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Abstract

We present a novel algorithm and a new understanding of rea-
soning about a sequence of deterministic actions with a prob-
abilistic prior. When the initial state of a dynamic system is
unknown, a probability distribution can be still specified over
the initial states. Estimating the posterior distribution over
states (filtering) after some deterministic actions occurred is
a problem relevant to AI planning, natural language process-
ing (NLP) and robotics among others. Current approaches
to filtering deterministic actions are not tractable even if the
distribution over the initial system state is represented com-
pactly. The reason is that state variables become correlated
after a few steps. The main innovation in this paper is a
method for sidestepping this problem by redefining state vari-
ables dynamically at each time step such that the posterior for
time t is represented in a factored form. This update is done
using a progression algorithm as a subroutine, and our algo-
rithm’s tractability follows when that subroutine is tractable.
In particular, our algorithm is tractable for 1:1 and STRIPS
actions. We apply our reasoning algorithm about determinis-
tic actions to reasoning about sequences of probabilistic ac-
tions and improve the efficiency of the current probabilistic
reasoning approaches. We demonstrate the efficiency of the
new algorithm experimentally over AI-Planning data sets.

1 Introduction
Many applications in AI involve stochastic dynamic systems
and answering queries about them. Examples of such appli-
cations are Natural Language Processing (NLP), robotics,
AI planning, autonomous agents, speech recognition, and
commonsense query answering. Inference in a stochastic
dynamic system is the problem of estimating the systems’
state given a sequence of actions and partial observations.
This type of inference is called filtering in stochastic dy-
namic systems (it is usually called progression when no
probabilities are involved).

When applied to real-world problems, many of these
applications have very large state spaces, uncertain initial
states, and uncertain effects of actions. Therefore, it is cru-
cial to choose a representation that is compact and models
the stochasticity of the domain, a representation that also
enables efficient inference.

In recent years, there is a growing interest in using action-
centered languages for representing dynamic systems in AI
planning, NLP, and robotics. Planning Domain Definition

Language (PDDL)(McDermott 2000) expresses semantics
of actions by describing their preconditions and effects and
represents the dynamics of the system. Situation calculus
(Reiter 2001) represents changing scenarios with a series of
first-order logical formulas. PDDL and Situation calculus
are traditionally without probabilities. To model stochas-
ticity, they are augmented with probabilistic choice actions
which choose deterministic executions and a probability dis-
tribution over initial states.

Current approaches to probabilistic filtering with PDDL
or situation calculus (e.g., (Reiter 2001; Bacchus, Halpern,
and Levesque 1999; Hajishirzi and Amir 2008)) use tradi-
tional filtering methods as subroutines for reasoning about
sequences of deterministic actions with probabilistic priors.
These traditional methods are inefficient or imprecise for de-
terministic sequences. Some approaches marginalize over
all possible initial states (exponential in the number of vari-
ables) to compute the posterior probability of a query. In
others (e.g., Dynamic Bayesian Networks (DBNs) (Dean
and Kanazawa 1988)) all the state variables become fully
correlated after a few steps even if they are independent at
time 0, resulting in a posterior representation of size expo-
nential in the number of variables. Others use logical regres-
sion and repeat t−1 regressions for every new added action,
so are inefficient for long sequences of actions.

The main contribution of this paper is an understanding of
conditional-independence structure preservation over time
in systems with deterministic actions and stochastic priors
over initial states. Our new understanding leads to a new ex-
act algorithm for reasoning about sequences of deterministic
actions with a probabilistic prior over the initial states. The
algorithm is tractable for 1:1 and STRIPS actions, following
results of (Amir and Russell 2003).

We use a propositional version of probabilistic situation
calculus that is extended with a graphical model prior for
representing dynamic systems. In particular, the initial
knowledge is represented with a prior distribution over state
variables (in a Bayesian Network (BN) (Pearl 1988) format)
and transitions are modeled naturally as stochastic choices
among deterministic actions. Our algorithm uses a deter-
ministic progression subroutine and represents the posterior
at time t with a BN whose structure and conditional proba-
bilities are identical to those of the BN of time 0, but whose
nodes have a new meaning.



Specifically, every node in the BN representation of poste-
rior at time t corresponds to a propositional logical formula
that represents a set of world states. For example, when a
binary node Xi (time 0) takes value 1, then it represents the
set of world states that satisfy Xi = 1. At time t, a binary
node Φt

i would be a logical formula over x1, ..., xn at time t.
When this binary node takes value 1, then it represents the
set of world states that satisfy Φt

i = 1. The BN comprised
of such nodes at time t represents the posterior distribution
over states at time t.

Finally, we apply our exact filtering algorithm to reason
about sequences of probabilistic actions. Our empirical re-
sults show that our new algorithm improves the efficiency of
the sampling algorithm (Hajishirzi and Amir 2008) for fil-
tering with probabilistic actions. The improvement is due to
the fact that we remove the expensive subroutine of regress-
ing to time zero at every time step and just use progression.

(Reiter 2001) and (Bacchus, Halpern, and Levesque 1999)
present exact algorithms to answer a query given a sequence
of actions and observations in a dynamic system represented
in a probabilistic situation calculus form. Both algorithms
marginalize over all the possible initial states and all the pos-
sible deterministic sequences to compute the probability of
a world state at time step t. Both algorithms assign probabil-
ity to every world state individually, while our method uses
a BN to compactly represent the prior distribution.

First order MDPs (Boutilier, Reiter, and Price 2001) use
probabilistic situation calculus to represent the dynamics of
the system. They introduce a dynamic programming ap-
proach for solving MDPs by describing the optimal value
function and policies in a logical format. Their approach
uses a logical regression subroutine which results in a com-
binatorial explosion even for simple deterministic actions.

(Pasula, Zettlemoyer, and Kaelbling 2004) learn the prob-
ability distribution over deterministic executions of proba-
bilistic actions which is different from filtering with action
sequences. Their representation does not include a compact
prior over the initial states.

A DBN compactly represents a dynamic system using a
BN for time 0 and a graphical representation of a transition
model between times t and t + 1. DBNs focus on condi-
tional independence assumption whereas our representation
focuses on decomposition of actions into deterministic ac-
tions. Traditional methods for exact inference algorithms
in DBNs (Murphy 2002) are not tractable because all the
state variables become correlated after a few steps even for
deterministic transitions. (Pfeffer 2001) presents an exact
tractable inference algorithm for a class of DBNs with no
observations. This method assumes that the DBN is decom-
posed into separable subsystems. In contrast, our exact in-
ference is applicable to deterministic inseparable DBNs.
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Figure 1: (left) BN at time 0 with state variables X1 . . . Xn, (right)
New BN constructed at time T with new BN bases Φ1 . . . Φn. BN0

and BNT have identical structure.
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