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Recent advances in sensor technology are facilitating the deployment of sensors into the 
environment that can produce measurements at high spatial and/or temporal resolutions. Not only 
can these data be used to better characterize systems for improved modeling, but they can also be 
used to produce better understandings of the mechanisms of environmental processes. One such 
use of these data is anomaly detection to identify data that deviate from historical patterns. These 
anomalous data can be caused by sensor or data transmission errors or by infrequent system 
behaviors that are often of interest to the scientific or public safety communities. Thus, anomaly 
detection has many practical applications, such as data quality assurance and control (QA/QC), 
where anomalous data are treated as data errors; focused data collection, where anomalous data 
indicate segments of data that are of interest to researchers; and event detection, where 
anomalous data signal system behaviors that could result in a natural disaster. This study 
develops two automated anomaly detection methods that employ Dynamic Bayesian Networks 
(DBNs). These machine learning methods can operate on a single sensor data stream, or they can 
consider several data streams at once, using all of the streams concurrently to perform coupled 
anomaly detection. This study investigates these methods’ abilities, using both coupled and 
uncoupled detection, to perform QA/QC on two windspeed data streams from Corpus Christi, 
Texas; false positive and false negative rates serve as the basis for comparison of the methods. 
The results indicate that a coupled DBN anomaly detector, tracking the actual windspeeds, their 
measurements, and the status of these measurements, performs well at identifying erroneous data 
in these data streams. 
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Introduction 
In-situ environmental sensors (sometimes called “embedded” sensors) are sensors that are 

physically located in the environment they are monitoring. They collect time series data that flow 
continuously to a repository, creating a data stream. Recently, there have been efforts to make use 
of streaming data for real-time applications. For example, draft plans for the Water and 
Environmental Research Systems (WATERS) Network, a proposed U.S. environmental 
observatory network, have identified real-time analysis and modeling as significant priorities 
(NRC 2006). The value of streaming data for real-time forecasting and decision making has been 
demonstrated using a simulated oil spill (Bonner et al., 2002), and continuing efforts are being 
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directed towards facilitating near-real-time hydrodynamic forecasting using these data (Shah et 
al., 2005). 

Because in-situ sensors operate under harsh conditions, and because the data they collect 
must be transmitted across communication networks, the data can easily become corrupted. 
Undetected errors can significantly affect the data’s value for real-time applications. Thus, the 
National Science Foundation (2006) has indicated a need for automated data quality assurance 
and control (QA/QC). This can be accomplished via anomaly detection, which is the process of 
identifying data that deviate markedly from historical patterns (Hodge & Austin 2004). 
Anomalous data can be caused by sensor or data transmission errors or by infrequent system 
behaviors that are often of interest to scientific and regulatory communities. In addition to data 
QA/QC, where anomalous data are treated as erroneous, anomaly detection has many other 
practical applications, such as adaptive monitoring, where anomalous data indicate phenomena 
that researchers may wish to investigate further through increased sampling; and anomalous 
event detection, where anomalous data signal system behaviors that could result in a natural 
disaster. These applications require real-time detection of anomalous data, so the anomaly 
detection method must be rapid and must be performed incrementally, to ensure that detection 
keeps up with the rate of data collection. 

Traditionally, anomaly detection has been carried out manually with the assistance of data 
visualization tools (Mourad & Bertrand-Krajewski 2002), but these approaches are too time 
consuming for real-time detection in streaming data. More recently, researchers have suggested 
automated statistical and machine learning approaches, such as minimum volume ellipsoid 
(Rousseeuw & Leroy 1996), convex pealing (Rousseeuw & Leroy 1996), nearest neighbor (Tang 
2002; Ramaswamy et al. 2000), clustering (Bolton & Hand 2001), neural network classifier 
(Kozma et al. 1994), support vector machine classifier (Bulut et al. 2005), and decision tree 
(John 1995). These methods are faster than manual methods, but they have drawbacks that make 
them unsuitable for real-time anomaly detection in streaming data; for example, some require that 
all the data to have accumulated before anomalies can be identified; some are computationally 
intractable for large quantities of data; some require pre-classified anomalous data, which 
characterize all anomalies that may be encountered; and some require pre-classified non-
anomalous data, which characterize the range of possible non-anomalous data.  

Several researchers have suggested anomaly detection methods specifically designed for 
real-time detection in streaming data. These methods are often referred to as analytical 
redundancy methods because they employ a model of the sensor data stream as a simulated 
redundant sensor whose measurements can be compared with those of the actual sensor. The 
classification of a measurement as anomalous is based on the difference between the model 
prediction and the sensor measurement. Hill and Minsker (2006) present an analytical 
redundancy method for detecting anomalies in environmental sensor data and compare its 
performance using several data-driven modeling approaches, including nearest neighbor, 
clustering, perceptron, and artificial neural networks. This method, however, is limited, because it 
cannot consider several data streams at once and because missing values in the data stream render 
it incapable of classifying measurements that immediately follow the missing values.  

To address these limitations, this study develops two real-time anomaly detection methods 
that employ dynamic Bayesian networks (DBNs) to identify anomalies in environmental 
streaming data. DBNs are artificial intelligence techniques that model the evolution of discrete 
and/or continuous valued states of a dynamic system by tracking changes in the system states 
over time. The following section describes these methods in detail. Next, nine instantiations of 
two DBN-based methods are tested through a case study in which they are used to identify 
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erroneous measurements in two windspeed data streams from the WATERS Network Corpus 
Christi Bay testbed, provided by the Shoreline Environmental Research Facility (SERF). Finally, 
implications of these modeling methods are discussed. 

METHODS 
This study investigates the use of dynamic Bayesian networks (DBNs) for detecting 

anomalies in environmental sensor data streams. Bayesian networks are directed, acyclic graphs, 
in which each node contains probabilistic information regarding all the possible values of a state 
variable (Russell & Norvig 2003). This information, combined with the network topology, 
specifies the full joint distribution of the state variables, which, given a set of known variable 
values, can be used to infer the most likely value of the unknown variables. Dynamic Bayesian 
networks are Bayesian networks with network topology that evolves over time, adding new state 
variables to represent the system state at the current time t. State variables can be categorized as 
either unknown (hidden) state variables that represent the true states of the system or measured 
(observed) state variables that represent imperfect measurements of one or more of the true 
states; state variables can be either discrete or continuous valued. 

Because the network size increases over time, performing inference using the entire 
network would be intractable for all but trivial time durations. Luckily, efficient recursive 
algorithms have been developed that perform exact inference on specific types of DBNs 
(Maybeck 1979) or approximate inference on more general types of DBNs (Doucet et al. 2000a). 
Two of these algorithms are Kalman filtering and Rao-Blackwellized particle filtering. Both 
algorithms perform filtering, or inference of the current hidden system states given all of the 
observed states to date. Kalman filtering employs the assumption that all state variables are linear 
Gaussian random processes to perform exact inference, while Rao-Blackwellized particle 
filtering uses a sample of the state distributions (the particles) to perform approximate inference 
and thus does not limit the type of state variables (Doucet et al. 2000b).   

Two strategies for detecting anomalous data were considered in this study: Bayesian 
credible interval (BCI) and maximum a posteriori measurement status (MAP-ms). The BCI 
method uses the simple DBN shown in Figure 1, hereafter referred to as DBN-1, which tracks the 
multivariate distributions of linear Gaussian state variables corresponding to the hidden system 
states and their observed counterparts that are measured by the environmental sensors. The 
hidden states are assumed to be first-order Markov processes, so the state at time t only depends 

Figure 1: Graphical structure of DBN-1. Vector X represents the continuous valued, hidden 
system variables and vector M represents the continuous valued, observed system variables. 
Subscripts indicate time. 
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on the state at time t-1. Kalman filtering is used to sequentially infer the posterior distributions of 
hidden and observed states as new measurements become available from the sensors. The 
posterior distribution of the observed state variables can then be used to construct a Bayesian 
credible interval for the most recent set of measurements. The p% credible interval indicates that 
the posterior probability of the observed state variables falling within the interval is p; thus, the 
Bayesian credible interval delineates the range of plausible values for sensor measurements. For 
this reason, any measurements that fall outside of the p% Bayesian credible interval can be 
classified as anomalous. The network parameters (i.e. the probability distributions P(X0), P(Xt|Xt-

1), P(Mt|Xt)) for DBN-1 were learned from sensor data using the expectation-maximization 
algorithm (Digalakis et al. 1993). 

The MAP-ms method uses the more complex DBN shown in Figure 2, hereafter referred to 
as DBN-2, which tracks the multivariate distributions of linear Gaussian state variables 
corresponding to hidden system states and their observed counterparts, which are measured by 
the environmental sensors, as well as the distribution of a discrete hidden state variable which 
indicates the status (e.g. normal/anomalous) of each sensor measurement. For example, if there 
are two measured states, then the measurement status variable will have four values: (normal, 
normal), (anomalous, normal), (normal, anomalous), and (anomalous, anomalous). Rao-
Blackwellized particle filtering is used to sequentially infer the posterior distributions of the 
hidden and observed states as new measurements become available from the sensors. The 
maximum a posteriori estimate, (e.g. the most likely value given the posterior distribution) of the 
hidden state variable indicating the measurement status can then be used to classify the sensor 
measurements as normal or anomalous. DBN-2 requires (1) network parameters describing the 
time-evolution of the linear Gaussian states conditioned on each value of the discrete state and (2) 
parameters describing the time-evolution of the discrete state. For the case in which all sensor 
measurements were normal, the parameters of the linear Gaussian states were specified to be the 
same as those learned for DBN-1. For the cases in which one or more measurements was 

Figure 2: Graphical structure of DBN-2. Vectors X and Z represent the continuous valued and 
discrete valued hidden system variables, respectively, and vector M represents the 
continuously valued observed system variables. Subscripts indicate time. 
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anomalous, the parameter specifying the measurement variance of the anomalous measurement 
was set to be a large number (e.g. 10,000), indicating that regardless of the true state of the 
system, the measurement could take any real value with approximately equal probability. This 
description of anomalous measurements was used because it indicates that an anomalous 
measurement is more likely to fall outside the range of plausible measurements than a non-
anomalous measurement yet it does not require a priori knowledge of the types of anomalies that 
can occur. The discrete state distributions (i.e. P(Z0), P(Zt|Zt-1)) were set manually, using domain 
knowledge/intuition. Manually setting the parameters for the cases in which one or more 
measurements was anomalous was necessary because anomalous measurements are, by 
definition, infrequent; as such, insufficient information is available for learning these parameters 
from the data. Furthermore, learned parameters may define anomalies too narrowly to identify the 
range of anomalies that may be encountered.  

CASE STUDY 
To demonstrate and compare the efficacy of the anomaly detection methods developed in 

this study for data QA/QC, they were applied to two SERF windspeed sensor data streams 
(CC003 and CC009) from different locations within Corpus Christi Bay. The sensors are R. M. 
Young model 05106 marine wind monitors, which collect windspeed and direction at a frequency 
of 1/120 hertz (i.e. one measurement every two minutes). The BCI and MAP-ms strategies were 
tested using each data stream individually to perform uncoupled anomaly detection and using 
both data streams concurrently to perform coupled anomaly detection. Thus, there are two 
instances each of DBN-1 and DBN-2 for uncoupled anomaly detection (one for CC003 and one 
for CC009) and one instance each of DBN-1 and DBN-2 for coupled anomaly detection. Two 
BCI’s were compared for the instances of DBN-1: 95% and 99%. These nine combinations will 
hereafter be referred to as anomaly detectors. 

Parameters for the DBN-1 detectors were learned from the approximately 22,300 
windspeed measurements collected during the month of October 2006 by each of the two sensors, 
and parameters for DBN-2 detectors were selected based on the appropriate DBN-1 parameters as 
described above. Data from October was used for learning rather than data randomly sampled 
from several months, because the EM algorithm requires contiguous measurements for learning. 
Furthermore, 1000 particles were used for Rao-Blackwellized particle filtering on the DBN-2 
based detectors. Testing of the anomaly detectors was performed using the over 21,600 
measurements collected during November 2006. Learning the model parameters required 
approximately 60 seconds regardless of whether the data streams were uncoupled or coupled. 
Classification of a new measurement by the resulting DBN-1 based detectors required 0.0028 
seconds, while the resulting DBN-2 based detectors required 0.33 seconds.  

The testing data indicate that between consecutive measurements, the largest windspeed 
decrease, average windspeed change, and largest windspeed increase for CC003 are -7.08m/s, 
0m/s, and 4.51 m/s, respectively. These statistics for CC009 are -10.13m/s, 0m/s, and 2.76 m/s, 
respectively. Since no erroneous measurements were known to exist within the November 
windspeed data, synthetic errors were injected into the data stream. These errors were modeled as 
transient (i.e. short duration) faults that affected either sensor independently (i.e. both sensors 
could fail at the same time) with equal probability (6%) and increased or decreased the actual 
measurement by an offset selected uniformly from a range of positive numbers. To investigate 
the effect of the offset range, two ranges were compared in this study: R1, [1.03 – 11.3]m/s, and 
R2, [2.57 – 12.9]m/s. These ranges were selected arbitrarily, such that when subtracted from (or 
added to) the actual measurement, the minimum values of R1 and R2 fall roughly into the 2nd 
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(98th) and 0.05th (99.95th) percentile of windspeed change observed during the month of 
November, respectively, and such that the ranges do not allow excessively large offsets, which 
would be easy to classify. Both ranges provide challenging errors for the detectors because there 
is some overlap between the distribution of valid measurements and erroneous measurements. It 
is important to note that as the overlap is greater for errors drawn from R1, a greater number of 
classification errors should be expected using this range. False positive/negative rates were used 
to compare the performance of the nine fault detectors. The false positive/negative rates indicate 
the ratio of erroneous/valid data that are misclassified. These rates were quantified based on the 
assumption that the only errors in the data were the injected synthetic errors. 

Figures 3 and 4 show the performance of the nine detectors for identifying errors sampled 
from R1 and injected into the data streams CC003 and CC009, respectively. From these figures, 
it can be clearly seen that the DBN-1 based detectors produce many more false negatives than the 
DBN-2 based detectors, and that coupling appears to degrade the performance of the DBN-1 
detectors. This behavior can be attributed to the effects of erroneous measurements on the DBN-1 
prediction of the posterior probability distribution of the system states, which are exacerbated 
when both streams are used for inference.  

The coupled version of DBN-2 performs significantly better on errors drawn from R1 than 
any of the other detectors, with false positive and false negative rates of 0.76% and 5.6% for 
CC003, and 1.0% and 3.5% for CC009. This result indicates that including a discrete state 
tracking the status of the measurement and coupling the detection process significantly enhance 
the ability of the DBN to model the system sufficiently to identify anomalies. However, for these 
detectors, coupling appears to have the effect of increasing the false negative rate. This result 
appears to be caused by the number of discrete states that the coupled DBN must use to account 
for the measurement status. The uncoupled DBN-2 needs only two discrete values to represent 

Figure 3: Performance of the anomaly detectors operating on the CC003 windspeed data 
stream with synthetic errors drawn from R1.  
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the cases of normal measurement or anomalous measurement, whereas the coupled DBN-2 must 
use four states to account for the possible combinations of normal measurements and anomalous 
measurements on both data streams. Thus, in some cases of coupled anomaly detection, where 
one or both of the measurements are erroneous, the MAP estimate of the measurement status may 
indicate that neither of the measurements are anomalous, even though fewer than half of the 
particles support this estimate, because the majority of particles suggest the presence of an error, 
but are split regarding the type of error they indicate.  

Figures 5 and 6 show the performance of the nine detectors for identifying errors sampled 
from R2 and injected into data streams CC003 and CC009, respectively. From these figures, it 
can again be seen that the DBN-1 detectors have a higher false negative rate than the DBN-2 
based detectors. However, in general, the detectors’ false negative rates have decreased from the 
R1 case, due to the fact that errors drawn from R2 vary more significantly than those drawn from 
R1 and, thus, are easier to identify. The false positive rates for the DBN-1 detectors appear to 
have increased slightly from the R1 case, while the false positive rates for DBN-2 detectors 
appear to have decreased slightly. This trend is caused by the way erroneous measurements are 
processed by the different DBN’s. DBN-1 gives all measurements equal weight in the inference 
of the posterior state distributions, whereas DBN-2 largely ignores measurements classified as 
anomalous. Thus, the larger average magnitude of the errors drawn from R2 exacerbate the effect 
of anomalous measurements on inference with DBN-1, while inference with DBN-2 is improved 
because the errors are easier to identify and, thus, fewer anomalous data will be misclassified and 
given the same weight as valid measurements during inference. Finally, it is clearly visible that 
for detecting errors drawn from R2, the coupled version of DBN-2 performs significantly better 
than any of the other detectors, with false positive and false negative rates of 0.80% and 0.16% 
for CC003, and 1.0% and 0.00% for CC009. Again, this result indicates that including a discrete 

Figure 4: Performance of the anomaly detectors operating on the CC009 windspeed data 
stream with synthetic errors drawn from R1.  
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state tracking the status of the measurement and coupling the detection process significantly 
enhance the ability of the DBN to model the system sufficiently to identify anomalies. 

CONCLUSIONS 
Real-time detection of anomalies in environmental streaming data has many practical 

applications, such as data QA/QC, adaptive data collection, and anomalous event detection. This 
research developed two anomaly detection methods based on DBNs. These methods perform fast, 
incremental evaluation of data as it becomes available, can scale up to large quantities of data, 
and require no a priori information regarding process variables or the types of anomalies that 
may be encountered. Furthermore, because the Bayesian framework does not require a specific 
set of measurements to be available for classification, it is easy to apply to a network of 
heterogeneous sensors, in which one or more sensors can be expected to fail to report a 
measurement. 

This case study demonstrates the value and efficacy of the proposed anomaly detection 
methods for data QA/QC. Anomaly detectors developed to process the CC003 and CC009 
windspeed data streams from Corpus Christi Bay, using either a DBN that tracked only the 
windspeed and its measurement at one or both locations (DBN-1) or a DBN that tracked the 
windspeed, its measurement, and the status of the measurement at one or both locations (DBN-2), 
performed well at identifying synthetic transient errors injected into the data streams. In 
particular, the findings show that using DBN-2 to perform coupled anomaly detection on both 
data streams concurrently produces the best results. This result indicates that including a discrete 
state tracking the status of the measurement and coupling the detection process both significantly 
enhance the DBN’s ability to model the system. On errors drawn from R1, the coupled DBN-2 
had false positive and false negative rates of 0.76% and 5.6% for CC003, and 1.0% and 3.5% for 

Figure 5: Performance of the anomaly detectors operating on the CC003 windspeed data 
stream with synthetic errors drawn from R2.  
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CC009. For errors drawn from R2, the coupled DBN-2 had false positive and false negative rates 
of 0.80% and 0.16% for CC003, and 1.0% and 0.00% for CC009. Additionally, the results 
indicate that the false negative rates may be reduced if a larger number of particles are used for 
Rao-Blackwellized particle filtering, because the accuracy with which the discrete state is 
modeled improves as the number of particles is increased.  Furthermore, because DBN-2 
indicates the measurement status through the discrete variable, it could also be useful for 
modeling other specific types of sensor failures for which the behavior of the failing sensor can 
be described; thus, not only would the anomaly detector be able to indicate that a measurement 
was erroneous and identify which sensor reported it, but it would also be able to indicate the most 
likely cause of the faulty measurement.  This information could then be used for remedial action.   

This case study only considers two sensor data streams (CC003 and CC009 windspeed). 
There are many more sensors in the Corpus Christi Bay testbed observatory, which could be 
added to the coupled DBN-2 anomaly detector. Because these sensors operate at different 
sampling frequencies from each other and the windspeed sensors, their inclusion in the DBN is 
non-trivial. We are currently addressing this issue and plan to present additional results 
quantifying the performance of anomaly detectors that couple such sensors at the conference. 
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Figure 6: Performance of the anomaly detectors operating on the CC009 windspeed data 
stream with synthetic errors drawn from R2.  
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