
Solving Satisfiability in Ground Logic with
Equality by Efficient Conversion to

Propositional Logic

Igor Gammer and Eyal Amir

Department of Computer Science
University of Illinois, Urbana-Champaign

{igammer2,eyal}@uiuc.edu

Abstract Ground Logic with Equality (GL=) is a subset of First-Order
Logic (FOL) in which functions or quantifiers are excluded, but equality
is preserved. We argue about GL=’s unique position (in terms of expres-
siveness and ease of decidability) between FOL and Propositional Logic
(PL). We aim to solve satisfiability (SAT) problems formulated in GL=

by converting them into PL using a satisfiability-preserving conversion
algorithms, and running a general SAT solver on the resulting PL Knowl-
edge Base (KB). We introduce two conversion algorithms, with the latter
utilizing the former as a subroutine, and prove their correctness - that
is, that the translation preserves satisfiability. The main contribution of
this work is in utilizing input fragmentation to yield PL KBs that are
smaller than possible prior to our work, thus resulting in the ability to
solve GL= SAT problems faster than was possible before.

1 Introduction

Satisfiability in PL is well-studied in Computer Science because of its theoretical
significance and the multitude of practical applications that it has. A significant
number of real-world problems can be modeled in or translated to propositional
knowledge bases (KBs), such that solution to SAT on the PL KB can be easily
translated to a solution of the original problem. As a consequence, modern-
day PL SAT solvers operate very efficiently in many practical cases. Although
the general problem of satisfiability in PL is NP-complete in the number of
variables, the best practical SAT solvers applied to moderately-sized problems
can terminate in minutes and hours, not years.

However, PL is not a sufficiently complex language for some problems. It is
generally well understood that every representation language faces a trade-off
between expressive power (which determines the subset of real-world applica-
tions that can be reasonably modeled in that language) and complexity (which
determines, among other, the running time of the algorithms performing infer-
ence in that language). For example, PL has no notion of equality, a fundamental
notion which is required in many applications, such as game playing (and specif-
ically game playing with partial information such as Kriegspiel[1]), where one
needs to assert and reason that two positions or game pieces are equal.

2

A natural solution is to use a language with more expressive power, and the
usual choice for many applications is FOL. The price of much higher expressive
power, however, is complexity of algorithms; even though reasoning algorithms
for FOL exist ([2] is one example), they are less efficient than PL SAT solvers.
Even assuming the best progress in improving the algorithms, theoretical results
challenge for FOL inference as FOL, unlike PL, is only semi-decidable.

GL= can be seen as a compromise between complexity and expressive power.
Many problems that require equality do not, however, need the full expressive-
ness of FOL and can be well-expressed in GL=. Having strictly more expressive
power than PL (any PL KB can be easily translated to an equivalent KB in
GL= by choosing a constant for each proposition in L of PL; choosing no predi-
cates; and fixing {true, false} as the domain) but still being sufficiently simple to
permit efficient inference, GL= establishes itself at a favorable level of formalism.

In this paper, we explore the inference in GL=, and particularly solving
SAT problems. Rather than introducing a brand-new SAT solving routine in
GL=, we will investigate algorithms for translating arbitrary KBs in GL= into
”equivalent” KBs in PL, where equivalence is defined as preserving satisfiability.
That is, the resulting KB in PL will be satisfiable if and only if the original
KB in GL= was satisfiable. Having an efficient algorithm for performing such
translation easily leads us to solving SAT in GL= by utilizing highly efficient, off-
the-shelf PL SAT solvers. This approach has an added benefit of automatically
improving as SAT solvers improve, and thus can be seen as gaining power ”for
free” as the field of SAT solving progresses (whereas a new GL= SAT algorithm
would have to be manually improved to include any new ideas the SAT solving
community introduces).

To accomplish the conversion, we first describe a ”naive” encoding of GL=

KBs into PL. The encoding is naive only in the sense of being natural, and
thus not very efficient; its correctness, however, is proved. The last section de-
scribes the main contribution of this paper: an advanced encoding algorithm
that employs divide-and-conquer approach while using the naive encoding as a
subprocedure. Our proposed algorithm has an added advantage of being inde-
pendent of the actual encoding subprocedure used, so long as that subprocedure
is satisfiabilty-equivalent (in the sense defined later). As such, our algorithm will
benefit from any improvement to the underlying procedure without any explicit
change being necessary.

The rest of the paper is organized as follows. In Section 2, we give a brief
overview of fundamentals associated with the topic at hand. Section 3 proposes
a simple yet effective conversion algorithm, proves its correctness, and then an-
alyzes its efficiency. Section 4, which form the core of this paper, introduces the
more efficient algorithm mentioned above, which functions by fragmenting the
input and using the previously formulated algorithm on the fragments. We prove
that this algorithm is correct - that is, even though some information appears
to be missing from the encoding (which fact is chiefly responsible for the lower
encoding size and thus higher SAT solving efficiency), satisfiability is preserved.

3

Finally, Section 6 presents an overview of related work, examines our future
plans, and provides a summary for this paper.

2 Fundamentals

2.1 Ground Logic with Equality

Ground Logic with Equality (GL=) is a subset of FOL which excludes quantifiers
and functions, but keeps constants and predicates, as well as equality. The only
other element of FOL - variables - is not specifically excluded, but becomes
synonymous with constants due to the exclusion of quantifiers. No additional
restrictions are placed on the formulas or KBs.

In this section, we give formal definitions necessary to establish a framework
within which the discussion of the rest of this paper will occur. All of these
definitions are adapted from the corresponding definitions of FOL, with changes
required to accommodate the lack of functions and quantifiers. In particular, it
is worthwhile to mention the basic terms of FOL which are missing from GL=.

Besides variables, three other terms of FOL are no longer applicable: free
occurrence, sentences and terms. In FOL, a variable is said to occur free if it is
not bound by a quantifier; since we don’t have quantifiers, we don’t distinguish
between free and bound occurrences. A sentence is a special case of formula
which contains no free variables; in GL=, every formula is a sentence. Finally,
a term of FOL is an entity which is interpreted as an element in the universe -
that is, either a ground term (variable or constant), or a function symbol applied
to terms. Because we do not have functions (or variables), our terms will always
be constant symbols, and thus do not deserve a definition of their own.

We will use the standard definitions from formal logic, with their standard
meanings. The same terms applied to GL= will be assumed to hold naturally
derived meaning as well. We will talk about languages, formulas (and sets of
formulas, which we will denote as Knowledge Bases (KBs)), interpretations and
models, as well as satisfiability and unsatisfiability. The most important defini-
tions are reproduced below.

Definition 1 (Syntax). A formula in GL= with language L is obtained in one
of the six following ways:

a. x = y, where x and y are constants.
b. P kx1...xk, where P k is a k-ary predicate in L, and for each i, xi is a constant

in L.
c. F1 ∨ F2, where F1 and F2 are formulas.
d. F1 ∧ F2, where F1 and F2 are formulas.
e. ¬F , where F is a formula.
f. (F), where F is a formula.

Definition 2 (Interpretation). An interpretation in GL= with language L is
a pair (A, β), where

4

a. A is an arbitrary set, also referred to as domain or universe.
b. β is a map (also referred to as an assignment) on L, defined as follows:

(a) For each constant x from L, β assigns an element of A.
(b) For each k-ary predicate P from L, β assigns a subset of Ak.

Definition 3 (Semantics). Let F be a formula in GL= with language L, and
let I = (A, β) be an interpretation on L. Then F is said to hold (alternatively,
to be true) under I if and only if:

a. x = y: β(x) = β(y); that is, the assignment β maps x and y into the same
element of the domain A.

b. P kx1...xk: (β(x1), ..., β(xk)) ∈ β(P k); that is, the k-tuple obtained by map-
ping each of the predicate arguments is an element of the subset (of all k-
tuples of the domain) to which the assignment maps the predicate.

c. The remaining cases are obvious and are omitted here for space.

If F does not hold, it is also said to be false.

3 Naive Conversion

In this section, we explore the naive conversion of a GL= KB into a PL KB.
Note that ”naiveness” applies only to efficiency; the correctness of the conver-
sion is preserved. We first describe the algorithm and then state and prove the
correctness theorem.

3.1 Algorithm

The basic premise of the conversion is to associate a proposition with every
instance of a predicate or equality. This in particular means that the original
KB determines the language of the resulting PL KB. The increased expressive
power of GL= compared to PL is responsible for this increase in complexity.

Our final goal is to find an efficient (that is, generating as small an output
as possible) conversion that preserves satisfiability. We define this precisely.

Definition 4 (Conversion Algorithm). A conversion algorithm is one that
accepts as input a KB in GL= and outputs a KB in PL. Alternatively, a conver-
sion function is one with domain of all KBs in GL= and codomain of all KBs
in PL.

Definition 5 (Satisfiability Equivalence for Formulas and Algorithms).
We define satisfiability equivalence for both formulas and algorithms.

a. Given a GL= KB Φ and a PL KB Φ′, we call Φ and Φ′ satisfiability equiv-
alent, or SAT-EQ, if Φ and Φ′ are either both satisfiable, or both unsatis-
fiable.

5

b. A conversion algorithm A with the property that, for every GL= KB Φ, when-
ever A(Φ) = Φ′, then Φ and Φ′ are satisfiability equivalent, is satisfiability
equivalent.

We define the translation of a single formula first.

Definition 6 (Naive Translation). Let φ be a formula in GL= with language
L. The Naive Translation of φ, NT(φ), is a formula φ′ in PL with language L′

defined on the structure of φ as follows:

a. x = y: A new proposition EXY , which is created and added to L′ if it is not
already there.

b. P kx1...xk: A new proposition PX1...Xk, which is created and added to L′ if
it is not already there.

c. F1 ∨ F2: NT(F1) ∨ NT(F2).
d. F1 ∧ F2: NT(F1) ∧ NT(F2).
e. ¬F : ¬NT(F).
f. (F): (NT(F)).

As defined above, L′ contains a unique proposition for each instance of equality
and for each instance of predicate in φ.

If the original formula does not contain equality, this translation is indeed
a satisfiability-equivalent algorithm. However, as soon as equality is introduced,
this property no longer holds. To illustrate this, consider a simple counterex-
ample with a GL= KB whose language contains one binary predicate and three
constants, consisting of three formulas: {Pxy, ¬Pxz, y = z}. Clearly, this KB is
UNSAT (any interpretation of this KB would have to map y and z to the same
element in its domain A, and then the pairs (x, y) and (x, z) would have to be
mapped to the same pair in A2; but that pair cannot both belong and not belong
to a subset of A2 to which the interpretation maps P). However, Naive Transla-
tion of this KB produces a PL KB containing three propositions {PXY , ¬PXZ,
EY Z} with no additional constraints between them. This KB is satisfiable, for
example by an assignment {PXY → true, PXZ → false, EY Z → true}.

In order to preserve satisfiability, we need to encode additional constraints
intepreting equality in propositional logic. In general, there are three ways of
dealing with equality in inference ([3]): adding additional formulas, using special
rules (such as demodulation and paramodulation), and modifying the inference
rule to be informed of equality (such as by introducing superposition into rule
calculus). While the last two ways are useful for general inference, it is not imme-
diately clear how to implement either of them for conversion into PL. Therefore,
we will explicitly add formulas that capture the precise meaning of equality.

Definition 7 (Equality Semantics). Let L be a GL= language. Then the
Equality Semantics (ES) of L is a set of GL= formulas defined as the union of:

a. For every constant x in L: x = x.
b. For every pair of constants x, y in L: x = y → y = x.

6

c. For every triple of constants x, y, and z in L: (x = y ∧ y = z) → (x = z)
d. For every k-ary predicate P k and for every 2k-tuple of variables (a1, ..., ak,

b1, ..., bk) in L:

((a1 = b1) ∧ ... ∧ (ak = bk)) → (P ka1...ak ↔ P kb1...bk) (1)

Note that the formulas which capture the notion of equality do not depend on
the contents of our KB, but only on the language. Nor are these formulas part
of the KB (although adding them will not affect satisfiability); instead, they will
be translated to PL using the mechanism defined above (NT) and added to the
PL KB.

Definition 8 (Naive Conversion). Let Φ be a KB in GL= with language L.
The Naive Conversion of Φ, NC(Φ), is a KB Φ′ in PL defined as:

Φ′ := NT (Φ) ∪NT (ES(L)) (2)

It is instructive to revisit the earlier counterexample and ensure that it no longer
holds, which we will not do for space reasons.

3.2 Correctness

We now state and prove the main result of this section: the conversion defined
above preserves satisfiability. The proof will be an immediate application of two
analogous results. Given an interpretation in either GL= or PL, it is possible to
construct an interpretation in PL (resp. GL=) for which an important property
holds: if the original interpretation was a model for any KB in GL= (resp. PL),
then the constructed interpretation will also be a model for a KB in PL (resp.
GL=) related to the original interpretation by NC.

Theorem 9 (Naive Conversion is SAT-EQ). Let Φ be a KB in GL= with
language L, and let Φ′ be NC(Φ). Then Φ is satisfiable if and only if Φ′ is
satisfiable. That is, NC is SAT-EQ.

Proof. 1 The proof has two parts, each of which is further subdivided into two
sections. In first part, we first prove that SAT Φ → SAT Φ′, and in the second
part we prove the converse. Within each part, our proof will proceed as follows:
Given that a KB is SAT, there must exist an interpretation under which it holds.
We then (a) construct an interpretation for the other KB and (b) show that the
other KB holds under that interpretation. For space reasons, we only show the
construction in each case.

[SAT Φ → SAT Φ′] Assume that Φ is satisfiable. Then there exists an inter-
pretation I := (A, β) under which Φ holds. We will construct the PL assignment
β′ and show that Φ′ holds under this assignment. We define β′ as follows:

1 Due to space concerns, we omit some proofs, and only show the brief outlines of the
others. Full versions of all proofs of this paper are available from the authors.

7

a. For every proposition EXY of the first kind, β′ assigns true if β(x) = β(y),
and false otherwise.

b. For every proposition PX1...Xk of the second kind, β′ assigns true if
(β(x1), ..., β(xk)) ∈ β(P), and false otherwise.

It is now possible to show that Φ′ holds under β′; the precise argument is omitted
for space.

[SAT Φ′ → SAT Φ] Assume that Φ′ is satisfiable. Then there exists an
assignment β′ under which Φ′ holds. We will construct the GL= interpretation
I = (A, β) and show that Φ holds under this interpretation.

To define A, we need an intermediate result that will later help in our proof.

Lemma 10. Let Lconst be the subset of L containing precisely all constants of
L. Let R be a binary relation defined on Lconst as follows: for any constants a
and b from Lconst, R(a, b) holds if and only if β′(EAB) = true. Then R is an
equivalence relation.

Proof. Omitted for space; a simple argument showing reflexivity, symmetry and
transitivity directly suffices. ut

As an equivalence relation, R partitions Lconst into equivalence classes. Let
N be the total number of those classes (where 1 ≤ N ≤ |Lconst|). We define the
domain A to be {1, 2, ..., N}, the set of positive integers from 1 to N , inclusive.
Further, we associate with every equivalence class a unique number between 1
and N in any deterministic way. We now define β on Lconst as follows: for every
constant a, β assigns to a the unique number corresponding to the (unique)
equivalence class to which a belongs. Note that this is well-defined, because of
the properties of equivalence classes (namely, that a belongs to precisely one
equivalence class).

It remains to define β for predicates. Let P be a k-ary predicate of L. Then
we define β as follows:

β(P) := {(β(a1), ..., β(ak)) |β′(PA1...Ak) = true} (3)

That is, β defines P to contain precisely all those k-tuples of elements of A for
which the corresponding predicate of L′ is assigned true by β′.

This completes the construction of interpretation I = (A, β) for L. It remains
to show that I is a model of Φ; this is omitted for space. ut

We conclude this subsection by noticing two results that we have used in
the proof above, and extracting them to form separate lemmas. Both of these
results will be useful further in discussing Craig’s Interpolation applications. The
correctness of both lemmas follows easily from the generality (independence of
particular Φ and Φ′, other than the relation Φ′ = NC(Φ) connecting them)
of construction and proof of the respective part of Theorem 9; the proofs are
omitted for space.

Lemma 11. Let I := (A, β) be a GL= interpretation. Then it is possible to
construct a PL assignment β′ such that, for any KB Ψ in GL=, if I is a model
of Ψ , then β′ is a model of NC(Ψ).

8

Lemma 12. Let β′ be a PL assignment. Then it is possible to construct a GL=

interpretation I := (A, β) such that, for any KB Ψ in GL=, if β′ is a model of
NC(Ψ), then I is a model of Ψ .

3.3 Analysis

The theorem’s statement and proof together form the first complete method
by which we can reach the goal of this paper: given a KB in GL=, construct
a SAT-EQ KB in PL. While the method is correct, it is not optimal. Recall
that our motivation was the ability to solve SAT in GL= using off-the-shelves
PL SAT solvers. Such solvers vary in efficiency, but invariably depend in the
execution time on the number of propositions in the PL KB. Thus, a measure
of the efficiency of any conversion algorithm can be presented by computing the
number of PL propositions this algorithm generates, as a function of its input.

Definition 13. Let C be a conversion algorithm. The size of C, denoted Size(C),
is a function which accepts the number of predicates m and the number of con-
stants n, and outputs the number of propositions which C generates from an
input having m predicates and n constants.

Suppose that the input GL= KB contains n constants and m predicates. We
wish to estimate Size(NC); that is, rather than arriving at a precise number, we
wish to obtain a complexity bound for the number of propositions generated. By
examining the construction described above (with detailed treatment omitted
for space), we can conclude that the upper bound on Size(NC) is n2 + mnk. In
a particular case of having only unary and binary predicates, this bound can be
further simplified to O(mn2).

4 Advanced Conversion by Partitioning

The previous section presented NC, a method to encode arbitrary GL= KBs,
and proved its correctness. Having analyzed the perfomance of NC, we will now
attempt to devise a more efficient procedure which uses the presented method
as a subroutine.

4.1 Motivation

While NC is correct, it generates a propositional encoding with size of O(n2 +
mnk). Since the size of a conversion algorithm is defined as the number of propo-
sitions it can generate, and since modern SAT solvers are designed so that their
efficiency depends greatly on the number of propositions in the input, we would
like to decrease the size of a conversion method while still ensuring its correct-
ness. In the worst case, a SAT solver will take time exponential2 in the number

2 Provided, of course, that P 6= NP .

9

of propositions, and hence, for NC, exponential in both n and m and super-
exponential in k3

The above, however, is insufficient motivation for devising a better method,
which would use NC as a subprocedure, since we have so far only enumerated
the deficiencies of NC. The key observation that allows a better method to be
devised is that NC produces some extraneous propositions - those that are not
necessary to propagate the semantics of satisfiability. We will attempt to remove
as many as possible of those extraneous propositions while not violating the
satisfiability equivalence of our conversion algorithm.

4.2 Description

The concept of dividing the input into parts and applying some transformation
to those parts has long been among the standard tools for fighting complexity;
see, for example, [5] and [6]. The principal notion is that, even if the underlying
transformation is still exponential in the size of its input, applying that transfor-
mation to each of the partitions dramatically decreases that ”size of its input”.
We will adapt a simple algorithm: Given an input GL= KB, instead of applying
a conversion procedure4 to that entire KB, we will instead partition that KB
into two fragments, and apply the conversion procedure to each in turn. The
result, then, will be the union of the obtained results.

The primary potential concern is the possible loss of information resulting
from severing the connections between entities which are assigned to different
partitions. Intuitively, it might seem that such an algorithm will not provide
for a satisfiability-equivalent conversion, because some information will be lost
- specifically, it might be that while the input KB itself was unsatisfiable, the
two segments are satisfiable by themselves, and that their translations will also
be satisfiable, so that the union of the translations will fail to preserve the un-
satisfiability of the original KB. However, this reasoning fails to account for the
extra information generated by NC - specifically, that generates by equivalence
semantics processing. Indeed, in what follows we will show that the mere frag-
mentation, without any extra reasoning (other than the conversion procedure)
being performed on either of the fragments, is sufficient to maintain satisfiability
equivalences.
3 The latter is not as bad as it may seem, because typically k is bounded by a very

small number (in fact, the case of k bounded by 2 - that is, the case of having only
unary and binary predicates - is of importance by itself. For the case of k bounded
by 1, and thus having only unary predicates, see [4]). However, the former may act
as a severely limiting factor, since either n or m, or both, can be large in practical
applications.

4 We will be using NC (the only conversion procedure we have so far presented), but
notice that this algorithm does not depend on the choice of a particular conver-
sion procedure. Indeed, this is an explicit strenght of this algorithm (and of the
divide-and-conquer algorithms in general), because any improvements to the under-
lying conversion procedure will be benefited from without any need to change our
algorithm, that is, ”for free”)

10

We conclude this subsection by formalizing our algorithm and stating (but
not yet proving) the associated correctness theorem.

Our precise algorithm for converting a GL= KB will thus be as follows:

a. Given a GL= KB Φ:
b. Separate Φ into two fragments, NC(Φ1) and NC(Φ1)5.
c. Run the conversion algorithm on the first fragment.
d. Run the conversion algorithm on the second fragment.
e. Join the results.

Thus, instead of computing NC(Φ), we will be computing NC(Φ1)∪NC(Φ2).
We need, of course, to show that this is satisfiability-equivalent. We thus formu-
late the result, which we hold to be the most important single contribution of
this paper, and which we will prove in the following subsection.

Theorem 14. Let Φ be a GL= KB partitioned into Φ1 and Φ2. Let Φ′ be a PL
KB obtained as follows:

Φ′ := NC(Φ1) ∪NC(Φ2) (4)

Then, Φ and Φ′ are satisfiability-equivalent (Definition 5). Equivalently, a con-
version algorithm that applies (4) is satisfiability-equivalent.

We will develop the proof in the following subsections, after having introduced
the tools that we will use.

4.3 Craig’s Interpolation

Craig’s theorem, first published in [7], is a classical result that forms one of the
bases of many ”divide-and-conquer” approaches in FOL and its fragments. The
original result has been extended several times; however, the basic version will
be satisfactory for our purposes. The key property, which will be useful for us in
reducing the size of the conversion (our entire reason for even attempting to find
a conversion method different from the original NC), is that this message will
have a potentially greatly reduced language compared to that of each fragment.
The Craig’s interpolants, thus, will have only those predicates and constants
which appear in both fragments.

We state the form we will use here for future reference.

Proposition 15. Let Φ1 and Φ2 be two GL= KBs. Then there exists a GL= KB
Φ, referred to as a Craig’s interpolant, with the following properties:

a. Φ1 |= Φ.
b. If Φ1 is inconsistent with Φ2, then Φ is also inconsistent with Φ2.
c. The language of Φ is the intersection of the languages of Φ1 and Φ2. That

is, Φ contains only those predicates and only those constants that appear in
both Φ1 and Φ2.

5 We leave the precise way of doing this unspecified for now. In the case of two frag-
ments, which is being considered here, any fragmentation is sufficient.

11

Proof. Craig’s Interpolation for FOL is discussed in great detail in [7]. The only
concern here is that, since the original result is formulated for FOL, we need to
ensure that the interpolants of GL= formulas can be expressed in GL=; that is,
that the interpolants will not contain quantifiers so long as the input itself does
not. This is addressed in [8]. ut

4.4 Craig’s Interpolation and Partitioning

We will state and prove some auxiliary results first. The following result, which
postulates that NC respects entailment, forms the core of our argument.

Lemma 16. Let Φ1 and Φ2 be GL= KBs. If Φ1 |= Φ2, then NC(Φ1) |= NC(Φ2).

Proof. Let β be an arbitrary assignment that satisfies NC(Φ1). We need to
show that β also satisfies NC(Φ2). Let M = (A,α) be a GL= interpretation
constructed from β using the process described in the second half of Theorem
9. By Lemma 12, since β |= NC(Φ1), M |= Φ1. By hypothesis, Φ1 |= Φ2, so
M |= Φ2 as well. Let β′ be a PL assignment constructed from M using the
process described in the first half of Theorem 9. By Lemma 11, since M |= Φ2,
β′ |= NC(Φ2).

We will now show that β and β′ agree on L(NC(Φ2)); that is, that for every
proposition in the language of NC(Φ2), either both β and β′ assign true, or both
assign false. Intuitively, this is not at all surprising, for even though β was an
arbitrary assignment, it is related to β′ in that the latter was created from M
which in turn was created from the former. If both constructions are reasonable,
it is not unnatural to expect that they are ”reversible” in some sense, and that
β and β′ will indeed agree on all of the propositions we are interested in.

Because NC(Φ2) was created by applying NC, as described in Definition
8, the only propositions its language may contain are those created by NT ,
as described in Definition 6. Specifically, it may only contain propositions of
two forms, which we treat in order. For both forms, we consider the only two
possibilities for the truth value β′ assigns to that proposition, and for each such
possibility we ”unroll” the two construction, first deducing what must have been
true about M for β′ to obtain the value that it has; and then deducing what
must have been true about β for M to obtain the value that we have deduced it
must have. In all cases, we will show that the truth value that β assigns to the
proposition in question must be the same as that assigned by β′.

a. Propositions of form EAB:
(a) If β′ assigns true to EAB, then (by construction of β′ from M as de-

scribed by the first point of the first half of Theorem 9), it must have
been the case that α(a) = α(b). But then, because α was constructed
from β by the procedure described by the second half of Theorem 9, it
must have been the case that a and b were in the same equivalence class
with respect to the binary relation R defined in Lemma 10, so R(a, b)
must have held. However, because of the way in which R was defined,
this requires that β must have assigned true to EAB. Thus, in this case,
β and β′ indeed agree on the proposition in question.

12

(b) If β′ assigns false to EAB, then the argument is similar to the one above,
and is omitted for space.

b. Propositions of form PX1...Xk:
(a) If β′ assigns true to PX1...Xk, then (by construction of β′ from M as de-

scribed by the second point of the first half of Theorem 9), it must have
been the case that the k-tuple (α(x1), ..., α(xk)) belongs to α(P), the
intepretation of predicate P under α. But α(P) is defined to include pre-
cisely those k-tuples of elements in A for which the corresponding predi-
cate is assigned true by β (by construction of second half of Theorem 9).
That is, α(P) has been defined to be {(α(a1), ..., α(ak))|β(PA1...Ak) =
true}. Because we have deduced that (α(x1), ..., α(xk)) belongs to α(P),
it must then have been the case that β assigns true to the proposition
PX1...Xk. Thus, in this case, β and β′ indeed agree on the proposition
in question.

(b) If β′ assigns false to PX1...Xk, then the argument is similar to the one
above, and is omitted for space.

We have shown that β and β′ assign the same truth value to all proposi-
tions occuring in NC(Φ2). Thus, β and β′ must either both satisfy or both fail
to satisfy NC(Φ2). Since we have concluded above that β′ |= NC(Φ2), we can
now conclude that β |= NC(Φ2). But β was an arbitrary assignment that satis-
fies NC(Φ1); we have shown that it also satisfies NC(Φ2). Thus, any model of
NC(Φ1) is also a model of NC(Φ2), and so NC(Φ1) |= NC(Φ2), completing the
proof. ut

We will also make use of the following result, which intuitively states that
NC respects basic contradiction notions. While we will only use the result once
in the following theorem, it is general enough to deserve being stated externally.

Lemma 17. For any GL= KB Ψ , NC(Ψ) ∪NC(¬Ψ) is unsatisfiable.

Proof. Assume to the contrary. Then let Ψ be such a GL= KB. Since it is satis-
fiable, it has a model; call it M . Since M |= NC(Ψ) ∪ NC(¬Ψ), M is a model
for both NC(Ψ) and NC(¬Ψ) (a union of formulas is their conjunction, and
thus an assignment which satisfies the union must satisfy all individual formu-
las in the conjunction). Let M ′ be a GL= interpretation obtained by using the
construction described in the second part of Theorem 9. By the result shown
there, M ′ will satisfy a GL= KB Φ if M satisfies NC(Φ). Because M |= NC(Ψ),
M ′ |= Ψ ; and because M |= NC(¬Ψ), M ′ |= ¬Ψ . We now have M ′ |= Ψ ∪ ¬Ψ ,
a contradiction6, showing that our assumption was incorrect, which completes
the proof. ut

We are now ready to prove Theorem 18, which we restate here for reference.

6 Note that we do not need to show that this is a contradiction in GL=, because we
know it to be a contradiction in FOL, and Ψ ∪ ¬Ψ is an FOL formula, whereas M ′

is an FOL interpretation.

13

Theorem 18. Let Φ be a GL= KB partitioned into Φ1 and Φ2. Let Φ′ be a PL
KB obtained as follows:

Φ′ := NC(Φ1) ∪NC(Φ2) (5)

Then, Φ and Φ′ are satisfiability-equivalent (Definition 5). Equivalently, a con-
version algorithm that applies (5) is satisfiability-equivalent.

Proof. It is easy to show that SAT Φ implies SAT Φ′. We show the other im-
plication; that is, that SAT Φ′ implies SAT Φ. We will show the contrapositive.
Assume UNSAT Φ; that is, UNSAT Φ1 ∪ Φ2. By Craig’s Theorem (Proposition
15), there exist some GL= KB γ such that:

a. Φ1 |= γ;
b. Φ2 is inconsistent with γ, from which we can conclude
c. Φ2 |= ¬γ; and
d. The language of γ is the intersection of the languages of Φ1 and Φ2.

Applying Lemma 16 to (a), we conclude (a’) NC(Φ1) |= NC(γ), and applying
it to (c), we conclude (b’) NC(Φ2) |= NC(¬γ). Assume, for contradiction, that
SAT NC(Φ1)∪NC(Φ2)). Then NC(Φ1)∪NC(Φ2) has a model, say M . Because
M is a model of the union (conjunction) of formulas, it must also be a model for
any subset of those formulas; thus, (c’) M |= NC(Φ1) and (d’) M |= NC(Φ2).
From (a’) and (c’), we can immediately conclude M |= NC(γ), and from (b’)
and (d’), we can immediately conclude M |= NC(¬γ). Combining these results,
we obtain M |= NC(γ)∪NC(¬γ), so in particular SAT NC(γ)∪NC(¬γ), which
contradicts Lemma 17. Thus, our assumption must have been incorrect, which
completes the proof. ut

The theoretical results achieved in this subsection allow us to create an intu-
itively significantly more efficient conversion method than the Naive Conversion,
because we are applying the costly algorithms to smaller inputs. In addition to
being a powerful result in the context of encoding GL= formulas, it is an in-
triguing theoretical result in its own right - one would not immediately expect
an particular conversion algorithm to behave properly when applied to the frag-
ments of its input.

5 Conclusion

In this section, we will describe related work, future work, and formulate a
summary for this paper.

5.1 Related Work

A similar problem is solved for a different fragment of FOL in [4]. That work
considers monadic FOL, which restricts predicates to being unary, but allows
quantifiers. Our work applies to a fragment that is simultaneously more restric-
tive (since we disallow quantifiers), and less restrictive (we allow arbitrary arity
of quantifiers; indeed, Section 3.3 provides an upper bound of the size of the
output as a (exponential) function of the predicate arity).

14

5.2 Future Work

In our future work, we plan to build on the achieved results in several ways.
The most obvious extension is to advance the partitioning to work recursively,
so that the input KB can be split into arbitrary large number of fragments,
which are then encoded using NC. Because, as Section 3.3 has shown, the size
of the output KB is directly dependent on size of the input GL= KB (and hence
the running time of the final PL SAT solver is highly dependent on that size),
employing NC on only small fragments can decrease the size of the resulting
KB tremendously, thus achieving considerable saving in the SAT solver running
time. The recursive fragmentation will be required to maintain the so-called
running intersection property[6]; we plan to use a partitioning program already
developed by one of us [9] for this purpose.

Noting that the ”base case” conversion (NC in our case) is orthogonal to the
partitioning mechanism, we also plan to improve the conversion algorithm to
generate smaller-sized KBs. NC generates a significant amount of information,
which represents a plethora of internal connections between the formulas of the
original KB; indeed, it is such richness that made our final result (Theorem 18)
possible. However, some of that information is extraneous for each particular
case; specifically, some of the equivalence semantics formulas generates may not
be required or even used in concrete cases. Any improvement in the underly-
ing algorithm will result in propagated efficiency improvements in the complete
application, because that underlying algorithm is invoked several times (two
times in the described method, and much more in the recursive fragmentation
extension proposed above, since NC will be used on every partition).

5.3 Summary

We have introduced GL=, a decidable fragment of FOL. We have argued that
GL= enjoys a unique position as being sufficiently expressive yet sufficiently
simple, a position not shared by either general FOL (which has more expres-
sive power, but suffers from inefficient deciding algorithms) or PL (which enjoys
a plethora of very efficient SAT solving methods, but lack many constructs of
FOL and thus can be hard to use for a particular application). In this con-
text, we have formulated and throughly investigated a solution to general sat-
isfiability problem by converting an arbitrary input knowledge base into a PL
knowledge base, mandating that such conversion does not change satisfiability.
We have presented several increasingly complex and increasingly efficient meth-
ods for such conversions, starting from Naive Conversion (which translated the
input KB directly, ensuring both predicate and equality instance translation,
and the equality semantics translation), to using divide-and-conquer partition-
ing paradigm in conjunction with Craig’s Lemma in two different ways: both by
putting the computed interpolants of one fragment into the resulting encoding,
and by using Craig’s Lemma to prove the ultimate contribution of this paper
- Theorem 18. For each of these conversion methods, we have formulated the
algorithm itself and proved that it preserves satisfiability. Specifically, Theorem

15

18 illustrates a very interesting theoretical result, which may prove to be useful
beyond this paper - that an input KB can be divided into two fragments, which
can then be encoded individually, and the union of the resulting encodings is
satisfiability equivalent to the encoding of the entire KB. We believe that this
theoretical result, besides its obvious applicability for the purposes of encoding
a GL= KB into PL, serves as an important example of the utility of the general
divide-and-conquer paradigm.

References

1. Megan Nance, Adam Vogel, E.A.: Reasoning about partially observed actions. AAAI
(2006)

2. Baumgartner, P.: FDPLL – A First-Order Davis-Putnam-Logeman-Loveland Pro-
cedure. In McAllester, D., ed.: CADE-17 – The 17th International Conference
on Automated Deduction. Volume 1831 of Lecture Notes in Artificial Intelligence.,
Springer (2000) 200–219

3. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn. Prentice
Hall (2003)

4. Ramachandran, D., Amir, E.: Compact propositional encodings of first-order theo-
ries. AAAI (2005) 340–345

5. Amir, E.: Dividing and Conquering Logic. PhD thesis, Stanford University (2002)
6. Amir, E., McIlraith, S.: Partition-based logical reasoning for first-order and propo-

sitional theories. Artificial Intelligence 162(1-2) (2005) 49–88
7. Craig, W.: Three uses of the herbrand-gentzen theorem in relating model theory

and proof theory. Journal of Symbolic Logic 22(3) (1957) 269–285
8. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1)

(2005) 101–121
9. Amir, E.: Partitioning version 1.2. Technical report, Stanford University (2002) Soft-

ware description available at http://reason.cs.uiuc.edu/eyal/decomp/README.

