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Abstract 
 
This paper presents a methodology for real-time estimation of water distribution system 
state parameters using a dynamic Bayesian network to combine current observations with 
knowledge of past system behavior.  The dynamic Bayesian network presented here 
allows the flexibility to model both discrete and continuous variables and represent causal 
relationships that exist within the distribution system.  The posterior belief state can be 
inferred using a compact approximation algorithm that has been shown to contain 
inference errors.  Simulations over stochastic variables are proposed to define the 
transition and observation models for the dynamic Bayesian network.   
 
Introduction 
 
There is significant uncertainty involved in real time monitoring of water distribution 
systems (Xu and Goulter, 1998; Bargiela and Hainsworth, 1989).  This uncertainty 
generally falls into two categories: i) internal uncertainty due to a sensor technology’s 
relative ability to quantify a target parameter and ii) external uncertainty due to the 
hydraulic and  chemical processes that may disguise the presence of a contaminant.  
Current sensor technology relies on surrogate measures such as total organic carbon, 
oxidation reduction potential,, turbidity, and others to indicate the presence of a target 
contaminant using classification algorithms such as artificial neural networks (ASCE, 
2004; National Research Council, 2006).  A sensor’s false positive rate is reduced with 
time as the algorithm is trained following installation.  However, the probability of a false 
positive would likely always exceed the probability of a true contamination event for 
contaminants that occur very infrequently. 
 The second category of uncertainty in online monitoring refers to those processes 
that occur outside of a sensor that obscure its ability to indicate or measure a 
contaminant.  For example, suppose that a mass of contaminant is injected into a 
distribution system pipe.  As the contaminant is transported downstream, its 
concentration profile is degraded by diffusion, reactions with pipe walls, reactions with 
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other constituents in the water, and mixing with uncontaminated water at junctions or 
tanks.  These factors combine to increase the uncertainty of downstream sensor 
measurements.  In addition, uncertain knowledge of real-time hydraulics cause 
uncertainty in relating a sensor’s signal with the state of upstream nodes. 

Monitoring networks in water infrastructure are analogous to the array of  sensors 
used by autonomous agents in the field of robotics to detect obstacles, self-locate, and 
infer other knowledge about the surrounding environment.  Direct observation of an 
obstacle’s size and position may not be possible, thus making it necessary that a 
probability distribution for those characteristics be generated from indirect sensor data.  
Dynamic Bayesian networks have been used extensively in Artificial Intelligence to 
model probabilistic causal relationships among many interacting variables.  This paper 
presents an analogous approach for drinking water monitoring, whereby a dynamic 
Bayesian network is used to infer knowledge about the current state of a water 
distribution system in real time. 

Bayesian networks have found widespread application in the environmental 
domain for such applications as groundwater remediation (Stiber et al., 1999, 2004a, 
2004b), ecological planning and modeling (Marcot, 2001), and prediction of estuarine 
water quality (Stow et al., 2003).  However, there have been few applications of dynamic 
Bayesian networks in the Environmental Science or drinking water research literature.  
Dynamic Bayesian networks differ from static networks in that they describe systems that 
change with time.  This aspect is necessary for a monitoring network to be adaptive to 
changing operational conditions that may occur in a water distribution system.  In 
environmental research, K. Shihab (2005) modeled groundwater quality with time using a 
dynamic Bayesian network, and Murphy and Weiss (2001) demonstrated a novel 
algorithm for network inference for a wastewater treatment plant application.        
 
Methodology 
 
Bayesian networks are directed acyclic graphs that represent the conditional 
independence relationships for a joint probability distribution over a set of variables. 
Nodes represent variables and arcs represent both causal relationships and conditional 
independence relationships.  A node is independent of other non-descendant nodes, given 
the values of its parent nodes.  In Figure 1, d is independent of c, given a.   
      

 
Figure 1.  Bayesian network 

a

dc

b



 3

The full joint distribution for a Bayesian network is given by the product: 
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where X1,….,Xn is the set of n variables that comprise the network.  Several exact and 
approximate algorithms exist to infer the posterior distribution that reflects one or more 
observed variables (Russell and Norvig, 2003). 
 Dynamic Bayesian networks extend this concept for models that change with 
time.  The dynamic Bayesian network shown in Figure 2 is updated with time steps, t.  
The definition of the conditional independence relationships is the same for both dynamic 
and static networks.  For example, a2 is independent of b2 given a1 and b1.  The 
conditional probability relationships between time steps, such as P(a2|a1,b1), are referred 
to as the transition model.  The probability relationships between observable and non-
observable variables are referred to as the observation model.  In Figure 2, a and b are 
non-observable, and c and d are observable.  The task of a dynamic Bayesian network is 
to make inferences about the posterior distribution, or belief state, of non-observable 
variables from previous time steps and from current observations.      

 

 
 

Figure 2.  Dynamic Bayesian network 
 

 The formulation of a water distribution system model as a dynamic Bayesian 
network is relatively straightforward.  Variables are defined that describe the state of the 
distribution system.  These may be either continuous or discrete, observable or non-
observable.  Example variables may include the hydraulic head at a node, a pump 
operation status, the presence of a biological contaminant at a monitoring node, the status 
of an intermittent high demand node, or the concentration of a chemical contaminant at a 
node.   Figure 3 shows an example dynamic Bayesian network with some possible 
observable and non-observable variables.  For clarity, implied individual arcs from non-
observable state variables between time periods are represented with a single bold arrow.   
 The conditional probability relationships among these variables can be 
determined using simulations of a network solver such as EPANET.  A simple solution 
would be to assume a Gaussian distribution for input parameters such as consumer 
demand or pipe roughness and perform simulations using a Monte Carlo or Latin 
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Hypercube approach.  A transition model of P(X1,t+1|X1,t,…,Xi,t) will result.  A more 
representative input distribution could be used if such data are available.  The time cost of 
such a computation may be significant, however, it would likely be less than a typical 
EPANET extended period simulation.   The observation model is determined by the 
probability distribution of an observation given a value of its parent node.  This 
probability would be largely determined by the internal error rates of the monitoring 
technology when a sensor’s parent node is the parameter state at the same junction.   
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.  Example dynamic Bayesian network for water distribution system 
 

Ideally, once the transition and observation models are defined for a given time 
step, a probability distribution describing the current state of non-observable variables 
can be inferred from current observation data and knowledge of previous states.  
Unfortunately, an exact solution for this inference problem quickly becomes infeasible as 
time progresses and the Bayesian network expands without bound (Russell and Norvig, 
2003).  A solution to this well-known problem is presented by Boyen and Koller (1998).  
These authors utilize a compact approximation algorithm to solve the inference problem 
and show that errors contract exponentially with time.  The belief state is conditioned on 
observations at each time step and then represented in a compact form prior to the 
subsequent step.  Thus, the belief state representation remains small.  Further details of 
this algorithm are given by Boyen and Koller (1998). 
 
Discussion 
 
 Dynamic Bayesian networks provide a great deal of flexibility in modeling the 
belief state of discrete and continuous variables over time.  This approach is robust to 
problems associated with incomplete and noisy data.  The compact approximation 
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inference algorithm reduces the computing cost of networks containing large numbers of 
state variables, although the computing cost of simulating a water distribution system’s 
behavior over many realizations of stochastic variables may still be an issue.     
 The internal structure of the dynamic Bayesian network must be fitted to a 
specific water distribution system.  Combinations of infrastructure components would be 
unique to a given water system, and network topology would define many of the causal 
relationships among variables.   
 This approach has the potential to improve online contaminant monitoring by 
conditioning local sensor observations on knowledge of past system behavior.  This 
conditioning occurs in the context of the larger distribution system, which is a departure 
from surrogate sensors that learn only at the local level without awareness of other 
variables.   
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