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We present a mathematical model of interacting neuron- like units that we call 
Input Feedback Networks (IFN).  Our model is motivated by a new approach to 
biological neural networks, which contrasts with current approaches (e.g. Layered 
Neural Networks, Perceptron, etc.).  Classification and reasoning in IFN are 
accomplished by an iterative algorithm, and learning changes only structure. 
Feature relevance is determined during classification.  Thus it emphasizes network 
structure over edge weights.    IFNs are more flexible than previous approaches.  
In particular, integration of a new node can affect the outcome of existing nodes 
without modifying their prior structure.  IFN can produce informative responses to 
partial inputs or when the networks are extended to other tasks. It also enables 
recognition of complex entities (e.g. images) from parts.  This new model is 
promising for future contributions to integrated human-level intelligent 
applications due to its flexibility, dynamics and structural similarity to natural 
neuronal networks.   

Introduction 

Regulation through feedback is a common theme found in biology including gene 
expression and physiological homeostasis.  Furthermore, feedback connections can be 
found ubiquitously throughout neuronal networks of the brain.  Yet the role of 
feedback in neuronal networks is often under-appreciated.  Most connectionist models 
determine connection weights during a learning phase and during the testing phase 
employ a simple feedforward structure.   

The contribution of this paper is to demonstrate that feedback employed during the 
test phase can perform powerful distributed processing.    In our feedback model every 
output node only inhibits its own inputs. Thus the model is named Input Feedback 
Networks (IFN).  This paper reinforces preliminary results of the IFN [1, 2] and 
explores its ability to perform recognition and intelligent inference.   

Our analysis is divided into two subsections: combinatorial considerations and 
functional analysis.  The combinatorial section discusses the implications of adding a 
new representation in various networks and the plausibility of large networks.   The 
functional analysis section explores through exemplars how IFN behaves in complex 
scenarios.   

The scenarios are: 1) when an output node with a small input vector completely 
overlaps with an output node composed of a larger input vector.  Subsequently, the 
smaller vector is innately inhibited given the inputs of the larger vector. 2) Multiple 
overlapping representations can cooperate and compete under differing circumstances. 
3) Network ‘logic’ can be adjusted by simply biasing activation of an output. 4) 



Depending on inputs states, inference can be conducted through distributed processing 
over an infinite number of chains.  5) Overlap of representations determines processing 
difficulty and the role initial conditions may have on inference.    

Some of these results are preliminary.  However, it is clear that based on a simple 
premise of feedback, IFN offers a flexible structure and dynamic approach to 
classification of stimuli and Artificial Intelligence. 

1. Background  

Traditional connectionist classifier models can be broken down into two broad 
strategies: 1) Neural Network (NN) type algorithms that primarily rely on connection 
weight adjustments, implemented by learning algorithms. 2) Lateral Competition (LC) 
algorithms that involve competition between ‘similar’ representations.  LC and NN 
methods can overlap.  For example, weight adjustments occur between LC connections.  
We argue that both connection weights and direct output inhibition are specific to tasks. 
Furthermore they can be combinatorically implausible and can limit processing. 

1.1. Connection Weight Adjustments 

The idea of adjusting connection weights has been a corner stone throughout the 
development of connectionist models including Perceptrons, Parallel Distributed 
Networks, Markov Models, Bayesian Networks, Boltzmann Machines, and even 
Support Vector Machines [3-7].  Networks based on weight adjustment are powerful, 
flexible and in combination with learning algorithms can have a good degree of 
autonomy.  These methods allow high degrees of freedom where numerous sets of 
weights can be chosen for virtually any problem.  Weights are adjusted per task for 
specific applications.  However without appropriately selected training sets, this 
approach suffers from difficulties such as over-fitting, local minima and catastrophic 
interference (‘forgetting’ of previously learned tasks, e.g. [8, 9]).  The role of Neural 
Network (NN) structure in relation to function or image parts is unclear.  Learning 
algorithms are difficult to describe in terms of biologically viable neural mechanisms.  
Lastly, recent studies of neuron processing, challenge the idea that a synapse can be 
estimated by a connection weight [10, 11].   

1.2. Lateral Competition 

In LC models cells inhibit their neighbors or their neighbors’ inputs. Such models 
include: Hopfield, Winner-take-all (WTA) and Lateral Inhibitory networks i.e. [12-15].  
In WTA networks are engineered so that a cell inhibits all other possible 
representations.  Thus every cell must be connected to a common inhibitory network.  
This puts biologically implausible combinatorial demands on connectivity and limits 
parallel processing.  WTA does not address how recognition of parts interacts with 
overall classification.  Carpenter and Grossberg recognized this problem and proposed 
a mechanism which evaluates and ranks the number of inputs used in each part [12].  
The output(s) encompassing the most inputs is chosen as the best solution.  But this 
mechanism evaluates one cell at a time, and does not address when partial 
representations should compete. 



Lateral Inhibition and Hopfield networks are relaxed versions of WTA where the 
amount of competition between cells is engineered with LC connection weights.  
Lateral inhibition was originally proposed to describe neuronal activity within the 
retina based on neighboring cells with simple spatial receptive fields.  The closest 
neighbors compete most and competition decreases as cells are farther apart spatially 
(i.e. [15]).  However lateral inhibitory and Hopfield connections become somewhat 
intractable as object representations become more complex because the number of 
possible competitors becomes huge.  Let’s take the pattern ‘1’ for example, ‘1’ can 
compete with the representation of letter ‘I’, vertical bars, other letters, other numbers 
or anything vertical.   

2. Input Feedback Network Structure and Function 

IFN is composed of 
simple binary 
connections between 
input features and output 
vectors.    Yet, this 
becomes surprisingly 
powerful when combined 
with regulatory feedback 
to inputs during the 
testing phase [2].  This 
structure maintains its 
simplicity in large 
networks but can still 
make complex 
recognition decisions based on distributed processing.   
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The IFN structure is shown in Figure 1.  The network delineates a simple rule of 
connectivity based on a triad of interconnections between an input, the output it 
supports, and feedback from that output.  Every input has a corresponding feedback ‘Q’, 
which samples the output processes that the input cell activates and modulates the input 
amplitude.  These triads are intermeshed independently of what is happening with other 
such triads of other inputs.  The underlying triad holds true from both the perspective 
of the input processes and output processes.  Every output must project to the feedback 
Q processes that correspond to the inputs the output receives.  For example, if an output 
process receives inputs from I1 and I2 it must project to Q1 and Q2.  If it receives inputs 
from I1, it only needs to project to Q1.   

The networks are designed to dynamically re-evaluate each cell’s activation based 
on 1) input feedback onto the individual inputs in order to 2) modify the input state 
based on the input’s use. The input’s use is inversely proportional to the output cells 
that the input activates.  Lastly 3) re-evaluating each cell’s activity based on its state 
and the re-evaluated input. Steps 1-3 are cycled through continuously as the network 
converges to its solution.  Each cell inhibits only its inputs based on input feedback.  
Feedback provides a continuous measure of the use of each input, which determines 
competition [1, 2, 16, 17]. 
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 1.  Input Feedback Schematic. Every feedforward connection 
 associated feedback connection.  If I1(e.g. white) projects to 

1(e.g. pingpong) & Y2(lychee), then Q1 must receive projections 
1 & Y2 and provide feedback to the input cell I1.  Similarly if I2 

e.g. round) projects to Y1, Y2, Y3(orange), & Y4(planet), then Q2 
receives projections from Y1, Y2, Y3, & Y4 and projects to I2. 



2.1. Dynamic Evaluation of Ambiguity 

Inputs that project to multiple simultaneously active output nodes are ambiguous.  They 
are ambiguous because many representations use them.  Such inputs hold little value 
and become inhibited.  In contrast, inputs that project to one non-active representation 
are boosted.   

The only way an output cell process can receive full activation from the input is if 
it is the only cell active using that input, reducing Q to 1.  If two competing cells share 
similar inputs, they inhibit each other at the common inputs, forcing the outcome of 
competition to rely on other non-overlapping inputs.  The more overlapping inputs two 
cells have, the more competition exists between them.  The less overlap between two 
cells, the less competition, more ‘parallel’ or independent from each other the cells can 
be.  This is a trend supported by human search efficiency data that compares similarity 
between search objects and reaction times [18].   

2.2.  Simple Connectivity 

Feedback networks do not require a vast number of connections; the number of 
connections required for competition is a function of the number of inputs the cell uses.  
Addition of a new cell to the network requires only that it forms symmetrical 
connections about its inputs and not directly connect with the other output cells.  Thus 
the number of connections of a specific cell in feedback competition is independent of 
the size or composition of the classification network, allowing large and complex 
feedback networks to be combinatorially and biologically practical.   

2.3.  Flexibility 

IFN is flexible because it doesn’t a-priori define which input is ambiguous.  Which 
input is ambiguous depends on which representation(s) are active which in turn 
depends on which stimuli and task are being evaluated. 

2.4. Neurophysiology & Neuroanatomy Evidence 

The ability to modify information in earlier pathways appears to be an important 
component of recognition processing. Input feedback connections can be found in 
virtually all higher areas of brain processing.  The thalamic system (including thalamic 
nuclei the Lateral Geniculate Nucleus-LGN, and Medial Geniculate Nucleus-MGN) 
projects to all of the cerebral cortex and receives extensive cortical innervations back to 
the same processing areas.  Relay cells feed forward to the cortex and to pyramidal 
cells which feed back from the cortex.  Together they form the ubiquitous triad 
structure of input feedback. The thalamus may even receive more feedback connections 
from the cortex than it projects to the cortex [19].   

The Olfactory Bulb (OB), which processes odors, is analogous to the thalamus. 
The OB is a separate, modular structure which can easily be studied. Compared to 
visual or auditory signals, odorous signals are generally reduced in spatial fidelity [20].  
Thus odorant processing involves primarily recognition processing as opposed to visual 
or auditory processing which can encompass both recognition and localization.   

Input feedback modulation of early processing appears not one, but two levels of 
processing within the OB: the local and global circuits.  The local circuit found within 



the OB glomeruli sub-structure receives inputs from the olfactory nerve, and connects 
to mitral/tufted output cells.  The output cells simultaneously activate juxtoglomerular 
cells (Q cell equivalent) which pre-synaptically inhibit the olfactory nerve axons.  The 
global circuit receives inputs through the mitral/tufted cells, within the next structure, 
the olfactory cortex and projects information back to granule cells within the OB 
(another Q cell equivalent) which inhibit the mitral/tufted cells.   

Nonlinear mechanisms which alter cell activation based on previous activity are 
found in dendritic-dentritic connections involved in coincidence detection via 
intercellular NMDA channels.  These channels are found in both granule cells [21] and 
juxtoglomerular cells [22].  Together GABA channels (inhibitory connections), 
calcium & NMDA channels (multiplicative dynamics) form an input feedback system 
of inhibition [23, 24]. 

2.5. Mathematical Formulation and Investigation 
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2.6. Stability 

Stability of these equations presented here and variations including negative values 

e values have an upper bound.  By definition since Na is the set of 
inpu

Eq 1 Eq 2 

This section introduces general nonlinear equations governing IFN.  For any cell/vector 
Y denoted by index a, let Na denote the input connections to cell Ya.  For any input edge 
I denoted by index b, let Mb denote the feedback connections to input Ib.  The amount 
of shunting inhibition at a single input Ib is defined as Qb for that input.  Qb, is a 
function of the sum of activity from all cells Yj that receive a at input: 

                

 
Inpu
cells that project to the input, and driven by Xb which is the raw input value.  The 

activity of Ya is dependent on its previous activity and the input cells that project to it.  
The input activity that is transferred to the output cells is inversely proportional to the 
Q feedback.   

               
      
 
 

have been previously analyzed [25, 26]. The subset used here are limited to positive 
values of all variables, thus these equations will always be positive given positive 
values of the components.  Thus the values of Y can not become negative and have a 
lower bound of 0. 

Furthermore th
t connections to cell Ya, then Mb will contain cell Ya the within the set of input 

feedback connections to input Ib.  To achieve the largest possible value, all other cells 
should go to zero. In that case, the equation then reduces to  
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where na is the number of processes in set Na.  If X values are bounded by an Xmax 
then the values of Y are bounded by positive numbers between zero and Xmax. 
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The Picard existence and uniqueness theorem states that if a differential equation is 
bounded and is well behaved locally then will have a unique solution i.e. [27].   

2.7. Learning 

The distinguishing feature of this approach is the emphasis on the test phase as opposed 
to the conventional emphasis on learning.  Thus, we purposefully deemphasize learning.  

3. Combinatorial Analysis 

ombinatorial problems of adding a new node to large 
networks and describe how IFN structure avoids these problems. 

h type of network (NN, LC, IFN) and 
recognizes among other things a ping-pong ball with a ‘ping-pong ball’ cell [29].  Now 

 representative of lychee.  In NNs the whole network may potentially be 
adju

uired to connect to every other node (WTA). In weight 
adju

Since IFN uses simple positive binary connections, learning is simpler.  This means 
that only features present during label presentation are encoded.  Negative associations 
such as ‘Y1’ is unlikely given feature ‘X1’, are not encoded.  Instead, they are estimated 
using the recursive feedback processes.  Thus learning can involve encoding simple 
(Hebbian-like) correlations between input features and output vector labels.  More 
sophisticated learning methods can include clustering and pruning ie. [28]. 

In this section we outline c

3.1. The Ping-Pong, Peeled Lychee Example 

Assume three huge brains composed of eac

a new stimulus appears for the first time: a peeled lychee.  It has many similar input 
features to a ping-pong ball (ie. color and size).  Each model should 1) incorporate a 
lychee node 2) assure the ‘ping pong’ node does not predominate given lychee input 
features.   

In all of the brains the input features representative of peeled lychee must connect 
to the node

sted.  Given lychee the connection weights of the features that support lychee are 
boosted and those that support ping-pong are reduced.  Similarly in LC given lychee, 
weighted lateral connections must be created where the representation of lychee 
inhibits the representation of ping-pong (and any other similar representation) and visa 
versa.  No matter how obscure or unlikely the relation of lychees and ping-pong balls 
are in most life situations NNs and LC networks must re-arrange their structure for it.  
This can potentially degrade previously learned associations [8, 9].  As the networks 
become larger, the cost of evaluating each node against the others becomes impractical. 
In IFN the node’s input-output relations are sufficient.  Thus no further modification of 
the structure is required. 

In summary, in LC the number of connections can be implausible: potentially 
every node may be req

stment paradigms (NNs), connection weights are allowed a high degree of freedom 
and need to be adjusted for all tasks a-priori.  IFNs rely on input feedback instead of 
direct connections or weights and do not require modification.  Thus are more 
combinatorially practical. 



4. Functional Analysis 

We analyze interactions between different compositions of node representations and 
degenerate cases to assess their informative value.  We analyze 1) how nodes with 
smaller representations that are overlapped by larger representations behave 2) how 
multiple partially overlapping representations can simulate a binding scenario, where 
certain parts cooperate and others compete, 3) control of overlapping behavior 4) the 
behavior of infinite number of partial overlapping representations linked in chains, and 
5) winner-less competition. 

4.1. Composition by Overlap of Nodes 

In the most general example, example 1, two cells are connected such 
that the inputs of Y1 (input A) completely overlaps with a larger Y2.  But 
Y2 also receives an independent input, B [2].  In IFN, Y1 has one input 
connection, thus by definition its input connection weight is one.  It is 
‘Homeostatic’: its maximal activity is 1 when all of its inputs (input A) 

 for it to be ‘Homeostatic’ its input connection 
ts (A & B) are 1 the activity of Y2 sums to 1.  
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Figure 2: 
Example 1 

are 1.  Y2 has two input connections so
weights are one-half.  When both inpu
Note these weights are predetermined by the network.  Connections are permanent and 
never adjusted.  Input A projects to both Y1 & Y2, thus receives inhibitory feedback 
from both Y1 & Y2.  Input B projects only to Y2 so it receives inhibitory feedback from 
Y2.  The most encompassing representation will predominate without any special 
mechanism to adjust the weighting scheme.  Thus, if inputs A and B are active Y2 wins. 
This occurs because when both inputs are active, Y1 must compete for all of its inputs 
with Y2, however Y2 only needs to compete for half of its inputs (the input shared with 
Y1) and it gets the other half ‘free’.  This allows Y2 to build up more activity and in 
doing so inhibit Y1.     

The solutions are presented as (input values)→(output vectors) in the pattern 
(XA,XB,)→(Y1,Y2).   The steady state solution for example 1 is (XA, XB)→(XA – XB, XB).  
Substituting our input values  we get (1,1)→(0,1), (1,0)→(1,0).   Given only input A 
the smaller cell wins the competition for representation.  Given both inputs the larger 
cell wins the competition for representation. Though we used binary inputs, the 
solution is defined for any positive real X input values [2].  The mathematical equations 
and their derivation can be found in the Appendix.  

Thus smaller representation completely encompassed by a larger representation 
become is inhibited when the inputs of the larger one are present.  The smaller 
representation is unlikely given features specific only to the large representation. It 
demonstrates that IFN determines negative associations (‘Y1’ is unlikely given feature 
‘XB’) even though they are not directly encoded.  This is a general example and data 
sets may have many forms of overlap.    

In order to encode such negative associations using conventional methods, they 
would have to be ‘hard-wired’ into the network.  With NN, each possible set of stimuli 
combinations would have to be trained.  With LC each possible negative association 
would have to be explicitly connected. 

4.2. Multiple Parts in Binding Scenario 



IFN

ther input with Y3 and Y3 
competes for only one of its inputs.   

The steady state solution is (XA, XB, XC) → (X –X +XC, XB–XC, XC).  If XB ≤ XC 
then Y2=0 and the equations become (XA , 0, 

 can simultaneously evaluate the criteria of three different 
representations.  In e.g. 2, expanded from e.g. 1, three cells partially 
overlap.  As in e.g. 1, Y1 competes for its single input with Y2.  
However, now Y2 competes for its o

A B

2
CB XX + ).  If XC = 0 the solution 

becomes that of e.g. 1: (XA, XB, 0) → (XA – XB, XB, 0).  The results are: (1, 0, 0) → (1, 0, 
0);  

(1, 1, 0) → (0, 1,0);  (1, 1, 1) → (1, 0, 1).  Derivations can be found in the 

f inputs A and B are active and Y2 wins for the 
same reasons this occurs in e.g 1.  However, if inputs A, B and C are active then Y  and 

) ting i  ‘ Si Y o etting 
its o

Y2 out o
information travels indirectly ‘through’ the representations.  Given active inputs A and 

mes inactive.  If input C is 1, Y  becomes active.  However, Y  does not even share 
inpu

4.2.

3
is interpreted as part of the truck chassis.  Now given an image of a 

 simultaneously (A, B and C), choosing the barbell (Y2) even though 
rrect representation, is equivalent to a binding error within the wrong 

appendix.   
Thus if input A is active, Y1 wins.  I

1
Y3 win.  The network as a whole chooses the cell or cells that best represent the input 
pattern with the least amount of competitive overlap.   

In e.g. 2, Y2 must compete with all of its inputs: A with Y1, B with Y3.  Y3 only 
competes for half of its inputs (input B get nput C free’.  nce 2 is n t g

ther input (input A) ‘free’ it is at a competitive disadvantage to Y3.  Together Y1 and 
Y3, mutually benefit from each other and force f competition. Competitive 

B, the activity state of Y1 is determined by input C through Y3. If input C is 0 then Y1 
beco 1 3

t A with Y1. 

1. Binding 

Choosing Y2 given inputs A, B, and C is equivalent to choosing the irrelevant features 
for binding.  Below we attempt to put this issue in a ‘binding’ context.  Lets assign 
inpu dts A, B, an  C to represent spatially invariant features of an image of a pickup 
truck         where feature A represents circles, C represents the truck body (without 
chassis and wheels), and feature B represents a horizontal bar.  Y1 is assigned to 
represent wheels and thus when it is active, feature A is interpreted as wheels.  Y2 
represents a barbell      composed of a bar adjacent to two round weights (features A 
and B).  Note: even though Y2 includes circles (feature A), they do not represent wheels 
(Y1), they represent barbell weights.  Thus if Y2 is active feature A is interpreted as part 
of the barbell.  Y  represents a pickup truck body without wheels (features B and C), 
where feature B 
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Figure 3: Example 2 

pickup, all features
technically a co
context in light of all of the inputs.  In that case the complete picture is not analyzed in 
terms of the best fit given all of the information present.  Similar to case 1, the most 
encompassing representations mutually predominate without any special mechanism to 
adjust the weighting scheme.   

Thus the networks are able to evaluate and bind representations in a sensible 
manner for these triple cell combinations.  To emulate this in traditional network each 
possible combination will have to be trained for each input combination.  
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hen the animal is trained to actively look for that shape.   
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l bias to Y2 
(representing barbell) according to the equation:  

 

now overrides its inherent properties and indicates that the inputs of Y2 are 
pres

4.4. omposition 

Cells can be furth
repr

4.4.

 1 and odd ones 
zero.  The general solutions (Y1, Y2…, YN) where i & j 
represent cell numbers are: 

 

 → (0,1,1) and N=5: (1,1
. 

If cell 1 (the only cell with one input) is not present, then the network does not have a 
e an odd number of inputs.  Two-input cells can not 

n.   
ated.  In the case of three 
 

≤≤≤≤ 
For example with N=4: (1,1,1,1)

4.3. Search 

The previous section demonstrated that these networks display useful distributed 
properties.  In this section we describe how the networks can be modified to perform 
tasks.  

Suppose we want to use our network to ‘search’ for specific stimuli.   Object-
specific neurons in the temporal lobe show biasing (a slight but constant increase in 
baseline activity of that cell) w

ng recognition, the biased cell rapidly gains activity at the expense of others [30].   
Our network can be biased in a similar fashion.  We repeat example 2 but want to ask 
the question: can a barbell shape be present?  We introduce a smal

 

 
Choose a bias b of 0.2 and activating all inputs (1, 1, 1) → (0.02, 0.98, 0.71). The 

network 
ent.   
Thus network function can be radically adjusted simply by biasing activation.  

Most importantly, this did not require adjustment of any connection weights.  Biasing 
involved only the desired representation and can be easily turned on and off.  In 
traditional methods such as NNs weights would need to be re-learned and redistributed 
throughout the network for this new task.  

 C by Infinite Chains 

er linked at infinitum and the cell 
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1. Including a 1-Input cell 

Consider the for example case where there are N cells, and 
N inputs, and all inputs are 1.   If N is an odd number then 
at steady state the odd numbered cells will be 1 and even 
ones 0.  If N is even, the even cells will be

,1,1,1) → (1,0,1,1).  Thus 
these input configurations can be represented by binary values

4.4.2. Without a 1-Input cell 

favorable set of cells to resolv
match in a binary manner the inputs of an odd numbered chai

Thus, in these cases the solution becomes more complic
inputs (covered by two cells) the mathematical solutions are: 
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Figure 4:   
Chains of 2 - Input Cells   

4.4.1: With 1-Input Cell (Cell 1)  
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When inputs are (1,1,1) then output cells become (¾, ¾).  Furthermore if only the 
middle input is active (0,1,0) then the forces on both cells are symmetrical, the equation 
collap

es:  

ses to 2(Y1(t)+Y2(t))=XB and the solution depends on initial conditions (also see 
section 5.5).     

In case of 4 inputs distributed over 3 cells the solution becom
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When all inputs are 1, the cells settle on a binary solution (1,0,1).  Cases with more 
inputs become progressively more complicated.  Thus the structure can greatly affect 
the ability to efficiently represent inputs.   

4.4.3. Subchains 

If an n the chain is zero, this will break the chain into independent components 
com

4.5. Analysis ode Overlap 

Last

o cells Y1 & Y2 with n1indep and n2indep 
representing each cells’ independent inputs. Furthermore K1 & K2 represent the average 

ependent inputs.   The steady state solution is of the form: 

y input i
posed of the right and left parts of the chain from the zero input.  These can 

function as smaller chains.  For example if input D=0, the chains involving inputs A-C 
and E-N become independent.  Thus the outcome of network, is determined by 
distributed cell dynamics involving input values and cell representations.  Further 
analysis is remains for future research.   
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ly overlap is a key determinant of processing independence [2].  If two 
representations completely overlap they may also be dependent on initial conditions of 
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where kinitial represents initial conditions of the network.  See derivations in Appendix. 
 If λ > 0 then Y1(t=∞)→0, if λ < 0 then Y2(t=∞)→0.  In these cases either Y1 or Y2 

predominates.  However, if λ = 0 then the solution is not sufficiently independent and 
 = k Y1.   The initial value of k will affect the final 

ic of future research.  

n of 
stimuli composed of parts because its distributed interactions can resolve overlap of 
multiple repres ations.  These interactions give eference to the broadest 
representations and can determine when representations should cooperate or compete.   

l 

is a function with the form Y2
solution.  Further analysis is the top

5. Conclusion 

With simple combinatorially-plausible binary relations input feedback offers a flexible 
and dynamic approach to intelligent applications.  It is well suited for classificatio

ent pr

But, if representations are not sufficiently independent they may depend on initia
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Appendix 

Section 5.1,  example 1 IFN equations are:  

ditions.  However, the network can also be manipulated to perform search tasks by 
biasing output representations.  These properties demonstrate that such networks can be 
an integral part of intelligent inference and provide a new direction for future research.   
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The network solution at steady state is derived by setting Y1(t+dt)=Y1(t) and 
Y2(t+dt)=Y2(t) and solving these equations.   The solutions are Y1 = XA – XB  and Y2 = 
XB.  If XA ≤ XB then Y1 = 0 and the equation for Y2 becomes: 

22
BA XXY +

= .   

Section 5.2, example 2 equations: Y1(t+dt) remains the same as example 1. 
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 Solving for steady state by setting Y1(t+dt)=Y1(t), Y2(t+dt)=Y2(t), and 
B–XC, Y3= XC. If XC =0 the solution 

B.  If XB ≤ XC then Y2=0 and the equations 
become Y1 = XA and 

Y3(t+dt)=Y3(t), we get Y1=XA–XB+XC, Y2=X
becomes that of e.g. 1: Y1=XA–XB and Y2=X

23
CB X+XY = .   

Sect

s 1=n p over

2 2Indep over over over over Nover of Y2 by nition of 

ion 5.5: The overlap region is defined by the number of inputs that overlap 
between two cells Nover, and the number of inputs that are independent of overlap Nindep.  
If Y1 & Y2 overlap then Nover of Y1 = Nover of Y2.  Thu n 1Inde +n  and 
n =n +n .  Thus K  and N  of cell 1 = K  and  defi
overlap: 
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Substituting Y(t+dt)=Y+Y’ and subtracting out the overlap region the equations 
reduce to: 
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