
q: the query of the form K(1)(. . . (K(m)(x) < n(m)) . . .) <

n(1) in which K(i) ∈ {K1, . . . ,Kj} for j agents
s: list of actual-state values
Za: list of actual-state variables
Y : query node
Z(i): list of hypothetical-state variables corresponding to K(i)

1. Za ← set of new nodes for all state variables
2. Y ← Q2BN (q, Za)
3. return RecCS(q, s, Za)

FUNCTION RecCS(query q, state s, set of nodes Z)
1. if q =

(
K(i)(q′) < n

)
then

2. T ← ∅
3. for j ← 1 to m
4. sj ← sample according to Pr(Z(i)|Z = s)

5. s′ ← value of non-leaf nodes in Z(i)

6. if s′ /∈ T then
7. T ← add s′ to T with weight 1

8. conf(s′)← RecCS(q′, sj , Z(i))
9. else
10. weight(s′)← weight(s′) +1
11. return CalculateProb(q, T )
12. else if q = x then
13. if value x on s is true then return 1
14. else return 0

Figure 6: Confidence Sampling (CoSa) algorithm.

σ. The standard error provides an unbiased estimate of the
standard deviation. It can be calculated from the equation

SE =
√

p̂(1−p̂)
m . Therefore, K1(x)−p̂

SE ∼ N(0, 1)and the
probability of the query is calculated from:

Pr(K1(x) < n) = Φ
( n− p̂√

p̂(1−p̂)
m

)
(1)

where Φ is the cumulative distribution function of the stan-
dard normal distribution.

For queries with nested modal functions, the exact values
of the sub-query on the sampled states are unknown. We
only have the probability of the sub-query on those states.
To calculate the probability of K1(q′) < n where q′ has a
modal function, we use the equation bellow:

Pr(K1(q′) < 0.4) =∑
(v1,...,vm)∈{0,1}m

Pr(K1(q′) < 0.4|q′s1 = v1, . . . , q
′
sm

= vm)

Pr(q′s1 = v1) . . . P r(q′s1 = v1)

where s1, . . . , sm are sampled states and q′si
= vi means the

value of q′ on sampled state si is equal to vi. Pr(q′si
=

vi) is calculated recursively. Pr(K1(q′) < 0.4|q′s1
=

v1, . . . , q
′
sm

= vm) is calculated using Formula 1 with p̂
equal to sample proportion.

Theorem 3.3 Let q be a query, s be a state, k be the number
of nested modal functions, and m be the number of samples
at each stage. Function CoSa calculates the truth value of q
on s in O(mk+2) time.
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Figure 7: Running time comparison of exact methods (KBU,
ToDo, OVE) with approximate methods (ARea 10, CoSa 10,
CoSa 50).

4 Experimental Results
In this section we compare the running time of OVE and
CoSa with their counterparts in (Shirazi & Amir 2007)(KBU
(Knowledge Bottom-Up), ToDo (Top-Down), and ARea 10
(Approximate Reasoning)). This section confirms the theo-
retical results of section 3.3 about the running time of our
algorithms. Figure 7 shows the running time of these meth-
ods on Holdem. ToDo and KBU are exact methods defined
for probabilistic Kripke structures and ARea 10 is a sam-
pling method in which the number of samples used to eval-
uate each modal function is equal to 10. As shown in the
figure, OVE and KBU grow linearly with the degree of nest-
ing in queries. Moreover, OVE takes advantage of the uni-
form conditional probability distribution over states in our
tests and therefore is even faster. Both approximate meth-
ods (ARea and CoSa) grow exponentially with the degree of
nesting, however for the same number of samples Cosa is
much faster (compare ARea 10 with CoSa 10). The figure
shows that even when we increase the number of samples to
50, CoSa 50 returns the answer faster than ARea 10. Note
that in typical real-world situations the degree of nesting in
queries is small (e.g., less than 4; in poker a player at most
cares about what the opponent knows about what the player
knows).

In Holdem the number of states is small, so CoSa does not
have any advantage over OVE. OVE is slow when the size
of the state space is large, since its running time is linear
in the size of the state space. In those cases CoSa returns
the approximate answer much faster. Consequently, CoSa
should be used only for domains with large state spaces (e.g.,
five card poker with

(
52
5

)
.
(
47
5

)
states). In small domains,

however, our exact method returns the answer reasonably
fast.

5 Conclusions & Future Work
We provided a factored representation for probabilistic
modal structures. We also introduced exact and approximate
reasoning methods for answering queries on such models.
Our model is more compact than previous representations

enabling larger-scale applications. Further, we show theo-
retically and experimentally that our methods are faster than
their counterparts in previous representations.

Investigating the belief update in our language is one of
our immediate future-work directions. There, it is open how
to update a model with observation of opponent actions.
Also, so far we have assumed that the GKM is available to
us. In future works we also aim to find methods that learn a
GKM.
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