
XIX International Conference on Water Resources
CMWR 2012

University of Illinois at Urbana-Champaign
June 17-22,2012

IMPROVING GROUNDWATER FLOW MODEL
PREDICTION USING COMPLEMENTARY DATA-DRIVEN

MODELS

Tianfang Xu1∗, Albert J. Valocchi1, Jaesik Choi2 and Eyal Amir2

1Department of Civil and Environmental Engineering, UIUC, Urbana, IL, USA
2Department of Computer Science, UIUC, Urbana, IL, USA

∗e-mail: txu3@illinois.edu

Key words: Uncertainty, data driven models, machine learning

Summary. Current analyses of groundwater flow and transport typically rely on a
physically-based model (PBM), which in its essence is a simplification of reality and is
thus subject to error and uncertainty from multiple sources, such as parameter error,
conceptual model error, and input data error. The model uncertainy can be difficult
to quantify, and is propagated to the prediction. In this study, complementary data-
driven models (DDMs) are used to improve prediction of PBM. Three machine learning
techniques, instance-based weighting (IBW), support vector regression (SVR) and clus-
tering are employed to build DDMs. In the case study, we use a real-world case study to
demonstrate that, the framework effectively reduces the head prediction error of a regional
groundwater flow model.

1 INTRODUCTION

The inherent uncertainty in groundwater modeling has been widely recognized in the
literature.7,8 Model uncertainty comes from multiple sources, including the model struc-
tural error due to the misrepresentation and simplification of site characteristics and
hydrologic processes, uncertainty in parameter values, inaccuracy of input data as well
as measurement error. As a result, the prediction made by the model contains both
systematic and random error, which is typically represented as the mismatch between
the observed quantity of interest and its simulated counterpart. A common practice to
achieve better prediction by reducing parameter uncertainty is to use regression-based
inverse method, or calibration. However, as suggested by Doherty,4 in the process of
calibration, the model parameters might be over-adjusted to compensate for the model
structure defects, which, according to Beven,1 could be a significant cause of prediction
uncertainty. The perspective of equifinality,1 that satisfactory agreement with observa-
tions can be achieved by many potential model and parameter combinations rather than
a single best calibrated model, gives rise to Monte-Carlo based methods that allow for
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comparing model structures and exploration in the parameter space. For groundwater
models which usually require relatively long running times, the computation expense be-
comes a drawback of these methods.

Demissie et al.3 proposed a complimentary framework where separately-developed
data-driven models (DDMs) were used to correct the head prediction error of the phys-
ically based MODFLOW model (PBM) in a hypothetical case study. This framework
suggests that the discrepancy between the MODFLOW model and the real groundwater
system can be learned by data-driven models that are trained on the historical errors of the
PBM. This framework is not restricted to any particular type of model errors and hence
is advantageous if the sources of prediction error are multiple and not easily identifiable.
In addition, it does not invoke any statistical assumption about the error distribution.
Further more, unlike calibration and Monte-Carlo based approaches, the framework only
runs the PBM once, thus making it suitable for PBMs with long running time. In this
study, we improve the DDMs, and introduce clustering into this framework to make it
more robust, flexible and computationally efficient, as demonstrated in a real-world case
study of a regional groundwater flow model.

2 METHODOLOGY

The complimentary framework, as shown in Figure 1, recognizes the uncertainty of
the PBM as a lumped bias, then models this bias with DDMs based on machine learn-
ing techniques. When forecasting, the prediction of the PBM is adjusted with the bias
predicted by the DDMs. The remaining part of this section is a short review of machine
learning techniques used to build DDMs.

Instance-based weighting (IBW) is an extension of the widely-used k Nearest Neighbor
method (kNN) by introducing a weighting function

wi = αexp(−||~x′ − ~xi0||2/p2), (1)

where wi denotes the weight of i-th neighbor, α is a scaling factor to ensure
∑n

i=1 = 1,
and p is a parameter optimized by cross validation. For a query ~x′, IBW first finds its
n nearest neighbors in the training set. The estimation of the query is calculated as a
weighted average of the neighbors’ target value. In the case study, Eqn. 1 proved to
perform better than the inverse-distance weighting used by Demissie et al.3

Support vector regression (SVR) comprises a robust class of learning algorithm,9 fea-
turing 1) use of kernels to transform the feature space into higher dimensional Hilbert
space; 2) introduction of ε-insensitive loss function and regularization to prevent overfit-
ting. Given appropriate hyperparameters, SVMs have been reported to yield good results
on benchmark datasets. In this study, the hyperparameters of DDMs were chosen by
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Figure 1: The framework of using complimentary DDMs to improve head prediction of
PBM.

five-fold cross validation and following the recommendation of Cherkassky and Ma2 .

Clustering is a class of unsupervised data mining algorithms that partition data into
clusters with the goal of maximizing the similarity of data within the same group and
minimizing the similarity among groups. The agglomerative hierarchical clustering was
used in this study. For more information about this algorithm, the readers are referred
to Hastie et al.5 and Mitchell.6
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3 CASE STUDY

3.1 RRCA model and data overview

Figure 2: Republican River Basin covering portions of eastern Colorado, northwest Kansas
and southwest Nebraska.

The framework described in the previous section is applied to the Republican River
Compact Association (RRCA) Model, a regional groundwater flow MODFLOW model
of the entire Republic River Basin (Figure 2). The model was calibrated based on head
measurements at over 10,000 wells and baseflow observations at 65 gages from Jan.1918
to Dec.2000. Since 2000, it has been run each year using new input data. Head predictions
until 2007 are available via the RRCA official website (http://www.republicanrivercompact.org).
The dataset used in this study includes over 300,000 water level measurements from 1918
to 2007 at all 3,078 wells within the model boundary that have no fewer than 10 obser-
vations and absolute mean error less than 100 ft.

3.2 DDMs implementation

We built DDMs to forecast the prediction error (ε) of the MODFLOW model’s head
prediction (ĥ). The updated head hnew = ĥ + ε was then the final output of the frame-
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work. The DDMs took as inputs the location of the wells where the head measurements
were taken as well as the head computed by the MODFLOW model. The DDMs were
trained on a total of 301,861 historical data (1918-2000), and validated on 10,161 heads
during the prediction period (2001-2007).

Using the clustering technique described in section 2, the 3,078 wells in the database
were clustered according to their spatial locations, and first and second moments of the
head error. The dataset was then divided according to the well clusters into 10 subsets.
Each subset was comprised of a training dataset containing data during the calibration
period and a validation dataset during the prediction period. One IBW model and one
SVR machine were developed for each subset. The benefit of clustering in this study was
two fold: First, residual analysis showed local patterns within the dataset. Rather than
developing a global DDM, we built “localized” DDMs that were tuned based on the data
within that cluster to allow for additional flexibility and robustness. Second, dividing the
dataset containing over 300,000 samples into smaller subsets improved the computation
efficiency, and made model selection by cross validation more feasible.

4 RESULTS

To be concise, only the global performance averaged among subsets is reported. The
mean error (ME) and root mean squared error (RMSE) of the head prediction during
2001-2007 by MODFLOW (ĥ) and DDMs-corrected MODFLOW (hnew) are shown in
Table 1. Both IBW and SVR effectively improved the head prediction accuracy of the
MODFLOW model, reducing the RMSE by over 80%. SVR almost eliminated the global
bias, reducing the ME to almost zero. Figure 3(a) shows the head forecast error of MOD-
FLOW during 2001 to 2007, while figures 3(b) and (c) plot the error after correcting with
IBW and SVR respectively. The magnitude of residual significantly shrinks after DDMs
updating, and the bias is largely removed.

Table 1: The error of head prediction before and after corrected by DDMs.

MODFLOW MODFLOW+IBW MODFLOW+SVR

ME (ft) -2.29 0.81 0.03
RMSE (ft) 30.23 5.32 5.16

Figure 4 presents the hydrographs of several representative wells forecasted by MOD-
FLOW and by the complimentary framework. In general, the DDMs significantly improve
the prediction accuracy. For those wells where the MODFLOW model predicts the trend
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(a)

(b)

(c)

Figure 3: Residual plot before (a) and after correcting using IBW (b) and SVR (c).

of water level correctly but has bias, the DDMs “shift” the MODFLOW prediction to
correct the bias (Figure 4 (a)). In cases where MODFLOW makes an incorrect prediction
of the trend, the DDMs can still compensate, as shown in (b), (c) and (d), however the
effectiveness of DDMs for trend correction varies for each well.

In general, both DDMs yield relatively smooth prediction compared with the fluctuat-
ing measurements, because the DDMs do not account for measurement error. It is also
worth noting that SVR tends to yield a smoother prediction surface than IBW. The lat-
ter model is highly localized, producing a complex prediction surface, especially when few
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neighbors are used to calculate a query. The SVR, on the other hand, is a global model
(within each subset) with regularization to keep the prediction surface smooth and less
complex.

Figure 4: Measurements, MODFLOW predicted and DDMs-updated hydrographs at rep-
resentative well locations during the prediction period.

5 CONCLUSIONS

This paper presents an extension of the complimentary data-driven framework de-
veloped by Demissie et al.3 It is assumed that DDMs can discover the PMB’s defects
(uncertainty in parameters, model structure and input data) via machine learning tech-
niques from the historical error, and can then estimate the tendency of the PBM to make
biased forecasts. We improved the DDMs and introduced clustering to make the frame-
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work more robust and efficient. The strength of the presented approach lies in: 1) it
works for error from multiple sources, and does not require assumptions about the error
distribution; 2) it is computationally efficient compared with calibration and Monte-Carlo
simulation based models, especially for large, complex PBMs; and 3) it is straightforward
to assimilate newly available data.

This framework is shown to successfully improve the head prediction of a regional
groundwater flow model. The magnitude and bias of the prediction uncertainty (quantified
by error) are sufficiently reduced. Extensions of this approach include applying the DDMs
to other types of prediction and PBMs, and using them as tools to assess the prediction
uncertainty.
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