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Summary. There has been a long standing division in Artificial Intelligence between
logical and probabilistic reasoning approaches. While probabilistic models can deal
well with inherent uncertainty in many real-world domains, they operate on a mostly
propositional level. Logic systems, on the other hand, can deal with much richer rep-
resentations, especially first-order ones, but treat uncertainty only in limited ways.
Therefore, an integration of these types of inference is highly desirable, and many ap-
proaches have been proposed, especially from the 1990s on. These solutions come from
many different subfields and vary greatly in language, features and (when available at
all) inference algorithms. Therefore their relation to each other is not always clear, as
well as their semantics. In this survey, we present the main aspects of the solutions
proposed and group them according to language, semantics and inference algorithm. In
doing so, we draw relations between them and discuss particularly important choices
and tradeoffs.

For decades after the field of Artificial Intelligence (AI) was established, its most
prevalent form of representation and inference was logical, or at least symbolic
representations that were in a deeper sense equivalent to a fragment of logic.
While highly expressive, this type of model lacked a sophisticated treatment of
degrees of uncertainty, which permeates real-world domains, especially the ones
usually associated with intelligence, such as language, perception and common
sense reasoning.

In time, probabilistic models became an important part of the field, incor-
porating probability theory into reasoning and learning AI models. Since the
1980s the field has seen a surge of successful solutions involving large amounts
of data processed from a probabilistic point of view, applied especially to Natural
Language Processing and Pattern Recognition.1

� Currently at the Computer Science Division of University of California, Berkeley.
1 Strictly speaking, this tendency has not been only probabilistic, including machine

learning methods such as neural networks that did not claim to be modeling prob-
abilities. However, a link to probabilities can usually be found and the methods are
used in similar ways.
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This success, however, came with a price. Typically, probabilistic models
are less expressive and flexible than logical or symbolic systems. Usually, they
involve propositional, rather than first-order representations. When required,
more expressive, higher level representations are obtained by ad hoc manipula-
tions of lower level, propositional systems.

Starting in the 1970s but having greatly increased from the 1990s on, a line
of research sought to integrate those two important modes of reasoning. In this
chapter we give a survey of this research, and try to show some general lines
separating different approaches.

We have roughly divided this research in different stages. The 1970s and 1980s
saw great interest in expert systems [1, 2]. As these systems were applied to real-
world domains, coping with uncertainty became more desirable, giving rise to the
certainty factors approach, which uses rules with attached numbers (representing
degrees of certainty) that get propagated to conclusions during inference.

Certainty factors systems did not have clear semantics, and often produced
surprising and nonintuitive results [3]. The search for clearer semantics for rules
with varying certainty gave rise, among other things, to approaches such as
Bayesian Networks. These however were essentially propositional, and thus had
much less expressivity than logic systems.

The search for clear semantics of probabilities in logic systems resulted in
works such as Nilsson [4], Bacchus [5] and Halpern [6], which laid out the basic
theoretic principles supporting probabilistic logic. These works, however, did not
include efficient inference algorithms.

Works aiming at efficient inference algorithms for first-order probabilistic in-
ference (FOPI) can be divided in two groups, which Pearl [3] calls extensional
and intensional systems. In the first one, statements in the language are more
procedural in nature, standing for licenses for propagating truth values that
have been generalized from true or false to a gray scale of varying degrees of
certainty. In the second group, statements place restrictions on a probability
distribution on possible worlds. They do not directly correspond to computing
operations, nor can they typically be taken into account without regard to other
rules (that is, inference is not completely modular). Efficient algorithms have to
be devised for these languages that preserve their semantics while doing better
than considering the entire model at every step.

Among intensional models, there are further divisions regarding the type of
algorithm proposed. One group proposes inference rules similar to the ones used
in first-order logic inference (for example, modus ponens). A second one com-
putes, in more or less efficient manners, the possible derivations of a query given a
model. A third one uses sampling to answer queries about a model. A fourth and
more prevalent group constructs a (propositional) graphical model (Bayesian or
Markov networks, for example) that answers queries, and uses general graphical
model inference algorithms for solving them. Finally, a fifth one proposes lifted
algorithms that directly operate on first-order representations in order to derive
answers to queries.

We now present these stages in more detail.
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12.1 Expert Systems and Certainty Factors

Expert systems are based on rules meant to be applied to existing facts, produc-
ing new facts as conclusions [1]. Typically, the context is a deterministic one in
which facts and rules are assumed to be certain. Uncertainties from real-world
applications are dealt with during the modeling stage where necessary (and often
heavy-handed) simplifications are performed.

Certainty factors were introduced for the purpose of allowing uncertain rules
and facts, making for more direct and accurate modeling. A rule (A ← B) : c1,
with c1 ∈ [0, 1], indicates that we can conclude A with a degree of certainty of
c1 × c2, if B is known to be true with a degree of certainty c2 ∈ [0, 1]. Given a
collection of rules and facts, inference is performed by propagating certainties in
this fashion. There are also combination rules for the cases when more than one
rule provide certainty factors for the same literal.

A paradigmatic application of certainty factors is the system MYCIN [7], an
expert system dedicated to diagnosing diseases based on observed symptoms.
Clark & McCabe [8] describe how to use Prolog with predicates containing
an extra argument representing its certainty and being propagated accordingly.
Shapiro [9] describes a Prolog interpreter that does the same but in a way im-
plicit in the interpreter and language, rather than as an extra argument.

One can see that certainty factors have a probabilistic flavor to them, but
formally they are not taken to be probabilistic. This is for good reason: should
we interpret them as probabilities, results would be inconsistent with probabil-
ity theory. Heckerman [10] and Lucas [11] discuss situations in which certainty
factor computations can and cannot be correctly interpreted probabilistically.
One reason they cannot is the incorrect treatment of bidirectional inference: two
certainty factor rules (A ← B) : c1 and B : c2 imply nothing about inference
from A to B, while P (A|B) and P (B) do place constraints on P (B|A). These
problems are further discussed in Pearl [3].

12.2 Probabilistic Logic Semantics

The semantic limitations of certainty factors is one of the motivations for defining
precise semantics for probabilistic logics, but such investigations date from at
least as far back as Carnap [12].

One of the most influential AI works in this regard is Nilsson [4] (a similar
approach is given by Hailperin [13]). Nilsson establishes a systematic way of
determining the probabilities of logic sentences in a query set, given the proba-
bilities of logical sentences in an evidence set. To be more precise, the method
determines intervals of probabilities to the query sentences, since in principle
the evidence set may be consistent with an entire range of point probabilities
for them. For example, knowing that A is true with probability 0.2 and B with
probability 0.6 means that A ∧ B is true with probability in [0, 0.2], depending
on whether A and B are mutually exclusive, or A → B, or anything in between.
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Given a set of sentences L, Nilsson considers the equivalence classes of possible
worlds that assign the same truth values to the sentences in L (that is, as far
as L is concerned, all possible worlds in the same class are the same). Formally,
Nilsson’s system is based on the following linear problem:

Π = V P

0 ≤ Πj ≤ 1
0 ≤ Pi ≤ 1
∑

i

Pi = 1

where Π is the vector of probabilities of sentences in both query and evidence
sets, P the vector of probabilities of possible worlds equivalence classes, and V
is a matrix with Vij = 1 if sentence j is true in possible world set i, and 0
otherwise. The probabilities of sentences in the knowledge base are incorporated
as constraints in this system as well, and linear programming techniques can be
used to determine the probability of novel sentences. However, as Nilsson points
out, the problem becomes intractable even with a modest number of sentences,
since all possible worlds equivalence classes need to be enumerated and this is
an intractable problem. Therefore this framework cannot be directly used in
practice.

Placing the probabilities on the possible worlds, as does Nilsson, makes it
easy to express subjective probabilities such as “Tweety flies with probability
0.9” (that is, the sum of probabilities of all possible worlds in which Tweety
flies is 0.9). However, probabilistic knowledge can also express statistical facts
about the domain such as “90% of birds fly” (which says that, in each possible
world, 90% of birds fly). Bacchus [5] provides an elaborate probabilistic logic
semantics that includes both types of probabilistic knowledge, making it possible
to use both statements above, as well as statements mixing them, such as “There
is a probability of 0.8 that 90% of birds fly.” He also discusses the interplay
between the two types, namely the question of when it is correct to use the fact
that “90% of birds fly” in order to assume that “a randomly chosen bird flies
with probability 0.9,” a topic that has both formal and philosophical aspects.
Halpern [6] elaborates on the axiomatization of Bacchus, taking probabilities
to be real numbers (Bacchus did not), and is often cited as a reference for this
semantics with two types of probabilities. In subsequent work, the subjective
type probability has been much more developed and used, and is also the type
involved in propositional graphical models.

Fagin, Halpern, Meggido [14] present a logic to reason about probabilities,
including their addition and multiplication by scalars. Other works discussing
the semantics of probabilities on first-order structures are [15, 16, 17].

12.3 Extensional Approaches

Somewhat parallel to the works on the semantics of probabilistic logic, a different
line of research proposed logic reasoning systems incorporating uncertainty in
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the explicit form of probabilities (as opposed to certainty factors). These systems
often stem from the fields of logic programming and deductive databases, and
fit into the category described by [3] as extensional systems, that is, systems in
which rules work as “procedural licenses” for a computation step instead of a
constraint on possible probability distributions. Most of these systems operate on
a collection of rules or clauses that propagate generalized truth values (typically,
a value or interval in [0, 1]).

Kiefer and Li [18] provide a probabilistic interpretation and a fixpoint seman-
tics to Shapiro [9]. Wüthrich [19] elaborates on their work, taking into account
partial dependencies between clauses. For example, if each of them atoms a, b
and c has a prior probability of 0.5 and we have two rules p ← a ∧ b and
p ← b ∧ c, Kiefer and Li will assume the rules independent and assign a prob-
ability 0.25 + 0.25 − 0.25 ∗ 0.25 = 0.4375 to p. Wüthrich’s system, however,
takes into account the fact that b is shared by the clauses and computes instead
0.25 + 0.25 − 0.53 = 0.375 (that is, it avoids double counting of the case where
the two rules fire at the same time, which occurs only when the three atoms are
true at once).

One of the most influential works within the extensional approach is Ng and
Subrahmanian [20]. Here, a logic programming system uses generalized truth
values in the form of intervals of probabilities. They define probabilistic logic
program as sets of p-clauses of the form

A : μ ← F1 : μ1 ∧ . . . Fn : μn,

where A is an atom, F1, . . . , Fn are basic formulas (conjunctions or disjunctions)
and μ, μ1, . . . , μn are probability intervals. A clause states that if the probability
of each formula Fi is in μi, then the probability of A is in μ. For example, the
clause

path(X, Y ) : [0.8, 0.95] ← a(X, Z) : [1, 1] ∧ path(Z, Y ) : [0.85, 1]

states that, if a(X, Z) is certain (probability in interval [1, 1] and therefore 1)
and path(Z, Y ) has probability in [0.85, 1], then path(X, Y ) has probability in
[0.8, 0.95]. Probabilities of basic formulas Fi are determined from the probabil-
ity intervals of their conjuncts (or disjuncts) by taking into account the possible
correlations between them (similarly to what Nilsson does). The authors present
a fixpoint semantics where clauses are repeatedly applied and probability inter-
vals successively narrowed up to convergence. They also develop a model theory
determining what models (sets of distributions on possible worlds) satisfy a
probabilistic logic program, and a refutation procedure for querying a program.

Lakshmanan and Sadri [21] propose a system similar to Ngo and Subrahma-
nian, while keeping track of both the probability of each atom as well of its
negation. Additionally, it uses configurable independence assumptions for dif-
ferent clauses, allowing the user to declare whether two atoms are independent,
mutually exclusive, or even the lack of an assumption (as in Nilsson). Laksh-
manan [22] separates the qualitative and quantitative aspects of probabilistic
logic. Dependencies between atoms are declared in terms of the boolean truth
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values of a set of support atoms. Only later is a distribution assigned to the sup-
port atoms, consequently defining distributions on the remaining atoms as well.
The main advantage of the approach is the possibility of investigating different
total distributions, based on distributions on the support set, without having
to recalculate the relationship between atoms and support set. The algorithms
works in ways similar to Ngo and Haddawy [23] and Lakshmanan and Sadri [21],
but propagates support set conditions rather than probabilities. Support sets are
also a concept very similar to the hypotheses used in Probabilistic Abduction by
Poole [24] (see next section).

12.4 Intensional Approaches

We now discuss intensional approaches to probabilistic logic languages, where
statements (often in the form of rules) are interpreted as restrictions on a globally
defined probability distribution. This probability distribution is over all possible
worlds or, in other words, on assignments to the set of all possible random
variables in the language. Statements typically pose constraints in the form of
conditional probabilities, and often also as conditional independence relations.
(As mentioned in Sect. 12.2, another possibility would be statistical constraints,
but this has not been explored in any works to our knowledge.)

The algorithms in intensional approaches, when available, are arguably more
complex than extensional approaches, since their steps do not directly correspond
to the application of rules in the language and need to be consistent with the
global distribution while being as local as possible (for efficiency reasons).

We cover five different types of intensional approaches: deduction rules, ex-
haustive computation of derivations, sampling, Knowledge Based Model Con-
struction (KBMC) and Lifted inference.

12.4.1 Deduction Rules

Classical logic deduction systems often work by receiving a model specified in a
particular language and using deduction rules to derive new statements (guar-
anteed to be true) from subsets of previous statements. Some work has been
devoted to devising similar systems when the language is that of probabilistic
logic.

This method is particularly challenging in probabilistic systems because prob-
abilistic inference is not as modular as classical logical inference. For example,
while the logical knowledge of A → B allows us to deduce B given that A ∧ ϕ is
true for any formula ϕ, knowing P (B|A) in itself does not tell us anything about
P (B|A ∧ ϕ). In principle, one needs to consider all available knowledge when
establishing the conditional probability of B. Classical logic reasoning shows a
modularity that is harder to achieve in a probabilistic setting.

One way of making probabilistic inference more modular is to use knowledge
about conditional independencies between random variables. If we know that B is
independent of any other random variable given A, then we know that P (B|A∧ϕ)
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is equal to P (B|A) for any ϕ. This has been the approach of graphical models
such as Bayesian and Markov networks [3], where independencies are represented
by the structure of a graph over the set of random variables.

The computation steps of specific inference algorithms for graphical models
(such as Variable Elimination [25]) could be cast as deduction rules, much like in
classical logic. However this is not traditionally done, mostly because inference
rules are typically described in a logic-like language and graphical models are
not. When dealing with a first-order probabilistic logic language, however, this
approach becomes more natural.

Luckasiewicz [26] uses inference rules for solving trees of probabilistic con-
ditional constraints over basic events. These trees are similar to Bayesian net-
works, with each node being a random variable and each edge being labeled by
a conditional probability table. However, these trees are not meant to encode in-
dependence assumptions. Besides, conditional probabilities can also be specified
in intervals.

Frisch and Haddawy [27] present a set of inference rules for probabilistic
propositional logic with interval probabilities. They characterize it as an anytime
system since inference rules will increasingly narrow those intervals. They also
provide more modular inference by allowing statements on conditional indepen-
dencies of random variables, which are used by certain rules to derive statements
based on local information.

Koller and Halpern [28] investigate the use of independence information for
FOPI based on inference rules. They use this notion to discuss the issue of sub-
stitution in probabilistic inference. While substitution is fundamental to classical
logic inference, it is not sound in general in a probabilistic context. For example,
inferring P (q(A)) = 1

3 given ∀P (q(X)) = 1
3 is not sound. Consider three pos-

sible worlds w1, w2, w3 containing the three objects o1, o2, o3 each, where q(oi)
is 1 in wi and 0 otherwise. If each possible world has a probability 1

3 of being
the actual world, then ∀P (q(X)) = 1

3 holds. However, if A refers to oi in each
wi, then P (q(A)) = 1. While this problem can be solved by requiring constants
to be rigid designators (that is, each of them refers to the same object in all
worlds), the authors argue that this is too restrictive. Their solution is to use in-
formation on independence. They show that when the statements ∀P (q(X)) = 1

3
and x = A are independent, one can derive P (q(A)) = 1

3 . Finally, they discuss
the topic of using statistical probabilities as a basis for subjective ones (the two
types discussed by Bacchus [5] and Halpern [6]) based on independencies.

12.4.2 Exhaustive Computation of Derivations

Another type of intensional system is the one in which the available algorithms
exhaustively compute the set of derivations or proofs for a query, in the same
way proofs are found for queries in logic programming. However, while in logic
programming it is often only necessary to find one proof for a certain query,
in probabilistic models all proos will typically influence the query’s result, and
therefore need to be computed.
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Riezler [29] presents a probabilistic account of Constraint Logic Programs
(CLPs) [30]. In regular logic programming, the only constraints over logical vari-
ables are equational constraints coming from unification. CLPs generalize this by
allowing other constraints to be stated over those variables. These constraints are
managed by special-purpose constraint solvers as the derivation proceeds, and
failure in satisfying a constraint determines failure of the derivation. Probabilis-
tic Constraint Logic Programs (PCLPs) are a stochastic generalization of CLPs,
where clauses are annotated with a probability and chosen for the expansion of a
literal according to that probability, among the available clauses with matching
heads. The probability of a derivation is determined by the product of probabil-
ities associated to the stochastic choices. In fact, PCLPs are a generalization of
Stochastic Context-Free Grammars (SCFGs) [31], the difference between them
being that PCLP symbols have arguments in the form of logical variables with
associated constraints while grammar symbols do not. For this reason, PCLP
derivations can fail while SCFGs will always succeed. This presents a compli-
cation for PCLP algorithms because the probability has to be normalized with
respect to the sum of successful derivations only. It also makes the use of ef-
ficient dynamic programming techniques such as the inside-outside algorithm
[32] not adequate for PCLPs, forcing us to compute all possible derivations of a
query. Riezler focuses on presenting an algorithm for learning the parameters of
a PCLP from incomplete data, in what is a generalization of the Baum-Welch
algorithm for HMMs [33].

Stochastic Logic Programs [34, 35] are very similar to PCLPs, restricting
themselves to regular logic programming (e.g., Prolog). This line of work is more
focused on the development of an actual system on top of a Prolog interpreter
and to be used with Inductive Logic Programming techniques such as Progol
[36]. Like Riezler, in [35] Cussens develops methods for learning parameters of
SLPs using Improved Interative Scaling [37] and the EM algorithm [38].

Luckasiewicz [39] presents a form of Probabilistic Logic Programming that
complements Nilsson’s [4] approach. Nilsson considers all equivalence classes of
possible worlds with respect to the given knowledge and builds a linear pro-
gram in order to assign probabilities to sentences. Luckasiewicz essentially does
the same by using logic programming for both determining the the equivalence
classes and the linear program.

Baral et al. [40] use answer set logic programming to implement a power-
ful probabilistic logic language. Its distinguishing feature is the possibility of
specifying observations and actions, with their corresponding implications with
respect to causality, as studied by Pearl [41]. However, the implementation, using
answer set Prolog, depends on determining all answer sets.

12.4.3 Sampling Approaches

Because building all drivations of a query given a program is very expensive,
approximation solutions become an attractive alternative.

Sato [42] presents PRISM, a full-featured Prolog interpreter extended with
probabilistic switches that can be used to encode probabilistic rules and facts.
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These switches are special built-in predicates that randomly succeed or not,
following a specific probability distribution. They can be placed in the body of a
clause, which in consequence will succeed or not with the same distribution (when
the rest of the body succeeds). Therefore, multiple executions of the program
will yield different random results that can be used as samples. A query can
then be answered by multiple executions which sample its possible outcomes.
Sato also provides a way of learning the parameters of the switches by using a
form of the EM algorithm [43].

BLOG [44] is a first-order language allowing the specification of a generative
model on a first-order structure. It is similar in form to BUGS [45], a specification
language for propositional generative models. The main distinction of BLOG is
its open world assumption; it does not require that the number of objects in
the world be set a priori, using instead a prior on this number and also keeping
track of identities of objects with different names. BLOG computes queries by
sampling over possible worlds.

12.4.4 Knowledge Based Model Construction

We now present the most prominent family of models in the field of FOPI mod-
els, Knowledge Based Model Construction (KBMC). These approaches work by
generating a propositional graphical model from a first-order language specifica-
tion that answers the query at hand. This construction is usually done in a way
specific to the query, ruling out irrelevant portions of the graph so as to increase
efficiency.

Many KBMC approaches use a first-order logic-like specification language, but
some use different languages such as frame systems, parameterized fragments of
Bayesian networks, and description logics. Some build Bayesian networks while
others prefer Markov networks (and in one case, Dependency Networks [46]).

While KBMC approaches try to prune sections of underlying graphical models
which are irrelevant to the current query, there is still potentially much wasted
computation because they may replicate portions of the graph which require es-
sentially identical computations. For example, a problem may involve many em-
ployees in a company, and the underlying graphical model will contain a distinct
section with its own set of random variables for each of them (representing their
properties), even though all these sections have essentially the same structure.
Often the same computation will be repeated for each of those sections, while
it is possible to perform it only once in a generalized form. Avoiding this waste
is the object of Lifted First-Order Probabilistic Inference [47, 48], discussed in
Sect. 12.4.5.

The most commonly referenced KBMC approach is that of Breese [49, 50],
although Horsch and Poole [51] had presented a similar solution a year before.
[49] defines a probabilistic logic programming language, with Horn clauses anno-
tated by probabilistic dependencies between the clause’s head and body. Once
a query is presented, clauses are applied to it in order to determine the prob-
abilistic dependencies relevant to it. These dependencies are then used to form
a Bayesian network. Backward inference will generate the causal portion of the
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network relative to the query; forward inference creates the diagnostic part. The
construction algorithm uses the evidence in order to decide when to stop expand-
ing the network – there is no need to generate portions that are d-separated from
the query by the evidence. In fact, this work covers not only Bayesian networks,
but influence diagrams as well, including decision and utility value nodes.

There are many works similar in spirit to [49] and differing only in some
details; for example, the already mentioned Horsch and Poole [51], which also
uses mostly Horn clauses (it does allow for universal and existential quantifiers
over the entire clause body though) as the first-order language. One distinction
in this work, however, is the more explicit treatment of the issue of combination
functions, used to combine distributions coming from distinct clauses with the
same head. One example of a combination function is noisy-or [3], which assumes
that the probability provided by a single clause is the probability of it making
the consequent true regardless of the other clauses. Suppose we have clauses
A ← B and A ← C in the knowledge base, the first one dictating a probability
0.8 for A when B is true and the second one dictating a probability 0.7 for
A when C is true. Then the combination function noisy-or builds a Conditional
Probability Table (CPT) with B and C as parents of A, with entries P (A|B, C) =
{1 − 0.2 × 0.3, 1 − 0.8 × 0.3, 1 − 0.2 × 0.7, 1 − 0.8 × 0.7} = {0.94, 0.76, 0.86, 0.47}
for {(B = 	, C = 	), (B = ⊥, C = 	), (B = 	, C = ⊥), (B = ⊥, C = ⊥)},
respectively.

In first-order models, noisy-or and other combination functions are especially
useful when a random variable has a varying number of parents, which makes
its CPT impossible to represent by a fixed-dimensions table. A clause p ←
q(X), for example, determines that p depends on all instantiations of q(X), that
is, all instantiations of q(X) are parents of p. However, the number of such
instantiations depends on how many values X can take. Without knowing this
number, the only way of having a general specification of p’s CPT is to have
a combination function on the instantiations of q(X). In fact, even when this
number is known it may be convenient to represent the CPT with a combination
function for compactness sake.

Charniak and Goldman [52] expand a deductive database and truth main-
tenance system (TMS) in order to define a language for constructing Bayesian
networks. The Bayesian networks come from the data-dependency network main-
tained by the TMS system, which is annotated with probabilities. There is also
a notion of combination functions. The authors choose not to expand logical
languages, justifying this choice by arguing that logic and probability do not
correspond perfectly, the first being based on implication while the second on
conditioning.

Poole [24] defines Probabilistic Abduction, a probabilistic logic language
aimed at performing abduction reasoning. Probabilities are defined only for a
set of predicates, called hypotheses (which is reminiscent of the support set in
[22]), while the clauses themselves are deterministic. When a problem has nat-
urally dependent hypotheses, one can redefine them as regular predicates and
invent a new hypothesis to explain that dependence. While deterministic clauses
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can seem too restrictive, one can always get the effect of probabilistic rules by
using hypotheses as a condition of the rule (like switches in Sato’s PRISM [42]).
The language also assumes that the bodies of clauses with the same head are
mutually exclusive, and again this is not as restrictive as it might seem since
clauses with non-mutually exclusive bodies can be rewritten as a different set of
clauses satisfying this. As in other works in this section, the actual computation
of probabilities is based on the construction of a Bayesian network. In [53], Poole
extends Probabilistic Abduction for decision theory, including both utility and
decision variables, as well as negation as failure.

Glesner and Koller [54] present a Prolog-like language that allows the dec-
laration of facts about a Bayesian network to be constructed by the inference
process. The computing mechanisms of Prolog are used to define the CPTs as
well, so they are not restricted to tables, but can be computed on the fly. This
allows CPTs to be defined as decision trees, for example, which provides a means
of doing automatic pruning of the resulting Bayesian network – if the evidence
provides information enough to make a CPT decision at a certain tree node,
the descendants of that node, along with parts of the network relevant to those
descendants only, do not need to be considered or built. The authors focus on
flexible dynamic Bayesian networks that do not necessarily have the same struc-
ture at every time slice.

Haddawy [55] presents a language and construction method very similar to [51,
49]. However, he focuses on defining the semantics of the first-order probabilistic
logic language directly, and independently of the Bayesian network construction,
and proceeds to use it to prove the correctness of the construction method. Breese
[49] had done something similar by defining the semantics of the knowledge base
as an abstract Bayesian network which does not usually get built itself in the
presence of evidence, and by showing that the Bayesian network actually built
will give the same result as the abstract one.

Koller and Pfeffer [56] present an algorithm for learning the probabilities of
noisy first-order rules used for KBMC. They use the EM algorithm applied to the
Bayesian networks generated by the model, using incomplete data. This works
in the same way as the regular Bayesian network parameter learning with EM,
with the difference that many of the parameters in the generated networks are in
fact instances of the same parameter in a first-order rule. Therefore, all updates
on these parameters must be accumulated in the original parameter.

Jaeger [57] defines a language for specifying a Bayesian network whose nodes
are the extensions of first-order predicates. In other words, each node is the as-
signment to the set all atoms of a certain predicate. Needless to say, inference
in such a network would be extremely inefficient since each node would have
an extremely large number of values. However, it offers the advantage of mak-
ing the semantics of the language very clear (it is just the usual propositional
Bayesian network semantics – the extension of a predicate is just a propositional
variable with a very large number of values). The author proposes, like other
approaches here, to build a regular Bayesian network (with a random variable
per ground atom) for the purpose of answering specific queries. He also presents
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a sophisticated scheme for combination functions, including the possibility of
their nesting.

Koller et al. [58, 59] define Probabilistic Relational Models (PRMs), a sharp
depart from the logical-probabilistic models that had been proposed until then
as solutions for FOPI models. Instead of adding probabilities to some logic-
like language, the authors use the formalism of Frame Systems [60] as a starting
point. The language of frames, similar also to relational databases, is less expres-
sive than first-order logic, which is to the authors one of its main advantages
since first-order logic inference is known to be intractable (which only gets worse
when probabilities are added to the mix). By using a language that limits its ex-
pressivity to what is most needed in practical applications, one hopes to obtain
more tractable inference, an argument commonly held in the Knowledge Rep-
resentation community [61]. In fact, Pfeffer and Koller had already investigated
adding probabilities to restricted languages in [62]. In that case, the language in
question was that of description logics.

The language of Frame Systems consists of defining a set of objects described
by attributes – binary predicates relating an object to a simple scalar value
– or relations – binary predicates relating an object to another (or even self)
object. PRMs add probabilities to frame systems by establishing distributions on
attributes conditioned on other attributes (in the same object, or related object).
In order to avoid declaring these dependencies for each object, this is done at
a scheme level where classes, or template objects, stand for all instances of a
class. This scheme describes the attributes of classes and the relations between
them. Conditional probabilities are defined for attributes and can name the
conditioning attributes via the relations needed to reach them.

As in the previous approaches, queries to PRMs are computed by generat-
ing an underlying Bayesian network. Given a collection of objects (a database
skeleton) and the relationships between them, a Bayesian network is built with a
random variable for each attribute in each object. The parents of these random
variables in the network are the ones determined by the relations in the particu-
lar database, and the CPT filled with the values specified at the template level.
An example of this process is shown in Fig. 12.1.

Note that the set of ancestors of attributes in the underlying network is de-
termined by the relations from one object to another. One could imagine an
attribute rating of an object representing a restaurant that depends on the at-
tribute training of the object representing its chef (related to it by the relation-
ship chef). In approaches following first-order representations, chef would be a
binary predicate, and each of its instances a random variable. As a result, the
ancestors of rating would be the attributes training of all objects potentially
linked to the restaurant by the relationship chef , plus the random variables
standing for possible pairs in the relationship cook itself, resulting in a large
(and thus expensive) CPT. PRMs avoid this when they take data with a de-
fined structure where the assignment to relations such as cook is known; in this
case, the random variables in the relationship chef would not even be included
in the network, and the attribute rating of each object would have a single
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chef
Restaurant

rating

style

Worker

training

Place

zip code

Customer

preferences

patron location

timpone’s.ratings courier.ratings

joe.training mary.training

timpone’s.style courier.style

chefRestaurant: 
Timpone’s

Worker: Joe

Place: Urbana
Customer: Jill

patron location

chefRestaurant: 
Courier

Worker: 
Mary

patron location

jill.preferences

urbana.zip code

(a) (b)

(c)

Fig. 12.1. (a) A PRM scheme showing classes of objects (rectangles), probabilistic
dependencies between their attributes (full arrows) and relationships (dashed arrows).
(b) A database skeleton showing a collection of objects, their classes and relationships.
(c) The corresponding generated Bayesian network.

ancestor. When relationships are not fixed in advance, we have structural uncer-
tainty, which was addressed by the authors in [63]. These papers have presented
PRM learning of both parameters and structure (that is, the learning of the
scheme level).

PRMs make use of Bayesian networks, a directed graphical model that brings
a notion of causality. In relational domains it is often the case that random
variables depend on each other without a clear notion of causality. Take for
example a network of people linked by friendship relationships, with the at-
tribute smoker for each person. We might want to state the first-order causal
relationship P (smoker(X)|friends(X, Y ), smoker(Y )) in such a model, but it
would create cycles in the underlying Bayesian network (between each pair of
smoker attributes such as smoker(john) and smoker(mary)). For this reason,
Relational Markov Networks (RMNs) [64] recast PRMs so they generate undi-
rected graphical models (Markov networks) instead of Bayesian networks. In
RMNs, dependencies are stated as first-order features that get instantiated into
potential function on cliques of random variables, without a notion of causality
or conditional probabilities. The disadvantage of it, however, is that learning
in undirected graphical models is harder than in directed ones, involving a full
inference step at each expectation step of the EM algorithm.

Relational Dependency Networks (RDNs) [65] provide yet another alterna-
tive to this problem. They are the first-order version of Dependency Networks
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(DNs) (Heckerman, [46]), which use conditional probabilities but do not require
acyclicity. Using directed conditional probabilities avoids the expensive learning
of undirected models. However, DNs have the downside of conditional proba-
bilities being no longer guaranteed consistent with the joint probability defined
by their normalized product. Heckerman shows that, as the amount of training
data increases, conditional probabilities in a DN will asymptotically converge
to consistency. RDNs are sets of first-order conditional probabilities which are
used to generate an underlying regular dependency network. These first-order
conditional probabilities are typically learned from data by relational learners
(Sect. 12.5). RDNs are implemented in Proximity, a well-developed, publicly
available software package.

Kersting and DeRaedt [66] introduce Bayesian Logic Programs. This work’s
motivation is to provide a language which is as syntactically and conceptually
simple as possible while preserving the expressive power of works such as Ngo
and Haddawy [23], Jaeger [57] and PRMs [58]. According to the authors, this is
necessary so one understands the relationship between all these approaches, and
also the fundamental aspects of FOPI models.

Fierens at al [67] define Logical Bayesian Networks (LBNs). LBNs are very
similar to Bayesian Logic Programs, with the difference of having both random
variables and deterministic logical literals in their language. A logic programming
inference process is run for the construction of the Bayesian network, during
which logical literals are used, but since they are not random variables, they
are not included in the Bayesian network. This addresses the same issue of
fixed relationships discussed in the presentation of PRMs, that is, when a set of
relationships is deterministically known, we can create random variable nodes in
the Bayesian network with significantly fewer ancestors. In the BLPs and LBNs
framework, this is exemplified by a rule such as:

rating(X) ← cook(X, Y ), training(Y ) .

which has an associated probability, declaring that a restaurant X ’s rating
depends on their cook Y ’s training. In Bayesian Logic Programs, the instan-
tiations of cook(X, Y ) are random variables (just like the instantiations of
rating(X) and training(Y )). Therefore, since we do not know a priori which
Y makes cook(timpone, Y ) true, rating(timpone) depends on all instantiations
of cook(timpone, Y ) and training(Y ) and has all of them as parents in the un-
derlying Bayesian network. If in the domain at hand the information of cook
is deterministic, then this would be wasteful. We could instead determine Y
such that cook(timpone, Y ), say Y = joe, and build the Bayesian network with
only the relevant random variable training(joe) as parent of rating(timpone).
This is precisely what LBNs do. In LBNs, one would define cook as a deter-
ministic literal that would be reasoned about, but not included in the Bayesian
network as a random variable. This in fact is even more powerful than the PRMs
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approach since it deals even with the situation where relationships are not di-
rectly given as data, but have to be reasoned about in a deterministic manner.

Santos Costa et al. [68] propose an elegant KBMC approach that smoothly
leverages an already existing framework, Constraint Logic Programming (CLP).
In regular logic programming, the only constraint over logical variables are equa-
tional constraints coming from unification. As explained in Sect. 12.4.2, CLP
programs generalize this by allowing other constraints to be stated over those
variables. These constraints are managed by special-purpose constraint solvers as
the derivation proceeds, and failure in satisfying a constraint determines failure
of the derivation. The authors leverage CLP by developing a constraint solver on
probabilistic constraints expressed as CPTs, and simply plug it into an already
existing CLP system. The resulting system can also use available logic program-
ming mechanisms in the CPT specification, making it possible to calculate it
dynamically, based on the context, rather than by fixed tables. The probabilistic
constraint solver uses a Bayesian network internally in order to solve the posed
constraints, so this system is also using an underlying propositional Bayesian
network for answering queries. Santos Costa et al. indicate [69] as the closest
approach to theirs, with the difference that the latter keeps hard constraints
on Bayesian variables separate from probabilistic constraints. This allows hard
constraints to be solved separately. It is also different in that it does not use con-
ditional independencies (like Bayesian networks do), and therefore its inference
is exponential on the number of random variables.

Markov Logic Networks (MLNs) [70] is a recent and rapidly evolving frame-
work for probabilistic logic. Its main distinctions are that it is based on undi-
rected models and has a very simple semantics while keeping the expressive

1.5¬ Smokes(X) Ç Cancer(X)“Smoking causes cancer”
∀X Smokes(X)  ⇒ Cancer(X)

WeightClausal formEnglish / First-Order Logic

1.1¬ Friends(X,Y) Ç Smokes(X) Ç Smokes(Y)“If two people are friends either both 
smoke or neither does”
∀X ∀Y Fr(X,Y) ⇒(Sm(X) ⇔ Sm(Y))

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Friends(A,B)

Friends(B,A)Cancer(A) Cancer(B)

Fig. 12.2. A ground Markov network generated from a Markov Logic Network for
objects Anna (A) and Bob (B) (example presented in [70])
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Fig. 12.3. An example of a MEBN, as shown in [72]

power of first-order logic. The downside to this is that its inference can become
quite slow if complex constructs are present.

MLNs consist of a set of weighted first-order formulas and a universe of ob-
jects. Its semantics is simply that of a Markov network whose features are the
instantiations of all these formulas given the universe of objects. The potential of
a feature is defined as the exponential of its weight in case it is true. Figure 12.2
shows an example.

Formulas can be arbitrary first-order logic formulas, which are converted to
clausal form for inference. Converting existentially quantified formulas to clausal
form usually involves Skolemization, which requires uninterpreted functions in
the language. Since MLNs do not include such functions, existentially quantified
formulas are replaced by the disjunction of their groundings (this is possible
because the domain is finite). The great expressivity of MLNs allows them to
easily subsume other proposed FOPI languages. They are also a generalization
of first-order logic, to which they reduce when weights are infinite.

Learning algorithms for MLNs have beenpresented from the beginning. Because
learning in undirected models is hard, MLNs use the notion of pseudo-likelihood
[71], an approximate but efficient method. When data is incomplete, EM is used.
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MLNs are a powerful language and framework accompanied by well-supported
software (called Alchemy) and which has been applied to real domains. The
drawback of its expressivity is potentially very large underlying networks (for
example, when existential quantification is used).

Laskey [72] presents multi-entity Bayesian networks (MEBNs), a first-order
version of Bayesian networks, which rely on generalizing typical Bayesian net-
work representations rather than a logic-like language. A MEBN is a collection
of Bayesian network fragments involving parameterized random variables. As in
the other approaches, the semantics of the model is the Bayesian network re-
sulting from instantiating these fragments. Once they are instantiated, they are
put together according to the random variables they share. A MEBN is shown
in Fig. 12.3.

Laskey’s language is indeed quite rich, allowing infinite models, function sym-
bols and distributions on the parameters of random variables themselves. The
work focus on defining this language rather than on the actual implementation,
which is based on instantiating a Bayesian network containing the parts rele-
vant to the query at hand. It does not provide a detailed account of this process,
which can be especially tricky in the case of infinite models.

12.4.5 Lifted Inference

One of the major difficulties in KBMC approaches is that they must proposi-
tionalize the model in order to perform inference. This does not preserve the rich
first-order structure present in the original model; the propositionalized version
does not indicate anymore that CPTs are instantiations of the same original one,
or that random variables are instantiations of an original parameterized random
variable. In other words, it creates a potentially large propositional model with
a great amount of redundancy that cannot be readily exploited.

Recent research on lifted inference [73, 47, 48] has addressed this point. A
lifted inference algorithm receives a first-order specification of a probabilistic
model and performs inference directly on it, without propositionalization. This
can potentially yield an enormous gain in efficiency.

For example, a possible model can be formed by parameterized factors
(or parfactors) φ1(epidemic(D)) and φ2(sick(P, D)) and a set of typed ob-
jects flu, rubella, and john, mary etc. The model is equivalent to a propo-
sitional graphical model formed by all possible instantiations of parfactors
by the given objects, which is the set of regular factors φ1(epidemic(flu)),
φ1(epidemic(rubella)), . . . , and φ2(sick(john, flu)), φ2(sick(john, rubella)),
φ2(sick(mary, f lu)),
φ2(sick(mary, rubella)), etc.

What lifted inference does, instead of actually generating these instantiations,
is to operate directly on the parfactors and obtain the same answer as the one
obtained by instantiating and solving by a propositional algorithm. By operat-
ing directly on parfactors, the lifted algorithm can potentially be much more
efficient, since the first-order structure is explicitly available to it. For example,
suppose we want to compute the marginal of P (epidemic(flu)). Then we have
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to sum out all the other random variables in the model. While a regular KBMC
algorithm would instantiate them and then sum them out, a lifted inference al-
gorithm will directly sum out the parameterized epidemic(D), for D �= flu, and
sick(P, D). The lifted elimination operation may not depend on the number of
objects in the domain at all, greatly speeding up the process. The step in which
an entire class of random variables is eliminated at once is possible because they
all share the same structure, and this structure is explicitly available to the
algorithm.

Figure 12.4 presents a simplified diagram of a lifted inference operation.
Poole [73] proposes a lifted algorithm that generalizes propositional Variable

Elimination [25] but covers only some specific cases. de Salvo Braz et al. [47, 48]
present a broader algorithm, called First-Order Variable Elimination (FOVE).
FOVE includes Poole’s operation (which this work calls Inversion Elimination)
a generalized version of it, called simply Inversion, and a second elimination
operation called Counting Elimination. While Inversion does not depend on the
domain size, Counting Elimination does, but still only exponentially less than
propositionalization. The work also presents rigorous proofs of the correctness of
these operations and shows how to solve the lifted version of the Most Probable
Explanation (MPE) problem. While more general, FOVE still does not cover
all possible cases, when it too must resort to propositionalization. When this

sick(P, D)

epidemic(D)

D ≠ measles

D ≠ measles

Lifted VE

…sick(john, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

Instantiation

…sick(john, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

VE

Abstraction

epidemic(D)

D ≠ measles

D ≠ measles

sick(P, D)

Fig. 12.4. A diagram of several possible operations involving first-order and propo-
sitional probabilistic models. The figure uses the notation of factor graphs, which ex-
plictly shows potential functions as squares connected to their arguments. Parameter-
ized factors are shown as piled up squares, since they compactly stand for multiple
factors. Lifted inference operates solely on the first-order representation and can be
much faster than propositional inference, while producing the same results.
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happens, this propositionalization will be localized to the parfactors involved in
the uncovered case.

Lifted FOPI is a further step towards closing the gap between logic and prob-
abilistic inference, bringing to the latter the type of inference that does not
require binding of parameters (which would be the logical variables in atoms, in
logical terms), often seen in the former. However, it has its own disadvantages.
It is relatively more complicated to implement, and requires a normalizing pre-
processing of the model (called shattering) that can be very expensive. Further
methods are being developed to circumvent these difficulties.

12.5 Relational Learning

In this section we discuss some first-order models developed from a machine
learning perspective.

Machine learning algorithms have traditionally been defined as classification
of attribute-value vectors [74]. In many applications, it is more natural and con-
venient to represent data as graphs, where each vertex represents an object and
each edge represents a relation between objects. Vertices can be labeled with at-
tributes of its corresponding object (unary predicates or binary predicates where
the second argument is a simple value; this is similar to PRMs in Sect. 12.4.4),
and edges can be labeled (the label can be interpreted as a binary predicate
holding between the objects). This provides the typical data structure represen-
tations such as trees, lists and collections of objects in general. When learning
from graphs, we usually want to form hypotheses that explain one or more of
the attributes and (or) relations (the targets) of objects in terms of its neigh-
bors. Machine learning algorithms which were developed to benefit from this
type of representation have often been called relational. This is closely associ-
ated to probabilistic first-order models, since graph data can be interpreted as a
set of ground literals using unary and binary predicates. Because the hypothe-
ses explaining target attributes and relations apply to several objects, it is also
convenient to represent the learned hypotheses as quantified (first-order) rules.
And because most learners involve probabilities or at least some measure of un-
certainty, probabilistic first-order rules provide a natural representation option.
Figure 12.5 illustrates these concepts.

We now discuss three forms of relational learning: propositionalization (flat-
tening), Inductive Logic Programming (ILP), and FOPI learning, which can be
seen as a synthesis of the two.

12.5.1 Propositionalization

A possible approach to relational machine learning is that of using a relational
structure for generating propositional attribute-value vectors for each of its ob-
jects. For this reason, the approach has been called propositionalization. Because
it transforms graph-like data into vector-like data, it is also often called flattening.

Cumby & Roth [75] provide a language for transforming relational data into
attribute-value vectors. Their concern is not forming a first-order hypothesis,
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joe
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interest(baseball)
interest(computers)

school(jfk)

mary
female

interest(baskteball)
interest(computers)

larry
male

interest(baskteball)
school(fdr)paul

male
interest(music)

school(fdr)

lissa
female

interest(music)
school(jfk)

0.9: acqt(X,Y) ⇐ school(X,Z) ÆÆÆÆ school(Y,Z)
0.7: friends(X,Y) ⇐ interest(X,Z) ÆÆÆÆ interest(Y,Z)
0.6: friends(X,Y) ⇐ school(X,Z) ÆÆÆÆ school(Y,Z)
0.55: male(X) ⇐ interest(X,baseball)

acqtfriends

friends

acqt

friends
acqt

...
male(joe), 
interest(joe,baseball),
interest(joe,computers),
school(joe,jfk),
female(lissa),
interest(lissa,music),
school(lissa,jfk),
...
acqt(joe,lissa),
acqt(lissa,joe),
friends(lissa,paul),
friends(paul,lissa),
......

acqt

friends ...
...

Fig. 12.5. A fragment of a graph structure used as input for relational learning. The
same information can be represented as a set of ground literals (right). The hypotheses
learned to explain either relations or attributes can be represented as weighted first-
order clauses over those literals (below).

however. They instead keep the attribute-value hypothesis and transform novel
data to that representation in order to classify it with propositional learners
such as Perceptron. For example, in the case of Fig. 12.5, a classifier seeking
to learn the relation acqt would go through the instances of that predicate and
generate suitable attribute-value vectors. The literal acqt(paul, larry) would gen-
erate an example with label acqt(X, Y ) and features male(paul), male(larry),
interest(paul, music), school(paul, fdr), interest(larry, basketball),
school(larry, fdr) etc, as well as non-ground ones such as male(X), male(Y ),
school(X, fdr), school(Y, fdr), school(X, Z), school(Y, Z), interest(X, music)
etc. The literal acqt(joe, lissa) would generate an example with label acqt(X, Y )
and features male(joe), female(lissa), interest(joe, baseball),
interest(joe, computers), school(joe, jfk),etc, as well as non-ground ones such
as male(X), female(Y ), school(X, jfk), school(Y, jfk), school(X, Z),
school(Y, Z) etc. Note how this reveals abstractions – the examples above share
the features school(X, Z) and school(Y, Z), which may be one reason for people
being acquaintances in this domain. Should a target depend on specific objects
(say, it is much more likely for people at the FDR school to be acquainted to
each other) not completely abstracted features such as school(X, fdr) would be
preferred by the classifier.
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There are many different ways of transforming a graph or set of literals into
attribute-value vectors for propositional learners. Each of them will represent
different learning biases. Some works in this line are LINUS [76], which uses the
concept of ij-determinacy (a way of restricting the generalizations of literals)
in order to construct hypothesis, 1BC [77] and 1BC2 [78], which differentiate
between predicates representing attributes or relations and construct multiset
attributes (for example, the set of interests among one’s friends), and Relational
Bayesian Classifier (RBC) [79], which also uses multiset attribute values with a
conditional independence assumption similar to the one used in the Naive Bayes
classifier.

One disadvantage of propositionalization is that it performs classification of
an object at a time. This prevents the use of possible dependencies between
object labels and introduces a bias. These dependencies can be used by FOPI
algorithms, which perform joint inference over several objects at once. Three
of FOPI models which have been specifically developed with this in mind are
RDNs [65], RMNs [64] and MLNs [70].

12.5.2 Inductive Logic Programming

Inductive Logic Programming (ILP) stemmed from the logic programming com-
munity with the goal of learning logic programs from data rather than writing
them. The choice of logic programming as a hypothesis language initially re-
stricted the field to deterministic hypotheses; the later incorporation of proba-
bilities to this framework is one of the origins of FOPI models. However, the fact
that these algorithms learn from data give them a statistical flavor even in the
deterministic case. For example, Progol [36] uses information-theoretic measures
for evaluating deterministic hypotheses.

A typical ILP algorithm works by forming hypotheses one clause at a time.
For example, if such an algorithm is trying to learn the concept mother(X, Y ),
it might generate the clause mother(X, Y ) : −female(X), since female(X)
does add some predictive power to whether X is a mother, and may at a latter
step refine it to mother(X, Y ) : −female(X), child(Y, X). This is a top-down
approach since the most general clause is successively made more specific ac-
cording to examples. Two examples of work in this line are [80, 81]. Another
approach is bottom-up, best exemplified by Progol [36], where sets of ground
literals are successively generalized in order to increase accuracy.

Some ILP algorithms use propositionalization as a subroutine that learns
one rule at a time. LINUS [76] transforms its data into attribute-value vectors,
applies regular attribute-value learners to it, and then transforms the attribute-
value hypothesis into a clause.

Probabilistic ILP (PILP) algorithms (a specific survey can be found at [82])
also often grow clauses and then estimate the probabilities (or parameters) asso-
ciated with those clauses. Some learn an entire logic program at first, and then
the parameters, while others learn the parameters as soon as the clauses are
learned. In fact, PILP is simply FOPI with learning done with ILP techniques,
and many of these works have been mentioned in previous sections. For example,
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MLNs [70], PRMs [58, 59] and BLPs [83] learn the structure of their models (as
opposed to their parameters) through techniques similar to those of ILP. RDNs
[65] use relational classifiers developed in the ILP community as a subroutine to
its model learning.

12.6 Restricted First-Order Probabilistic Models

The models presented so far intended to provide a level of expressivity similar
to first-order logic. At a minimum, they provide unary and binary predicates
arbitrarily applied to a collection of objects. However, there are some proba-
bilistic models exhibiting a restricted subset of first-order aspects, targeted for
particular tasks.

One such model is Hidden Markov Models (HMMs) [84], in which a sequence of
pairs of random variables represent a state and an observation. The model relates
observations to the state in the same time slice, as well as states in successive time
slides. While essentially propositional, HMMs exhibit the sharing of parameters
commonly observed in first-order models, since its parameters equally apply to
all transitions from one step to the next. The time indices of random variables
of an HMM are a restricted form of treating them as first-order.

The same sharing of parameters can be observed in related models. Stochas-
tic Context-Free Grammars [31] consist of set of production rules were a non-
terminal symbol is stochastically replaced by a number of possible sequences
of symbols. Again, the rules can be applied at different points and parameters
are reused. Dynamic Bayesian Networks [85] generalize HMMs in that each step
is represented by a full Bayesian network rather than just a pair of state and
observations.

sick

epidemics

hospital
P: Person

D: Disease

Fig. 12.6. Repeated structure of a graphical model can be indicated by plates. Random
variables are implicitly indexed by integer variables associated with the plates inside
which they reside. The same CPT is used for all of them.
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Other generalizations of these restricted models are Hidden Tree Markov Mod-
els [86], where possible states form a tree structure, Logical Hidden Markov
Models [66], where each state is represented by a set of logical literals, and Re-
lational Markov Models [87], where each state is also represented by a set of
logical literals, but possible arguments follow a taxonomy and induce a lattice
on possible literals.

Another simple generalization of propositional models is the plate notation
[88], which describes graphical models with parts replicated by a set of indices,
indicated by a rectangle involving that part in a diagram. An example is shown
in Fig. 12.6. The parameters into these parts are then also replicated. Mjolsness
[89] proposes many refinements to this type of notation. The plate notation is
commonly used as a tool for descriptions in the literature but has not been
typically meant as an input to algorithms.

12.7 Conclusion

First-order probabilistic inference has made much progress in the last twenty
years. We believe the main accomplishments have been the clarification the se-
mantics of such languages, as well as a greater understanding on how several
different language options relate to each other. In analyzing the works in the
area of FOPI, we can distinguish a few main options along which they seem to
organize themselves. We now make these aspects more explicit.

12.7.1 Directed vs. Undirected

The decision on using directed or undirected models carries over the the first-
order case. While the intelligibility of directed models has favored their use in
first-order proposals at first, we can observe a current tendency to use undirected
models [70, 90], or at least directed models without the acyclicity requirement
[65]. The reason for this shift is that cycles are even more naturally occurring
in first-order domains than in propositional ones. A “natural” conditional prob-
ability such as P (smoker(X)|friend(X, Y ), smoker(Y )) creates an underlying
network with cycles. The use of undirected models seems to be further justified
by the fact that they do not rule out directed models. If the given factors en-
code conditional probabilities that do not involve cycles, they will still represent
the correct distribution even if interpreted as an undirected factor (this however
loses structure that could be used to improve efficiency).

12.7.2 The Trade-Off between Language and Algorithm

Some FOPI proposals focus on rich languages that allow the user to indicate do-
main restrictions which can be exploited for efficiency. Examples of such systems
are Ngo and Haddawy’s Probabilistic Logic Programming [23], PRMs [58, 59],
LBNs [67]. One example is the treatment of determinism (especially of relations)
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being expressed explicitly by the language, as in the case of PRMs and LBNs,
as discussed in Sect. 12.4.4.

Other solutions propose simple languages, relying on inference algorithms to
exploit domain structure (sometimes guided by extra-language directives). The
most typical examples are BLPs [66] and MLNs [70].

This choice reflects a trade-off between language and inference algorithm com-
plexities. Complex languagesbring built-in optimizationhints; for example, PRMs
have attributes (with a value) and relations, even though both could be regarded
as binary predicates. By indicating that a binary predicate is an attribute, the user
implicitly indicates the most efficient ways of using it, which are distinct from the
way a relation is used. To obtain the same effect, an algorithm using only a single
general notion of binary predicates would have to either find out or be told (by
extra-language directives) how to use each of them in the most efficient manner.
In this case, compilation and learning can play important roles.

Our particular view is that FOPI languages will tend to become simpler,
leaving the complexities to be dealt with by compilation, learning and directives.
This reflects the evolution of programming languages, that have increasingly left
efficiency details to be dealt with by compilers and directives rather than by
the language itself, leaving the latter at a higher level that can be more easily
understood and theoretically related to other approaches. On the other hand,
this simplicity should not be such as to prevent the development of specialized
libraries and knowledge representations. These are useful but best included on
top of simple primitives instead of as primitives themselves.

12.7.3 Infinite Models

First-order models may have a finite description while involving an infinite num-
ber of random variables, if the number of objects in the domain is infinite.
This poses problems to algorithms presented in this survey, since they may not
stop in that case. As pointed out by [91], models with infinite number of ran-
dom variables can be dealt with by approximate, anytime algorithms. These
algorithms will provide arbitrarily precise approximations after a sufficient (but
finite) amount of computation is performed. Such an approach would also make
sense for processing models that, while involving a finite number of random vari-
ables, are too complex for exact inference. Such algorithms would also benefit
from guided evaluation, that is, by choosing to process first the parts of the
model that yield greater amounts of information about the query.
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